
Introduction to the C++ Toolkit

[1]

Overview

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

One difficulty in understanding a major piece of software such as the C++ Toolkit is knowing

where to begin in understanding the overall framework or getting the 'big picture' of how all the

different components relate to each other. One approach is to dive into the details of one

component and understand it in sufficient detail to get a roadmap of the rest of the components,

and then repeat this process with the other components. Without a formal road map, this approach

can be very time consuming and it may take a long time to locate the functionality one needs.

When trying to understand a major piece of software, it would be more effective if there is a

written text that explains the overall framework without getting too lost in the details. This chapter

is written with the intent to provide you with this broader picture of the C++ Toolkit.

This chapter provides an introduction to the major components that make up the toolkit. You can

use this chapter as a roadmap for the rest of the chapters that follow.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! The CORELIB Module

" Application Framework

" Argument processing

" Diagnostics

" Environment Interface

" Files and Directories

" MT Test wrappers

" Object and Ref classes

" Portability definitions

" Portable Exception Handling

" Portable Process Pipes

" Registry

" STL Use Hints

" String Manipulations

" Template Utilities

" Threads

" Time

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! The ALGORITHM Module

! The CGI Module

! The CONNECT Module

" Socket classes

" Connector and Connection Handles

" Connection Streams

" Sendmail API

" Threaded Server

! The CTOOL Module

! The DBAPI Module

" Database User Classes

" Database Driver Architecture

! The GUI Module

! The HTML Module

" Relationships between HTML classes

" HTML Processing

! The OBJECT MANAGER Module

! The SERIAL Module

! The UTIL Module

" Checksum

" Console Debug Dump Viewer

" Lightweight Strings

" Range Support

" Linked Sets

" Random Number Generator

" Registry based DNS

" Resizing Iterator

" Rotating Log Streams

" Stream Support

" String Search

" Synchronized and blocking queue

" Thread Pools

" UTF 8 Conversion

The CORELIB Module

The C++ Toolkit can be seen as consisting of several major pieces of code that we will refer

to as module. The core module is called, appropriately enough, CORELIB, and provides a

portable way to write C++ code and many useful facilities such as an application framework,

argument processing, template utilities, threads, etc. The CORELIB facilities are used by other

Page 2

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

major modules. The rest of the sections that follow discusses the CORELIB and the other C+

+ Toolkit modules in more detail.

The following is a list of the CORELIB facilities. Note that each facility may be implemented

by a number of C++ classes spread across many files.

! Application Framework

! Argument processing

! Diagnostics

! Environment Interface

! Files and Directories

! MT Test wrappers

! Object and Ref classes

! Portability definitions

! Portable Exception Handling

! Portable Process Pipes

! Registry

! STL Use Hints

! String Manipulations

! Template Utilities

! Threads

! Time

A brief description of each of each of these facilities are presented in the subsections that follow:

Application Framework

The Application framework primarily consists of an abstract class called CNcbiApplication

which defines the high level behavior of an application. For example, every application upon

loading seems to go through a cycle of doing some initialization, then some processing, and

upon completion of processing, doing some clean up activity before exiting. These three phases

are modeled in the CNcbiApplication class as interface methods Init(), Run(), and Exit().

A new application is written by deriving a class from the CNcbiApplication base class and

writing an implementation of the Init(), Run(), and Exit() methods. Execution control to the

new application is passed by calling the application object's AppMain() method inherited from

the CNcbiApplication base class (see Figure 1). The AppMain() method is similar to the main

() method used in C/C++ programs and calls the Init(), Run(), and Exit() methods.

More details on the use of CNcbiApplication class are presented in a later chapter.

Argument processing

In a C++ program, control is transferred from the command line to the program via the main

() function. The main() function is passed a count of the number of arguments (int argc), and

an array of character strings containing arguments to the program (char** argv). As long as

the argument types are simple, one can simply set up a loop to iterate through the array of

argument values and process them. However, with time applications evolve and grow more

complex. Often there is a need to do some more complex argument checking. For example,

the application may want to enforce a check on the number and position of arguments, check

the argument type (int, string, etc.), check for constraints on argument values, check for flags,

Page 3

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

check for arguments that follow a keyword (-logfile mylogfile.log), check for mandatory

arguments, display usage help on the arguments, etc.

To make the above tasks easier, the CORELIB provides a number of portable classes that

encapsulate the functionality of argument checking and processing. The main classes that

provide this functionality are the CArgDescriptions, CArgs, CArgValue classes.

Argument descriptions such as the expected number, type, position, mandatory and optional

attributes are setup during an application's initilization such as the application object's Init()

method (see previous section) by calling the CArgDescriptions class methods. Then, the

arguments are extracted by calling the CArgs class methods.

More details on the argument processing are presented in a later chapter.

Diagnostics

It is very useful for an application to post messages about its internal state or other diagnostic

information to a file, console or for that matter any output stream. The CORELIB provides a

portable diagnostics facility that enables an application to post diagnostic messages of various

severity levels to an output stream. This diagnostic facility is provided by the CNcbiDiag class.

You can set the diagnostic stream to the standard error output stream (NcbiErr) or to any other

output stream.

You can set the severity level of the message to Information, Warning, Error, Critical, Fatal,

or Trace. You can alter the severity level at any time during the use of the diagnostic stream.

More details on diagnostic streams and processing of diagnostic messages is presented in a

later chapters.

Environment Interface

An application can read the environment variable settings (such as PATH) that are in affect

when the application is run. CORELIB defines a portable CNcbiEnvironment class that stores

the environment variable settings and provides applications with methods to get the

environment variable values.

More details on the environment interface are presented in a later chapter.

Files and Directories

An application may need access to information about a file or directory. The CORELIB

provides a number of portable classes to model a system file and directory. Some of the

important classes are CFile for modeling a file, CDir for modeling a directory, and

CMemoryFile for memory mapped file.

For example, if you create a CFile object corresponding to a system file, you can get the file's

attribute settings such as file size, permission settings, or check the existence of a file. You can

get the directory where the file is located, the base name of the file, and the file's extension.

There are also a number of useful functions that are made available through these classes to

parse a file path or build a file path from the component parts such as a directory, base name,

and extension.

More details on file and directory classes are presented in later chapters.

Page 4

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

MT Test wrappers

The CNcbiApplication class which was discussed earlier provides a framework for writing

portable applications. For writing portable multi-threaded applications, the CORELIB provides

a CThreadedApp class derived from CNcbiApplication class which provides a framework for

building multi-threaded applications.

Instead of using the Init(), Run(), Exit() methods for the CNcbiApplication class, the

CThreadedApp class defines specialized methods such as Thread_Init(), Thread_Run(),

Thread_Exit(), Thread_Destroy() for controlling thread behavior. These methods operate on a

specific thread identified by a thread index parameter.

Object and Ref classes

A major cause of errors in C/C++ programs is due to dynamic allocation of memory. Stated

simply, memory for objects allocated using the new operator must be released by a

corresponding delete operator. Failure to delete allocated memory results in memory leaks.

There may also be programming errors caused by references to objects that have never been

allocated or improperly allocated. One reason these types of problems crop up are because a

programmer may dynamically allocate memory as needed, but may not deallocate it due to

unanticipated execution paths.

The C++ standard provides the use of a template class, auto_ptr , that wraps memory

management inside constructors and destructors. Because a destructor is called for every

constructed object, memory allocation and deallocation can be kept symmetrical with respect

to each other. However, the auto_ptr does not properly handle the issue of ownership when

multiple auto pointers, point to the same object. What is needed is a reference counted smart

pointer that keeps a count of the number of pointers pointing to the same object. An object can

only be released when its reference count drops to zero.

The CORELIB implements a portable reference counted smart pointer through the CRef and

CObject classes. The CRef class provides the interface methods to access the pointer and the

CObject is used to stores the object and the reference count.

More CObject classes are presented in a later chapter.

Portability definitions

To help with portability, the CORELIB uses only those C/C++ standard types that have some

guarantees about size and representation. In particular, use of long, long long, float is not

recommended for portable code.

To help with portability, integer types such as Int1, Uint1, Int2, Uint2, Int4, Uint4, Int8, Uint8

have been defined with constant limits. For example, a signed integer of two bytes size is

defined as type Int2 with a minimum size of kMin_I2 and a maximum size of kMax_I2. There

are minimum and maximum limit constants defined for each of the different integer types.

More details on standard portable data types are presented in a later chapter.

Portable Exception Handling

C++ defines a structured exception handling mechanism to catch and process errors in a block

of code. When the error occurs an exception is thrown and caught by an exception handler.

The exception handler can then try to recover from the error, or process the error. In the C++

standard, there is only one exception class (std::exception), that stores a text message that can

be printed out. The information reported by the std::exception may not be enough for a complex

Page 5

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

system. The CORELIB defines a portable CException class derived from std::exception class

that remedies the short comings of the standard exception class

The CORELIB defines a portable CException class derived from std::exception class. The

CException class in turn serves as a base class for many other exception classes specific to an

application area such as the CCoreException, CAppException, CArgException,

CFileException, and so on. Each of these derived classes can add facilities specific to the

application area they deal with.

These exception classes provides many useful facilities such as a unique identification for every

exception that is thrown, the location (file name and line number) where the exception occurred,

references to lower-level exceptions that have already been thrown so that a more complete

picture of the chain of exceptions is available, ability to report the exception data into an

arbitrary output channel such as a diagnostic stream, and format the message differently for

each channel.

More details on exceptions and exception handling are presented in a later chapter.

Portable Process Pipes

A pipe is a common mechanism used to establish communications between two separate

processes. The pipe serves as a communication channel between processes.

The CORELIB defines the CPipe class that provides a portable inter-process communications

facility between a parent process and its child process. The pipe is created by specifying the

command and arguments used to start the child process and specifying the type of data channels

(text or binary) that will connect the processes. Data is sent across the pipe using the CPipe

read and write methods.

Registry

The settings for an application are often read from a configuration or initialization file. This

configuration file may define the parameters needed by the application. For example, many

Unix programs read their parameter settings from configuration files. Similarly, Windows

programs may read and store information in an internal registry database, or an initialization

file.

The NcbiRegistry class provides a portable facility to access, modify and store runtime

information read from a configuration file. The configuration file consists of sections. A section

is defined by a section header of the form [section-header-name]. Within each section, the

parameters are defined using (name, value) pairs and represented as name=value strings. The

syntax closely resembles the '.ini' files used in Windows and also by Unix tools such as Samba.

More details on the Registry are presented in a later chapter.

STL Use Hints

To minimize naming conflicts, all NCBI code is placed in the ncbi name space. The CORELIB

defines a number of portable macros to help manage name space definitions. For example, you

can use the BEGIN_NAME_SPACE macro at the start of a section of code to place that code

in the specified name space. The END_NAME_SPACE macros is used to indicate the end the

of the name space definition. To declare the use of the NCBI namespace, the macros

USING_NCBI_SCOPE is used.

A number of macros have been defined to handle non-standard behavior of C++ compilers.

For example, a macro BREAK is defined, that is used to break out of a loop, instead of using

Page 6

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

the break statement directly. This is done to handle a bug in the Sun WorkShop (pre 5.3 version)

compiler that fails to call destructors for objects created in for-loop initializers. Another

example is that some compilers (example, Sun Pro 4.2) do not understand the using namespace

std; statement. Therefore, for portable code, the using namespace statement should be

prohibited.

More details on the use of portable macros are presented in a later chapter.

String Manipulations

C++ defines the standard string class that provides operations on strings. However, compilers

may exhibit non-portable string behavior especially with regards to multi-threaded programs.

The CORELIB provides portable string manipulation facilities through the NStr class that

provides a number of class-wide functions for string manipulation.

NStr portable functions include the string-to-X and X-to-string conversion functions where X

is a data type including a pointer type, string comparisons with and without case, pattern

searches within a string, string truncation, substring replacements, string splitting and join

operations, string tokenization, etc.

Template Utilities

The C++ Template classes support a number of useful template classes for data structures such

as vectors, lists, sets, maps, and so on.

The CORELIB defines a number of useful utility template classes. Some examples are template

classes and functions for checking for equality of objects through a pointer, checking for non-

null values of pointers, getting and setting map elements, deleting all elements from a container

of pointers where the container can be a list, vector, set, multiset, map or multimap.

More details on the template utilities are presented in a later chapter.

Threads

Applications can run faster, if they are structured to exploit any inherent parallelism in the

application's code execution paths. Code execution paths in an application can be assigned to

separate threads. When the application is run on a multiprocessor system, there can be

significant improvements in performance especially when threads run in parallel on separate

processors.

The CORELIB defines a portable CThread class that can be used to provide basic thread

functionality such as thread creation, thread execution, thread termination, and thread cleanup.

To create user defined threads you need to derive your class from CThread, and override the

thread's Main() method and, and if necessary the OnExit() method for thread-specific cleanup.

Next, you create a thread object by instantiating the class you derived from CThread. Now you

are ready to launch thread execution by calling the thread's Run() method. The Run() method

starts thread execution and the thread will continue to run until it terminates. If you want the

thread to run independently of the parent thread you call the thread's Detach() method. If you

want to wait till the thread terminates, you call the thread's Join() method.

Synchronization between threads is provided through mutexes and read/write locks.

More details on threads and synchronization is presented in a later chapter.

Page 7

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Time

The CTime class provides a portable interface to date and time functions. CTime can operate

with both local and UTC time, and can be used to store data and time at a particular moment

or elapsed time. The time epoch is defined as Jan 1, 1900 so you cannot use CTime for storing

timestamps before Jan 1, 1900.

The CTime class can adjust for daylight savings time. For display purposes, the time format

can be set to a variety of time formats specified by a format string. For example, "M/D/Y h:m:s"

for a timestamp of "5/6/03 14:07:09". Additional time format specifiers are defined for full

month name (B), abbreviated month name (b), nanosecond (S), timezone format (Z), full

weekday name (W) and abbreviated weekday name (w).

A class CStopWatch is also available that acts as a stop watch and measures elapsed time via

the Elapsed() method, after its Start() method is called.

More details on CTime class are presented in a later chapter.

The ALGORITHM Module

The ALGORITHM module is a collection of rigorously defined, often computationally

intensive algorithms performed on sequences. It is divided into three groups:

! ALIGN. A set of global alignment algorithms, including generic Needleman-Wunsch,

a linear-space Hirschberg's algorithm and a spliced (cDna/mRna-to-Genomic)

alignment algorithm.

! BLAST. Basic Local Alignment Tool code and interface.

! SEQUENCE. Various algorithms on biological sequences, including antigenic

determinant prediction, CPG-island finder, ORF finder, string matcher and others.

The CGI Module

The CGI module provides an integrated framework for writing CGI applications. It consists

of classes that implement the CGI (Common Gateway Interface). These classes are used to

retrieve and parse an HTTP request, and then compose and deliver an HTTP response.

The CGI module consists of a number of classes. The interaction between these classes is fairly

complex, and therefore, not covered in this introductory chapter. We will attempt to only

identify the major classes in this overview, and cover the details of their interaction in later

chapters. Amongst the more important of the CGI classes are the CCgiApplication,

CCgiContext, CCgiRequest, CCgiResponse, and CCgiCookie.

The CCgiApplication is used to define the CGI application and is derived from the

CNcbiApplication discussed eariler. You write a CGI application by deriving application class

from CCgiApplication and providing an adoption of the Init(), Run(), and Exit() methods

inherited from the CNcbiApplication class. Details on how to implement the Init(), Run() and

Exit() methods for a CGI application are provided in a later chapter.

The CCgiRequest class is defined to receive and parse the request, and the CCgiResponse class

outputs the response to an output stream.

The CCgiCookie class models a cookie. A cookie is a name, value string pair that can be stored

on the user's web browser in an attempt to remember a session state. All incoming CCgiCookies

are parsed and stored by the CCgiRequest object, and the outgoing cookies are sent along with

the response by the CCgiResponse object.

Page 8

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

The CGI application executes in a 'context' defined by the CCgiContext class. The CCgiContext

class provides a wrapper for the CCgiApplication, CCgiRequest and CCgiResponse objects

and drives the processing of input requests.

More details on CGI classes and their interactions are presented in a later chapter.

The CONNECT Module

The CONNECT module implements a variety of interfaces and classes dealing with making

connections to a network services. The core of the Connection Library is written in C which

provides a low level interface to the communication protocols. The CONNECT module

provides C++ interfaces so that the objects have diagnostic and error handling capabilities that

are consistent with the rest of the toolkit. The standard sockets (SOCK) API is implemented

on a variety of platforms such as Unix, MS-Windows, MacOS, Darwin. The CONNECT

module provides a higher level access to the SOCK API by using C++ wrapper classes.

The following is a list of topics presented in this section:

! Socket classes

! Connector and Connection Handles

! Connection Streams

! Sendmail API

! Threaded Server

Socket classes

The C++ classes that implement the socket interface are CSocket, CDatagramSocket,

CListeningSocket, and CSocketAPI. The socket defines an end point for a connection which

consists of an IP address (or host name) of the end point, port number and transport protocol

used (TCP, UDP).

The CSocket class encapsulates the descriptions of both local and remote end points. The local

end point, which is the end point on the client issuing a connection request, is defined as

parameters to the CSocket constructor. The remote end point on which the network service is

running is specified as parameters to the Connect() method for the CSocket class. The CSocket

class defines additional methods to manage the connection such as Reconnect() to reconnect

to the same end point as the Connect() method; the Shutdown() method to terminate the

connection; the Wait() method to wait on several sockets at once; the Read() and Write()

methods to read and write data via the socket; and a number of other support methods.

The CSocket is designed for connection-oriented services such as those running over the TCP

transport protocol. For connectionless, or datagram services, such as those running over the

UDP transport protocol, you must use the CDatagramSocket class. The local end point is

defined as parameters to the CDatagramSocket constructor. The remote end point is specified

as parameters to the Connect() method for the CDatagramSocket class. Unlike the case of the

connection-oriented services, this Connect() method only specifies the default destination

address, and does not restrict the source address of the incoming messages. The methods Send

() and Recv() are used to send the datagram, and the method SetBroadcast() sets the socket to

broadcast messages sent to the datagram socket. The CDatagramSocket is derived from the

CSocket class but methods such as Shutdown() and Reconnect() that apply to connection-

oriented services are not available to users of the CDatagramSocket class.

The CListeningSocket is used by server-side applications to listen for connection requests. The

CListeningSocket constructor specifies the port to listen to and the size of the connection

Page 9

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

request queue. You can change the port that the server application listens to any time by using

the Listen() method. The Accept() method accepts the connection request, and returns a

CSocket object through which data is transferred.

The CSocketAPI is a C++ wrapper for class-wide common socket utility functions available

for sockets such as the gethostname(), gethostbyaddr(), ntoa(), aton(), and so on.

Connector and Connection Handles

The SOCK interface is a relatively low-level interface for connection services. The CONNECT

module provides a generalization of this interface to connection services using a connection

type and specialized connectors.

A connection is modeled by a connection type and a connector type. The connector type models

the end point of the connection, and the connection type, the actual connection. Together, the

connector and connection objects are used to define the following types of connections: socket,

file, http, memory, and a general service connection.

The connector is described by a connector handle, CONNECTOR. CONNECTOR is a typedef

and defined as a pointer to an internal data structure.

The connection is described by a connection handle CONN. CONN is a typedef and defined

as a pointer to an internal structure. The CONN type is used as a parameter to a number of

functions that handle the connection such as CONN_Create(), CONN_ReInit(), CONN_Read

(), CONN_Write(), etc.

The CONNECTOR socket handle is created by a call to the SOCK_CreateConnector() function

and passed the host name to connect to, the port number on the host to connect to, and maximum

number of retries. The CONNECTOR handle is then passed as an argument to the

CONN_Create() which returns a CONNECTION handle. The CONNECTION handle is then

used with the connection functions (that have the prefix CONN_) to process the connection.

The connection so created is bi-directional (full duplex) and input and output data can be

processed simultaneously.

The other connector types, file, http, memory are similar to the socket connector type. In the

case of a file connector, the connector handle is created by calling the FILE_CreateConnector

() function and passed an input file and an output file. This connector could be used for both

reading and writing files, when input comes from one file, and output goes to another file. This

differs from normal file I/O when a single handle is used to access only one file, but resembles

data exchange via sockets, instead. In the case of the HTTP connection, the

HTTP_CreateConnector type is called and passed a pointer to network information structure,

a pointer to a user-header consisting of HTTP tag-values, and a bitmask representing flags that

affect the HTTP response.

The general service connector is the most complex connector in the library, and can model any

type of service. It can be used for data transfer between an application and a named service.

The data can be sent via HTTP or directly as a byte stream (using SOCK directly). In the former

case it uses the HTTP connectors and in the latter the SOCK connectors. The general service

connector is used when the other connector types are not adequate for implementing the task

on hand.

More details on connector classes are presented in a later chapter.

Page 10

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Connection Streams

The CONNECT module provides a higher level of abstraction to connection programming in

the form of C++ connection stream classes derived from the standard iostream class. This

makes the familiar stream I/O operators, manipulators available to the connection stream. The

main connection stream classes are the CConn_IOStream, CCon_SocketStream,

CCon_HttpStream, CCon_ServiceStream, and CCon_MemoryStream.

Figure 2 shows the relationship between the different stream classes. From this figure we can

see that CConn_IOStream is derived from the C++ iostream class and serves as a base class

for all the other connection stream classes. The CCon_IOStream allows input operations to be

tied to the output operations so that any input attempt first flushes the output queue from the

internal buffers.

The CCon_SocketStream stream models a stream of bytes in a bi-directional TCP connection

between two end points specified by a host/port pair. As the name suggests the socket stream

uses the socket interface directly. The CCon_HttpStream stream models a stream of data

between and HTTP client and an HTTP server (such as a web server). The server end of the

stream is identified by a URL of the form http://host[:port]/path[?args]. The

CCon_ServiceStream stream models data transfer with a named service that can be found via

dispatcher/load-balancing daemon and implemented as either HTTP CGI, standalone server,

or NCBI service. The CCon_MemoryStream stream models data transfer in memory similar

to the C++ strstream class.

More details on connection stream classes are presented in a later chapter.

Sendmail API

The CONNECT module provides an API that provides access to SMTP protocol. SMTP

(Simple Mail Transfer Protocol) is a standard email relaying protocol used by many popular

MTAs (Message Transfer Agents), such as sendmail, smail, etc, found on many systems. SMTP

passes (relays) email messages between hosts in the Internet all the way from sender to

recipient.

To initiate the use of the sendmail API, you must call the SendMailInfo_Int() function that

initializes structure SSendMailInfo, passed by a pointer. Your code then modifies the structure

to contain proper information such as that expected in a mail header (To, From, CC, BCC

fields) and other communication settings from their default values set at initialization. Then,

you can send email using the CORE_SendMail() or CORE_SendMailEx() functions.

Threaded Server

The CONNECT module provides support for multithreaded servers through the

CThreadedServer class. The CThreadedServer class is an abstract class for network servers

and uses thread pools. This class maintains a pool of threads, called worker threads, to process

incoming connections. Each connection gets assigned to one of the worker threads, allowing

the server to handle multiple requests in parallel while still checking for new requests.

You must derive your threaded server from the CThreadedServer class and define the Process

() method to indicate what to do with each incoming connection. The Process() method runs

asynchronously by using a separate thread for each request.

More details on threaded server classes are presented in a later chapter.

Page 11

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

The CTOOL Module

The CTOOL module provides bridge mechanisms and conversion functions. More specifically,

the CTOOL module provides a number of useful functions such as a bridge between the NCBI

C++ Toolkit and the older C Toolkit for error handling, an ASN.1 connections stream that

builds on top of the connection stream, and an ASN converter that provides templates for

converting ASN.1-based objects between NCBI's C and C++ in-memory layouts.

The ASN.1 connections support is provides through functions CreateAsnConn() for creating

an ASN stream connection; CreateAsnConn_ServiceEx() for creating a service connection

using the service name, type and connection parameters; and CreateAsnConn_Service() which

is a specialized case of CreateAsnConn_ServiceEx() with some parameters set to zero.

The DBAPI Module

The DBAPI module supports object oriented access to databases by providing user classes that

model a database as a data source to which a connection can be made, and on which ordinary

SQL queries or stored procedure SQL queries can be issued. The results obtained can be

navigated using a result class or using the 'cursor' mechanism that is common to many

databases.

The user classes are used by a programmer to access the database. The user classes depend

upon a database driver to allow low level access to the underlying relational database

management system (RDBMS). Each type of RDBMS can be expected to have a different

driver that provides this low level hook into the database. The database drivers are architected

to provide a uniform interface to the user classes so that the database driver can be changed to

connect to a different database without affecting the program code that makes use of the user

classes. For a list of the database drivers for different database that are supported, consult the

Supported DBAPI Drivers section in a later chapter.

The following is a list of topics presented in this section:

! Database User Classes

! Database Driver Architecture

Database User Classes

The interface to the database is provided by a number of C++ classes such as the IDataSource,

IDbConnection, IStatement, ICallableStatement, ICursor, IResultSet, IResultSetMetaData .

The user does not use these interfaces directly. Instead, the DBAPI module provides concrete

classes that implement these interface classes. The corresponding concrete classes for the above

mentioned interfaces are CDataSource, CDbConnection, CStatement, CCallableStatement,

CCursor, CResultSet, CResultSetMetaData.

Before accessing to a specific database, the user must register the driver with the

CDriverManager class which maintains the drivers registered for the application. The user does

this by using the CDriverManager class' factory method GetInstance() to create an instance of

the CDriverManager class and registering the driver with this driver manager object. For details

on how this can be done, consult the section Choosing the Driver in a later chapter.

After the driver has been registered, the user classes can be used to access that database. There

are a number of ways this can be done, but the most common method is to call the IDataSource

factory method CreateDs() to create an instance of the data source. Next, the CreateConnection

() method for the data source is called, to return a connection object that implements the

IConnection interface. Next, the connection object's Connect() method is called with the user

Page 12

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

name, password, server name, database name to make the connection to the database. Next,

the connection object's CreateStatement() method is called to create a statement object that

implements the IStatement interface. Next, the statement object's Execute() method is called

to execute the query. Note that additional calls to the IConnection::CreateStatement() results

in cloning the connection for each statement which means that these connections inherit the

database which was specified in the Connect() or SetDatabase() method.

Executing the statement objects' Execute() method returns the result set which is stored in the

statement object and can be accessed using the statement object's GetResultSet() method. You

can then call the statement object's HasRows() method which returns a Boolean true if there

are rows to be processed. The type of the result can be obtained by calling the

IResultSet::GetResultType() method. The IStatement::ExecuteUpdate() method is used for

SQL statements that do not return rows (UPDATE or DELETE SQL statement), in which case

the method IStatement::GetRowCount() returns the number of updated or deleted rows.

Calling the IStatement::GetResultSet() returns the rows via the result set object that implements

the IResultSet interface. The method IResultSet::Next() is used to fetch each row in the result

set and returns a false when no more fetch data is available; otherwise, it returns a true. All

column data, except BLOB data is represented by a CVariant object. The method

IResultSet::GetVariant() takes the column number as its parameter where the first column has

the start value of 1.

The CVariant class is used to describe the fields of a record which can be of any data type. The

CVariant has a set of accessory methods (GetXXX()) to extract a value of a particular type.

For example, the GetInt4(), GetByte(), GetString(), methods will extract an Int4, Byte data

value from the CVariant object. If data extraction is not possible because of incompatible types,

the CVariantException is thrown. The CVariant has a set of factory methods for creating objects

of a particular data type, such as CVariant::BigInt() for Int8, CVariant::SmallDateTime() for

NCBI's CTime, and so on.

For details on sample code illustrating the above mentioned steps consult the sections Data

Source and Connections and Main Loop in a later chapter.

Database Driver Architecture

The driver can use two different methods to access the particular RDBMS. If RDBMS provides

a client library (CTLib) for a given computer system, then the driver utilizes this library. If

there is no client library, then the driver connects to RDBMS through a special gateway server

which is running on a computer system where such library does exist.

The database driver architecture has two major groups of the driver's objects: the RDBMS

independent objects, and the RDBMS dependent objects specific to a RDBMS. From a user's

perspective, the most important RDBMS dependent object is the driver context object. A

connection to the database is made by calling the driver context's Connect() method. All driver

contexts implement the same interface defined in the I_DriverContext class.

If the application needs to connect to RDBMS libraries from different vendors, there is a

problem trying to link statically with the RDBMS libraries from different vendors. The reason

for this is that most of these libraries are written in C, and may use the same names which cause

name collisions. Therefore, the C_DriverMgr is used to overcome this problem and allow the

creation of a mixture of statically linked and dynamically loaded drivers and use them together

in one executable.

Page 13

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

The low level connection to an RDBMS is specific to that RDBMS. To provide RDBMS

independence, the connection information is wrapped in an RDBMS independent object

CDB_Connection. The commands and the results are also wrapped in an RDBMS independent

object. The user is responsible for deleting these RDBMS independent objects because the life

spans of the RDBMS dependent and RDBMS independent objects are not necessarily the same.

Once you have the CDB_Connection object, you can use it as a factory for the different types

of command objects. The command object's Result() method can be called to get the results.

To send and to receive the data through the driver you must use the driver provided datatypes

such as CDB_BigInt, CDB_Float, CDB_SmallDateTime. These driver data types are all

derived from CDB_Object class.

More details on the database driver architecture is presented in a later chapter.

The GUI Module

The GUI Module has been designed for scientific visualization of biological sequences. The

GUI SEQ library describes and implements a set of objects needed to display and navigate

molecule sequences and features. The basic functionality allows the display a molecule

sequence and features, use mouse or keyboard to select parts of the sequence, get feature

information, change features shape, change various interface colors.

An advantage of using the SeqView is that you can have multiple sequence data sources and

can quickly and easily switch between them (see Figure 1 of the GUI chapter).

The Sequence View presented in Figure 1 of the GUI chapter relies on OpenGL, a widely used

graphical library for interactive 2D and 3D graphics applications; and FLTK a cross-platform

C++ GUI toolkit. FLTK is used to layout and display GUI elements. The graphical component

layout for the Sequence View can be quickly done using FLUID which is FLTK's UI (User

Interface) builder.

Three major classes are used to build the Sequence View. These are the CSeqView, CSeqPanel,

and the CSeqDataSource. The CSeqView represents the displayed Sequence View itself and

consists of a CSeqPanel and FLTK's Fl_Scrollbar object. The CSeqPanel represents the panel

graphical element inherited from FLTK's Fl_Gl_Window class. The CSeqDataSource

represents the bio sequence data source that is displayed. User defined sequence views are

created by deriving from the CSeqView class which also is used to handle all mouse and

keyboard events.

In order to set up a Sequence View, you have to create an instance of CSeqView, define your

data source by inheriting from CSeqDataSource and implementing the required methods, and

registering the data source with Sequence View.

More details on the GUI module is presented in a later chapter.

The HTML Module

The HTML module implements a number of HTML classes that are intended for use in CGI

and other programs. The HTML classes can be used to generate HTML code dynamically.

The HTML classes can be used to represent HTML page internally in memory as a graph. Each

HTML element or tag is represented by a node in the graph. The attributes for an HTML element

are represented as attributes in the node. A node in the graph can have other elements as

children. For example, for an HTML page, the top HTML element will be described by an

HTML node in the graph. The HTML node will have the HEAD and BODY nodes as its

Page 14

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

children. The BODY node will have text data and other HTML nodes as its children. The graph

structure representation of an HTML page allows easy additions, deletions and modification

of the page elements.

Note that while the HTML classes can be used to represent the HTML page internally in

memory as a graph there is no provision for parsing of existing HTML pages to generate these

classes.

The following is a list of topics presented in this section:

! Relationships between HTML classes

! HTML Processing

Relationships between HTML classes

The base class for all nodes in the graph structure for an HTML document is the CNCBINode.

The CNCBINode class is derived from CObject and provides the ability to add, delete, and

modify the nodes in the graph. The ability to add and modify nodes is inherited by all the classes

derived from CNCBINode (see Figure 3). The classes derived from CNCBINode represent the

HTML elements on an HTML page. You can easily identify the HTML element that a class

handles from the class names such as CHTMLText, CHTMLButtonList, etc.

The text node classes CHTMLText and CHTMLPlainText are intended to be used directly by

the user. Both CHTMLText and CHTMLPlainText are used to insert text into the generated

html, with the difference that CHTMLPlainText class performs HTML encoding before

generation. A number of other classes such as CHTMLNode, CHTMLElement,

CHTMLOpenElement, and CHTMLListElement are base classes for the elements actually

used to construct an HTML page, such as CHTML_head, CHTML_form (see Figure 4).

The CHTMLNode class is the base class for CHTMLElement and CHTMLOpenElement and

is used for describing the HTML elements that are found in an HTML page such as HEAD,

BODY, H1, BR, etc. The CHTMLElement tag describes those tags that have a close tag and

are well formed. The CHTMLOpenElement class describes tags that are often found without

the corresponding close tag such as the BR element that inserts a line break. The

CHTMLListElement class is used in lists such as the OL element.

Important classes of HTML elements used in forms to input data are the input elements such

as checkboxes, radio buttons, text fields, etc. The CHTML_input class derived from the

CHTML_OpenElement class serves as the base class for a variety of input elements (see Figure

5)

More details on HTML classes and their relationships is presented in a later chapter.

HTML Processing

The HTML classes can be used to dynamically generate pages. In addition to the classes

described in the previous section, there are a number of page classes that are designed to help

with HTML processing. The page classes serve as generalized containers for collections of

other HTML components, which are mapped to the page. Figure 6 describes the important

classes in page class hierarchy.

The CHTMLBasicPage class is as a base class whose features are inherited by the CHTMLPage

derived class - it is not intended for direct usage. Through the methods of this class, you can

access or set the CgiApplication, Style, and TagMap stored in the class.

Page 15

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

The CHTMLPage class when used with the appropriate HTML template file, can generate the

'bolier plate' web pages such as a standard corporate web page, with a corporate logo, a hook

for an application-specific logo, a top menubar of links to several databases served by a query

program, a links sidebar for application-specific links to relevant sites, a VIEW tag for an

application's web interface, a bottom menubar for help links, disclaimers, and other boiler plate

links. The template file is a simple HTML text file with named tags (<@tagname@>) which

allow the insertion of new HTML blocks into a pre-formatted page.

More details on CHTMLBasicPage, CHTMLPage and related classes is presented in a later

chapter.

The OBJECT MANAGER Module

The Object Manager module is a library of C++ classes, which facilitate access to biological

sequence data. It makes it possible to transparently download data from the GenBank database,

investigate biological sequence data structure, retrieve sequence data, descriptions and

annotations.

The Object Manager has been designed to present an interface to users and to minimize their

exposure to the details of interacting with biological databases and their underlying data

structures. The Object Manager, therefore, coordinates the use of biological sequence data

objects, particularly the management of the details of loading data from different data sources.

The NCBI databases and software tools are designed around a particular model of biological

sequence data. The data model must be very flexible because the nature of this data is not yet

fully understood, and its fundamental properties and relationships are constantly being revised.

NCBI uses Abstract Syntax Notation One (ASN.1) as a formal language to describe biological

sequence data and its associated information.

The bio sequence data may be huge and downloading all of this data may not be practical or

desirable. Therefore, the Object Manager transparently transmits only the data that is really

needed and not all of it at once. There is a datatool that generates corresponding data objects

(source code and header files) from the object's ASN.1 specification. The Object Manager is

able to manipulate these objects.

Biological sequences are identified by a Seq_id, which may have different forms.

The most general container object of bio sequence data, as defined in NCBI data model, is

Seq_entry. A great deal of NCBI software is designed to accept a Seq_entry as the primary

unit of data. In general, the Seq_entry is defined recursively as a tree of Seq_entry objects,

where each node contains either Bioseq or list of other Seq_entry objects and additional data

like sequence description, sequence annotations.

Two important concepts in the Object Manager are scope and reference resolution. The client

defines a scope as the sources of data where the system uses only "allowed" sources to look

for data. Scopes may contain several variants of the same bio sequence (Seq_entry). Since

sequences refer to each other, the scope sets may have some data that is common to both scopes.

In this case changing data in one scope should be reflected in all other scopes, which "look"

at the same data.

The other concept a client uses is reference resolution. Reference resolution is used in situations

where different biological sequences can refer to each other. For example, a sequence of amino

acids may be the same as sequence of amino acids in another sequence. The data retrieval

system should be able to resolve such references automatically answering what amino acids

Page 16

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://asn1.elibel.tm.fr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML

are actually here. Optionally, at the client's request, such automatic resolution may be turned

off.

The Object Manager provides a consistent view of the data despite modifications to the data.

For example, the data may change during a client's session because new biological data has

been uploaded to the database while the client is still processing the old data. In this case, when

the client for additional data, the system should retrieve the original bio sequence data, and not

the most recent one. However, if the database changes between a client's sessions, then the

next time the client session is started, the most recent data is retrieved, unless the client

specifically asks for the older data.

The Object Manager is thread safe, and supports multithreading which makes it possible to

work with bio sequence data from multiple threads.

The Object Manager includes numerous classes for accessing bio sequence data such as

CDataLoader and CDataSource which manage global and local accesses to data, CSeqVector

and CSeqMap objects to find and manipulate sequence data, a number of specialized iterators

to parse descriptions and annotations, among others. The CObjectManager and CScope classes

provide the foundation of the library, managing data objects and coordinating their interactions.

More details on the Object Manager and related classes is presented in a later chapter.

The SERIAL Module

Click here to see Full Documentation on the Data Serialization Library.

Serial library provides means for loading, accessing, manipulating, and serialization of data in

a formatted way. It supports serialization in ASN.1 (text or BER encoding) and XML formats,

and writing in JSON format.

The structure of data is described by some sort of formal language. In our case it can be ASN.

1, DTD or XML Schema. Based on such specification, DATATOOL application, which is part

of NCBI C++ toolkit, generates a collection of data storage classes that can be used to store

and serialize data. The design purpose was to make these classes as lightweight as possible,

moving all details of serialization into specialized classes - “object streams”. Structure of the

data is described with the help of “type information”. Data objects contain data and type

information only. Any such data storage object can be viewed as a node tree that provides

random access to its data. Serial library provides means to traversing this data tree without

knowing its structure in advance – using only type information; C++ code generated by

DATATOOL makes it possible to access any child node directly.

#Object streams” are intermediaries between data storage objects and input or output stream.

They perform encoding or decoding of data according to format specifications. Guided by the

type information embedded into data object, on reading they allocate memory when needed,

fill in data, and validate that all mandatory data is present; on writing they guarantee that all

relevant data is written and that the resulting document is well-formed. All it takes to read or

write a top-level data object is one function call – all the details are handled by an object stream.

Closely related to serialization is the task of converting data from one format into another. One

approach could be reading data object completely into memory and then writing it in another

format. The only problem is that the size of data can be huge. To simplify this task and to avoid

storing data in memory, serial library provides “object stream copier” class. It reads data by

small chunks and writes it immediately after reading. In addition to small memory footprint,

it also works much faster.

Page 17

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_intro
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_objcopy
http://asn1.elibel.tm.fr
http://www.w3.org/XML
http://json.org
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_intro
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.typeinfo.html#ch_ser.typeinfo.html_cobjinfo

Input data can be very large in size; also, reading it completely into memory could not be the

goal of processing. Having a large file of data, one might want to investigate information

containers only of a particular type. Serial library provides a variety of means for doing this.

The list includes read and write hooks, several types of stream iterators, and filter templates.

It is worth to note that, when using read hooks to read child nodes, one might end up with an

invalid top-level data object; or, when using write hooks, one might begin with an invalid object

and fill in missing data on the fly – in hooks.

In essence, “hook” is a callback function that client application provides to serial library. Client

application installs the hook, then reads (or writes) data object, and somewhere from the depths

of serialization processing, the library calls this hook function at appropriate times, for example,

when a data chunk of specified type is about to be read. It is also possible to install context-

specific hooks. Such hooks are triggered when serializing a particular object type in a particular

context; for example, for all objects of class A which are contained in object B.

The UTIL Module

The UTIL module is collection of some very useful utility classes that implement I/O related

functions, algorithms, container classes; text related and thread related functions. Individual

facilities include classes to compute checksums, implement interval search trees, lightweight

strings, string search, linked sets, random number generation, UTF-8 conversions, registry

based DNS, rotating log streams, thread pools, and many others.

The following sections give an overview of the utility classes:

! Checksum

! Console Debug Dump Viewer

! Lightweight Strings

! Range Support

! Linked Sets

! Random Number Generator

! Registry based DNS

! Resizing Iterator

! Rotating Log Streams

! Stream Support

! String Search

! Thread Pools

! UTF 8 Conversion

Checksum

The Checksum class implements CRC32 (Cyclic Redundancy Checksum 32-bit) calculation.

The CRC32 is a 32-bit polynomial checksum that has many applications such as verifying the

integrity of a piece of data. The CChecksum class implements the CRC32 checksum that can

be used to compute the CRC of a sequence of byte values.

The checksum calculation is set up by creating a CChecksum object using the CChecksum

constructor and passing it the type of CRC to be calculated. Currently only CRC32 is defined,

so you must pass it the enumeration constant eCRC32 also defined in the class.

Page 18

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.stack_path_hooks
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.stack_path_hooks
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_readhooks
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_writehooks
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.stream_iterators
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.serial_filter

Data on which the checksum is to be computed is passed to the CChecksum'sAddLine() or

AddChars() method as a character array. As data is passed to these methods, the CRC is

computed and stored in the class. You can get the value of the computed CRC using the

GetChecksum() method. Alternatively, you can use the WriteChecksum() method and pass it

a CNcbiOstream object and have the CRC written to the output stream in the following syntax:

/* Original file checksum: lines: nnnn, chars: nnnn, CRC32: xxxxxxxx */

Console Debug Dump Viewer

The UTIL module implements a simple Console Debug Dump Viewer that enables the printing

of object information on the console, through a simple console interface. Objects that can be

debugged must be inherited from CDebugDumpable class. The CObject is derived from

CDebugDumpable, and since most other objects are derived from CObject this makes these

objects 'debuggable'.

The Console Debug Dump Viewer is implemented by the CDebugDumpViewer class. This

class implements a breakpoint method called Bpt(). This method is called with the name of the

object and a pointer to the object to be debugged. This method prompts the user for commands

that the user can type from the console:

Console Debug Dump Viewer

Stopped at testfile.cpp(120)

current object: myobj = xxxxxx

Available commands:

 t[ypeid] address

 d[ump] address depth

 go

The CDebugDumpViewer class also permits the enabling and disabling of debug dump

breakpoints from the registry.

Lightweight Strings

Class CTempString implements a light-weight string on top of a storage buffer whose lifetime

management is known and controlled.

CTempString is designed to perform no memory allocation but provide a string interaction

interface congruent with std::basic_string<char>.

As such, CTempString provides a const-only access interface to its underlying storage. Care

has been taken to avoid allocations and other expensive operations wherever possible.

CTempString has constructors from std::string and C-style string, which do not copy the string

data but keep char pointer and string length.

This way the construction and destruction are very efficient.

Take into account, that the character string array kept by CTempString object must remain

valid and unchanged during whole lifetime of the CTempString object.

It's convenient to use the class CTempString as an argument of API functions so that no

allocation or deallocation will take place on of the function call.

Page 19

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Range Support

The UTIL module provides a number of container classes that support a range which models

an interval consisting of a set of ordered values. the CRange class stores information about an

interval, [from, where the from and to points are inclusive. This is sometimes called a closed

interval.

Another class, the CRangeMap class, is similar to the CRange class but allows for the storing

and retrieving of data using the interval as key. The time for iterating over the interval is

proportional to the amount of intervals produced by the iterator and may not be efficient in

some cases.

Another class, the CIntervalTree class, has the same functionality as the CRangeMap class but

uses a different algorithm; that is, one based on McCreight's algorithm. Unlike the CRangeMap

class, the CIntervalTree class allows several values to have the same key interval. This class

is faster and its speed is not affected by the type of data but it uses more memory (about three

times as much as CRangeMap) and, as a result, is less efficient when the amount of interval in

the set is quite big. For example, the CIntervalTree class becomes less efficient than

CRangeMap when the total memory becomes greater than processor cache.

More details on range classes are presented in a later chapter.

Linked Sets

The UTIL module defines a template container class, CLinkedMultiset, that can hold a linked

list of multiset container types.

The CLinkedMultiset defines iterator methods begin(), end(), find(), lower_bound(),

upper_bound(), to help traverse the container. The method get(), fetches the contained value,

the method insert() inserts a new value into the container, and the method erase(), removes the

specified value from the container.

Random Number Generator

The UTIL module defines the CRandom class that can be used for generating 32-bit unsigned

random numbers. The random number generator algorithm is the Lagged Fibonacci Generator

(LFG) algorithm.

The random number generator is initialized with a seed value, and then the GetRandom()

method is called to get the next random number. You can also specify that the random number

value that is returned be in a specified range of values.

Registry based DNS

The UTIL module defines the CSmallDns class that implements a simple registry based DNS

server. The CSmallDns class provides DNS name to IP address translations similar to a standard

DNS server, except that the database used to store DNS name to IP address mappings is a non-

standard local database. The database of DNS names and IP address mappings are kept in a

registry-like file named by local_hosts_file using section [LOCAL_DNS].

The CSmallDns has two methods that are responsible for providing the DNS name to IP address

translations: the LocalResolveDNS method and the LocalBackResolveDNS method. The

LocalResolveDNS method does 'forward' name resolution. That is, given a host name, it returns

a string containing the IP address in the dotted decimal notation. The LocalBackResolveDNS

method does a 'reverse lookup'. That is, given an IP address as a dotted decimal notation string,

it returns the host name stored in the registry.

Page 20

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Resizing Iterator

The UTIL module defines two template classes, the CResizingIterator and the

CConstResizingIterator classes that handle sequences represented as packed sequences of

elements of different sizes For example, a vector <char> might actually hold 2-bit values, such

as nucleotides, or 32-bit integer values.

The purpose of these iterator classes is to provide iterator semantics for data values that can

be efficiently represented as a packed sequence of elements regardless of the size.

Rotating Log Streams

The UTIL module defines the CRotatingLogStream class that can be used to implement a

rotating log file. The idea being that once the log of messages gets too large, a 'rotation'

operation can be performed. The default rotation is to rename the existing log file by appending

it with a timestamp, and opening a new log.

The rotating log can be specified as a file, with an upper limit (in bytes) to how big the log will

grow. The CRotatingLogStream defines a method called Rotate() that implements the default

rotation.

Stream Support

The UTIL module defines a number of portable classes that provide additional stream support

beyond that provided by the standard C++ streams. The CByteSource class acts as an abstract

base class (see Figure 7), for a number of stream classes derived from it. As the name of the

other classes derived from CByteSource suggests, each of these classes provides the methods

from reading from the named source. To list a few examples: CFileByteSource is a specialized

class for reading from a named file; CMemoryByteSource is a specialized class for reading

from a memory buffer; CResultByteSource is a specialized class for reading database results;

CStreamByteSource is a specialized class from reading from the C++ input stream (istream);

CFStreamByteSource is a specialized class from reading from the C++ input file stream

(ifstream).

The classes such as CSubFileByteSource are used to define a slice of the source stream in terms

of a start position and a length. The read operations are then confined to this slice.

Additional classes, the CIStreamBuffer and the COStreamBuffer have been defined for

standard input and output buffer streams. These can be used in situations where a compiler's

implementation of the standard input and output stream buffering is inefficient.

More details on the stream classes are presented in a later chapter.

String Search

The UTIL module defines the CBoyerMooreMatcher class and the CFsmText class which are

used for searching for a single pattern over varying texts.

The CBoyerMooreMatcher class, as the name suggests, uses the Boyer-Moore algorithm for

string searches. The CFsmText is a template class that performs the search using a finite state

automaton for a specified to be matched data type. Since the matched data type is often a string,

the CTextFsa class is defined as a convenience by instantiating the CFsmText with the matched

type template parameter set to string.

The search can be setup as a case sensitive or case insensitive search. The default is case

sensitive search. In the case of the CBoyerMooreMatcher class, the search can be setup for any

Page 21

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

pattern match or a whole word match. A whole word match means that a pattern was found to

be between white spaces. The default is any pattern match.

Synchronized and blocking queue

The UTIL module defines class CSyncQueue which implements a thread-safe queue that has

“blocking” semantics: when queue is empty Pop() method will effectively block execution

until some elements will be added to the queue; when queue have reached its maximum size

Push() method will block execution until some elements will be extracted from queue. All these

operations can be controlled by timeout. Besides that CSyncQueue is not bound to first-in-

first-out queue paradigm. It has underlying stl container (deque by default) which will define

the nature of queue. This container is set via template parameter to CSyncQueue and can be

deque, vector, list, CSyncQueue_set, CSyncQueue_multiset and CSyncQueue_priority_queue

(the latter three are small addons to STL set, multiset and priority_queue for the sake of

compatibility with CSyncQueue).

There is also CSyncQueue::TAccessGuard class which can lock the queue for some bulk

operations if during them queue should not be changed by other threads.

For more details on CSyncQueue look here: http://www.ncbi.nlm.nih.gov/IEB/ToolBox/

CPP_DOC/doxyhtml/CSyncQueueDescription.html.

Thread Pools

The UTIL module defines a number of classes implementing pool of threads.

CThreadPool is the main class. It executes any tasks derived from the CThreadPool_Task class.

The number of threads in pool is controlled by special holder of this policy — object derived

from CThreadPool_Controller (default implementation is CThreadPool_Controller_PID based

on Proportional-Integral-Derivative algortithm). All threads executing by CThreadPool are the

instances of CThreadPool_Thread class or its derivatives.

More details on threaded pool classes are presented in a later chapter.

UTF 8 Conversion

The UTIL module provides a number of functions to convert between UTF-8 representation,

ASCII 7-bit representation and Unicode representations. For example, StringToCode()

converts the first UTF-8 character in a string to a Unicode symbol, and StringToVector()

converts a UTF-8 string into a vector of Unicode symbols.

The result of a conversion can be success, out of range, or a two character sequence of the skip

character (0xFF) followed by another character.

Page 22

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/CSyncQueueDescription.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/CSyncQueueDescription.html

Figure 1. The CNcbiApplication class

Page 23

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 2. Connection stream classes

Page 24

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 3. HTML classes derived from CNCBINode

Page 25

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 4. The CHTMLNode class and its derived classes

Page 26

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 5. The CHTML_input class and its derived classes

Page 27

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 6. HTML page classes

Page 28

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 7. Relationship between CByteSource and its derived classes

Page 29

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Getting Started

[2]

Overview

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

This section is intended as a bird's-eye view of the Toolkit for new users, and to give quick access

to important reference links for experienced users. It lays out the general roadmap of tasks required

to get going, giving links to take the reader to detailed discussions and supplying a number of

simple, concrete test applications.

Note: Much of this material is platform-neutral, although the discussion is -centric. or users would

also benefit from reading the instructions specific to those systems and, where applicable, how

to use SVN with MS Windows and Mac OS.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! Quick Start

! Example Applications

! Source Tree Availability

" FTP Availability

" SVN Availability

" Availability via Shell Scripts

! Source Tree Contents

" Top-Level Source Organization

" The Core NCBI C++ Toolkit

" Source Tree for Individual Projects

" The Makefile Templates

" The New Module Stubs

! Decide Where You Will Work (in-tree, in a subtree, out-of-tree)

! Basic Installation and Configuration Considerations

! Basics of Using the C++ Toolkit

" Compiling and Linking with make

" Makefile Customization

" Basic Toolkit Coding Infrastructure

" Key Classes

" The Object Manager and datatool

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Debugging and Diagnostic Aids

! Coding Standards and Guidelines

" Noteworthy Files

Quick Start

Boo-A good deal of the complication and tedium of getting started has thankfully been wrapped

by a number of shell scripts. They facilitate a 'quick start' whether starting anew or within an

existing Toolkit work environment. ('Non-quick starts' sometimes cannot be avoided, but they

are considered elsewhere.)

1 Get the Source Tree (see Figure 1)

" Download via FTP, or

" Run svn_core (requires a SVN repository containing the C++ Toolkit; for

NCBI users)

2 Configure the build tree (see Figure 2)

" Use the configure script, or

" Use a compiler-specific wrapper script compilers/unix/*.sh.

3 Build the C++ Toolkit from makefiles and meta-makefiles(if required)

" make all_r for a recursive make, or

" make all to make only targets for the current directory.

4 Work on your new or existing application or library the scripts new_project and

(for an existing Toolkit project) import_project help to set up the appropriate

makefiles and/or source.

In a nutshell, that's all it takes to get up and running. The download, configuration, installation

and build actions are shown for two cases in this sample.

The last item, employing the Toolkit in a project, completely glosses over the substantial issue

of how to use the installed Toolkit. Where does one begin to look to identify the functionality

to solve your particular problem, or indeed, to write the simplest of programs? "Basics of Using

the C++ Toolkit" will deal with those issues. Investigate these and other topics with the set of

sample applications. See Examples for further cases that employ specific features of the NCBI

C++ Toolkit.

Example Applications

The suite of application examples below highlight important areas of the Toolkit and can be

used as a starting point for your own development. Note that you may generate the sample

application code by running the new_project script for that application. The following

examples are now available:

" app/basic A generic application to demonstrate the use of key Toolkit classes .

" app/cgi Presents the Toolkit infrastructure required to write Web-enabled CGI

applications.

" app/dbapi Presents the Toolkit infrastructure required to write database applications.

" app/gui Presents the Toolkit infrastructure required to write GUI applications.

" app/objects Presents the Toolkit infrastructure required to write applications using

ASN.1 objects.

Page 2

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/dbapi

! app/objmgr The Toolkit manipulates biological data objects in the context of an Object

Manager class (CObjectManager). This example shows how to build an application

using the object manager.

! app/alnmgr Presents the Toolkit infrastructure required to write alignment manager

applications.

To build an example use its accompanying Makefile.

Source Tree Availability

The source tree is available through FTP, SVN and by running special scripts. The following

subsections discuss these topics in more detail:

! FTP Availability

! SVN Availability

! Availability via Shell Scripts

FTP Availability

The Toolkit source is available via ftp at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/

CURRENT/, and the archives available, with unpacking instructions, are listed on the

download page. If you plan to modify the Toolkit source in any way with the ftp code, it is

strongly advised that it be placed under a source code control system (preferably SVN) so that

you can rollback to an earlier revision without having to ftp the entire archive once again.

SVN Availability

NCBI users can obtain the source tree directly from the internal SVN repository.

Availability via Shell Scripts

The various shell scripts in $NCBI/c++/scripts tailor the working codebase and can prepare

the work environment for new projects. Except where noted, an active Toolkit SVN repository

is required, and obviously in all cases a version of the Toolkit must be accessible.

! svn_core. Details on svn_core are discussed in a later chapter.

! import_project. Details on import_project are discussed in a later chapter.

! new_project. Details on new_project are discussed in a later chapter.

! update_projects. Details on update_core and update_projects are covered in later

chapter.

Source Tree Contents

The following topics are discussed in this section:

! Top-Level Source Organization

! The Core NCBI C++ Toolkit

! Source Tree for Individual Projects

! The Makefile Templates

! The New Module Stubs

Top-Level Source Organization

The NCBI C++ Toolkit source tree (see Figure 1) is organized as follows:

Page 3

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/objects

! src/ -- a hierarchical directory tree of NCBI C++ projects. Contained within src are all

source files (*.cpp, *.c), along with private header files (*.hpp, *.h), makefiles

(Makefile.*, including Makefile.mk), scripts (*.sh), and occasionally some project-

specific data

! include/ -- a hierarchical directory tree whose structure mirrors the src directory tree.

It contains only public header files (*.hpp, *.h).

Example:include/corelib/ contains public headers for the sources located in src/corelib/

! scripts/ -- auxiliary scripts, including those to help manage interactions with the NCBI

SVN code repository, such as verify links import_project, new_project, svn_core, etc.

! files for platform-specific configuration and installation:

" compilers/ -- directory containing compiler-specific configure wrappers (unix/

*.sh) and miscellaneous resources and build scripts for MS Windows/

MacOS platforms

" configure -- a multi-platform configuration shell script (generated from

template configure.ac using autoconf)

" various scripts and template files used by configure, autoconf

! doc/ -- NCBI C++ documentation, including a library reference, configuration and

installation instructions, example code and guidelines for everybody writing code for

the NCBI C++ Toolkit.

The Core NCBI C++ Toolkit

The 'core' libraries of the Toolkit provide users with a highly portable set of functionality. The

following projects comprise the portable core of the Toolkit:

corelib connect cgi html util hello

Consult the library reference (Part 3 of this book) for further details.

Source Tree for Individual Projects

For the overall NCBI C++ source tree structure see Top-Level Source Organization above.

An individual project contains the set of source code and/or scripts that are required to build a

Toolkit library or executable. In the NCBI source tree, projects are identified as sub-trees of

the src, and include directories of the main C++ tree root. For example, corelib and objects/

objmgr are both projects. However, note that a project's code exists in two sibling directories:

the public headers in include/ and the source code, private headers and makefiles in src.

The contents of each project's source tree are:

! *.cpp, *.hpp -- project's source files and private headers

! Makefile.in -- a meta-makefile to specify which local projects (described in

Makefile.*.in) and sub-projects(located in the project subdirectories) must be built

! Makefile.*.lib, Makefile.*.app -- customized makefiles to build a library or an

application

! Makefile.* -- "free style" makefiles

! sub-project directories (if any)

The Makefile Templates

Each project is built by customizing a set of generic makefiles. These generic makefile

templates (Makefile.*.in) are found in src and help to control the assembly of the entire Toolkit

Page 4

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.gnu.org/software/autoconf
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/config/ncbiconf_msvc.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/config/ncbiconf_xcode.h
http://www.gnu.org/software/autoconf

via recursive builds of the individual projects. (The usage of these makefiles and other

configurations issues are summarized below and detailed on the Working with Makefiles page.)

! Makefile.in -- makefile to perform a recursive build in all project subdirectories

! Makefile.meta.in -- included by all makefiles that provide both local and recursive

builds

! Makefile.mk.in -- included by all makefiles; sets a lot of configuration variables

! Makefile.lib.in -- included by all makefiles that perform a "standard" library build,

when building only static libraries.

! Makefile.dll.in -- included by all makefiles that perform a "standard" library build,

when building only shared libraries.

! Makefile.both.in -- included by all makefiles that perform a "standard" library build,

when building both static and shared libraries.

! Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles

(Makefile.*.lib[.in]) that perform a "standard" library build

! Makefile.app.in -- included by all makefiles that perform a "standard" application build

! Makefile.lib.tmpl.in -- serves as a template for the project customized makefiles

(Makefile.*.app[.in]) that perform a "standard" application build

! Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building object

files; included by most other makefiles

The New Module Stubs

A Toolkit module typically consists of a header (*.hpp) and a source (*.cpp) file. Use the stubs

provided, which include boilerplate such as the NCBI disclaimer and SVN revision

information, to easily start a new module. You may also consider using the sample code

described above for your new module.

Decide Where You Will Work (in-tree, in a subtree, out-of-tree)

Depending on how you plan to interact with the NCBI C++ Toolkit source tree, the Toolkit

has mechanisms to streamline how you create and manage projects. The simplest case is to

work out-of-tree in a private directory. This means that you are writing new code that needs

only to link with pre-built Toolkit libraries. If your project requires the source for a limited set

of Toolkit projects it is often sufficient to work in a subtree of the Toolkit source distribution.

Most users will find it preferable and fully sufficient to work in a subtree or a private directory.

Certain situations and users (particularly Toolkit developers) do require access to the full

Toolkit source tree; in such instances one must work in-tree.

Basic Installation and Configuration Considerations

Note: Much of this discussion is Unix-centric. Windows and Mac users would also benefit

from reading the instructions specific to those systems.

The configuration and installation process is automated with the configure script and its

wrappers in the compilers directory. These scripts handle the compiler- and platform-

dependent Toolkit settings and create the build tree (see Figure 2) skeleton. The configured

build tree, located in <builddir>, is populated with customized meta-makefile, headers and

source files. Most system-dependence has been isolated in the <builddir>/inc/ncbiconf.h

header. By running make all_r from <builddir>, the full Toolbox is built for the target platform

and compiler combination.

Page 5

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Summarized below are some basic ways to control the installation and configuration process.

More comprehensive documentation can be found at config.html.

! A Simple Example Build

! configure Options View the list of options by running

./configure --help

! Enable/Disable Debugging

! Building Shared and/or Static Libraries Shared libraries (DLL's) can be used in Toolkit

executables and libraries for a number of tested configurations. Note that to link with

the shared libraries at run time a valid runpath must be specified.

! Influencing configure via Environment Variables Several environment variables

control the tools and flags employed by configure. The generic ones are: CC, CXX,

cpp, AR, RANLIB, STRIP, CFLAGS, CXXFLAGS, cppFLAGS, LDFLAGS, LIBS.

In addition, you may manually set various localization environment variables.

! Multi-Thread Safe Compilation

! Controlling Builds of Optional Projects You may selectively build or not build one

of the optional projects ("serial", "ctools", "gui", "objects", "internal") with configure

flags. If an optional project is not configured into your distribution, it can be added

later using the import_projects script.

! Adjust the Configuration of an Existing Build If you need to update or change the

configuration of an existing build, use the reconfigure.sh or relocate.sh script.

! Working with Multiple build trees Managing builds for a variety of platforms and/or

compiler environments is straightforward. The configure/install/build cycle has been

designed to support the concurrent development of multiple builds from the same

source files. This is accomplished by having independent build trees that exist as

sibling directories. Each build is configured according to its own set of configuration

options and thus produces distinct libraries and executables. All builds are nonetheless

constructed from the same source code in $NCBI/c++/{src, include}.

Basics of Using the C++ Toolkit

The following topics are discussed in this section:

! Compiling and Linking with make

! Makefile Customization

! Basic Toolkit Coding Infrastructure

! Key Classes

! The Object Manager and datatool

! Debugging and Diagnostic Aids

! Coding Standards and Guidelines

Compiling and Linking with make

The NCBI C++ Toolkit uses the standard Unix utility make to build libraries and executable

code, using instructions found in makefiles. More details on compiling and linking with make

can be found in a later chapter.

To initiate compilation and linking, run make:

make -f <Makefile_Name> [<target_name>]

Page 6

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

When run from the top of the build tree, this command can make the entire tree (with target

all_r). If given within a specific project subdirectory it can be made to target just that project.

The Toolkit has in its src directory templates (e.g., Makefile.*.in) for makefiles and meta-

makefiles that define common file locations, compiler options, environment settings, and

standard make targets. Each Toolkit project has a specialized meta-makefile in its src directory.

The relevant meta-makefile templates for a project, e.g., Makefile.in, are customized by

configure and placed in its build tree. For new projects, whether in or out of the C++ Toolkit

tree, the programmer must provide either makefiles or meta-makefiles.

Makefile Customization

Fortunately, for the common situations where a script was used to set up your source, or if you

are working in the C++ Toolkit source tree, you will usually have correctly customized

makefiles in each project directory of the build tree. For other cases, particularly when using

the new_project script, some measure of user customization may be needed. The more frequent

customizations involve (see "Working with Makefiles" or "Project makefiles" for a full

discussion):

! meta-makefile macros: APP_PROJ, LIB_PROJ, SUB_PROJ, USR_PROJ Lists of

applications, libraries, sub-projects, and user projects, respectively, to make.

! Library and Application macros: APP, LIB, LIBS, OBJ, SRC List the application name

to build, Toolkit library(ies) to make or include, non-Toolkit library(ies) to link, object

files to make, and source to use, respectively.

! Compiler Flag Macros: CFLAGS, cppFLAGS, CXXFLAGS, LDFLAGS Include or

override C compiler, C/C++ preprocessor, C++ compiler, and linker flags,

respectively. Many more localization macros are also available for use.

! Altering the Active Version of the Toolkit You can change the active version of NCBI

C++ toolkit by manually setting the variable $(builddir) in Makefile.foo_[app|lib] to

the desired toolkit path, e.g.: builddir = $(NCBI)/c++/GCC-Release/build.

Consult this list or, better, look at the output of 'ls -d $NCBI/c++/*/build' to see those

pre-built Toolkit builds available on your system.

Basic Toolkit Coding Infrastructure

Summarized below are some features of the global Toolkit infrastructure that users may

commonly employ or encounter.

! The NCBI Namespace Macros The header ncbistl.hpp defines three principal

namespace macros: NCBI_NS_STD, NCBI_NS_NCBI and

NCBI_USING_NAMESPACE_STD. Respectively, these refer to the standard C++

std:: namespace, a local NCBI namespace ncbi:: for Toolkit entities, and a namespace

combining the names from NCBI_NS_STD and NCBI_NS_NCBI.

! Using the NCBI Namespaces Also in ncbistl.hpp are the macros

BEGIN_NCBI_SCOPE and END_NCBI_SCOPE. These bracket code blocks which

define names to be included in the NCBI namespace, and are invoked in nearly all of

the Toolkit headers (see example). To use the NCBI namespace in a code block, place

the USING_NCBI_SCOPE macro before the block references its first unqualified

name. This macro also allows for unqualified use of the std:: namespace. Much of the

Toolkit source employs this macro (see example), although it is possible to define and

work with other namespaces.

! Configuration-Dependent Macros and ncbiconf.h #ifdef tests for the configuration-

dependent macros, for example _DEBUG or NCBI_OS_UNIX, etc., are used

Page 7

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistl.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistl.hpp

throughout the Toolkit for conditional compilation and accommodate your

environment's requirements. The configure script defines many of these macros; the

resulting #define's appear in the ncbiconf.h header and is found in the <builddir>/inc

directory. It is not typically included explicitly by the programmer, however. Rather,

it is included by other basic Toolkit headers (e.g., ncbitype.h, ncbicfg.h, ncbistl.hpp)

to pick up configuration-specific features.

! NCBI Types (ncbitype.h, ncbi_limits.[h|hpp]) To promote code portability developers

are strongly encouraged to use these standard C/C++ types whenever possible as they

are ensured to have well-defined behavior throughout the Toolkit. Also see the current

type-use rules. The ncbitype.h header provides a set of fixed-size integer types for

special situations, while the ncbi_limits.[h| hpp] headers set numeric limits for the

supported types.

! The ncbistd.hpp header The NCBI C++ standard #include's and #defin'itions are found

in ncbistd.hpp, which provides the interface to many of the basic Toolkit modules. The

explicit NCBI headers included by ncbistd.hpp are: ncbitype.h, ncbistl.hpp,

ncbistr.hpp, ncbidbg.hpp, ncbiexpt.hpp and ncbi_limits.h.

! Portable Stream Handling Programmers can ensure portable stream and buffer I/O

operations by using the NCBI C++ Toolkit stream wrappers, typedef's and #define's

declared in the ncbistre.hpp. For example, always use CNcbiIstream instead of

YourFavoriteNamespace::istream and favor NcbiCin over cin. A variety of classes that

perform case-conversion and other manipulations in conjunction with NCBI streams

and buffers are also available. See the source for details.

! Use of the C++ STL (Standard Template Library) in the Toolkit The Toolkit employs

the STL's set of template container classes, algorithms and iterators for managing

collections of objects. Being standardized interfaces, coding with them provides

portability. However, one drawback is the inability of STL containers to deal with

reference objects, a problem area the Toolkit's CRef and CObject classes largely

remedy.

! Serializable Objects, the ASN.1 Data Types and datatool The ASN.1 data model for

biological data underlies all of the C and C++ Toolkit development at NCBI. The C+

+ Toolkit represents the ASN.1 data types as serializable objects, that is, objects able

to save, restore, or transmit their state. This requires knowledge of an object's type and

as such a CTypeInfo object is provided in each class to encapsulate type

information.

Additionally, object stream classes (CObject[IO]Stream, and subclasses) have been

designed specifically to perform data object serialization. The nuts-and-bolts of doing

this has been documented on the Processing Serial Data page, with additional

information about the contents and parsing of ASN.1-derived objects in Traversing a

Data Structure.Each of the serializable objects appears in its own subdirectory under

[src| include]/objects. These objects/* projects are configured differently from the rest

of the Toolkit, in that header and source files are auto-generated from the ASN.1

specifications by the datatool program. The --with-objects flag to configure also directs

a build of the user classes for the serializable objects.

Key Classes

For reference, we list some of the fundamental classes used in developing applications with

the Toolkit. Some of these classes are described elsewhere, but consult the library reference

(Part 3 of this book) and the source browser for complete details.

Page 8

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/find?string=ncbiconf.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbitype.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistd.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistre.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistre.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/DATAMODL.HTML

! CNcbiApplication (abstract class used to define the basic functionality and behavior

of an NCBI application; this application class effectively supersedes the C-style

main() function)

! CArgDescriptions, CArgs, and CArgValue (command-line argument processing)

! CNcbiEnvironment (store, access, and modify environment variables)

! CNcbiRegistry (load, access, modify and store runtime information)

! CNcbiDiag (error handling for the Toolkit;)

! CObject (base class for objects requiring a reference count)

! CRef (a reference-counted smart pointer; particularly useful with STL and template

classes)

! CObject[IO]Stream (serialized data streams)

! CTypeInfo and CObjectTypeInfo (Runtime Object Type Information; extensible to

user-defined types)

! CObjectManager, etc. (classes for working with biological sequence data)

! CCgiApplication, etc. (classes to create CGI and Fast-CGI applications and handle

CGI Diagnostics)

! CNCBINode, etc. (classes representing HTML tags and Web page content)

! Iterator Classes (easy traversal of collections and containers)

! Exception Handling (classes, macros and tracing for exceptions)

The Object Manager and datatool

The datatool processes the ASN.1 specifications in the src/objects/directories and is the C++

Toolkit's analogue of the C Toolkit's asntool. The goal of datatool is to generate the class

definitions corresponding to each ASN.1 defined data entity, including all required type

information. As ASN.1 allows data to be selected from one of several types in a choice element,

care must be taken to handle such cases.

The Object Manager is a C++ Toolkit library whose goal is to transparently download data

from the GenBank database, investigate bio sequence data structure, and retrieve sequence

data, descriptions and annotations. In the library are classes such as CDataLoader and

CDataSource which manage global and local accesses to data, CSeqVector and CSeqMap

objects to find and manipulate sequence data, a number of specialized iterators to parse

descriptions and annotations, among others. The CObjectManager and CScope classes provide

the foundation of the library, managing data objects and coordinating their interactions.

Jump-start and Object Manager FAQ are all available to help new users.

Debugging and Diagnostic Aids

The Toolkit has a number of methods for catching, reporting and handling coding bugs and

exceptional conditions. During development, a debug mode exists to allow for assertions, traces

and message posting. The standard C++ exception handling (which should be used as much

as possible) has been extended by a pair of NCBI exception classes, CErrnoException and

CParseException and additional associated macros. Diagnostics, including an ERR_POST

macro available for routine error posting, have been built into the Toolkit infrastructure.

For more detailed and extensive reporting of an object's state (including the states of any

contained objects), a special debug dump interface has been implemented. All objects derived

Page 9

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

from the CObject class, which is in turn derived from the abstract base class CDebugDumpable,

automatically have this capability.

Coding Standards and Guidelines

All C++ source in the Toolkit has a well-defined coding style which shall be used for new

contributions and is highly encouraged for all user-developed code. Among these standards

are

! variable naming conventions (for types, constants, class members, etc.)

! using namespaces and the NCBI name scope

! code indentation (4-space indentation, no tab symbols)

! declaring and defining classes and functions

Noteworthy Files

A list of important files is given in Table 1.

Page 10

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 1. NCBI C++ Source Tree

Page 11

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 2. NCBI C++ Build Tree

Page 12

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 1. Noteworthy Files

Filename (relative to $NCBI/c++) Description

compilers/*/<compiler_name>.sh Use the configure shell script, or one of its compiler-specific wrappers, to fully
configure and install all files required to build the Toolkit.

import_project Import only an existing Toolkit project into an independent subtree of your current
Toolkit source tree. (Requires a SVN source repository.)

update_{core|projects} Update your local copy of either the core Toolkit or set of specified projects.
(Requires a SVN source repository.)

new_project Set up a new project outside of the NCBI C++ Toolkit tree to access pre-built version
of the Toolkit libraries. Sample code can be requested to serve as a template for the
new module.

src/<project_dir>/Makefile.in
src/<project_dir>/
Makefile.<project>.{app, lib}

Customized meta-makefile template and the corresponding datafile to provide
project-specific source dependencies, libraries, compiler flags, etc. This information
is accessed by configure to build a projects's meta-makefile (see below).

doc/framewrk.{cpp|hpp} Basic templates for source and header files that can be used when starting a new
module. Includes common headers, the NCBI disclaimer and SVN keywords in a
standard way.

CHECKOUT_STATUS This file summarizes the local source tree structure that was obtained when using
one of the shell scripts in scripts. (Requires a SVN source repository.)

Build-specific Files (relative to $NCBI/c++/<builddir>) Description

Makefile
Makefile.mk
Makefile.meta

These are the primary makefiles used to build the entire Toolkit (when used
recursively). They are customized for a specific build from the corresponding *.in
templates in $NCBI/c++/src. Makefile is the master, top-level file, Makefile.mk sets
many make and shell variables and Makefile.meta is where most of the make targets
are defined.

<project_dir>/Makefile
<project_dir>/
Makefile.<project>_{app, lib}

Project-specific custom meta-makefile and makefiles, respectively, configured from
templates in the src/ hierarchy and any pertinent src/<project_dir>/
Makefile.<project>.{app, lib} files (see REF TO OLD ANCHOR:
get_started.html_ref_TmplMetaMake<secref
rid="get_started.html_ref_ImptFiles">above</secref>).

inc/ncbiconf.h Header that #define's many of the build-specific constants required by the Toolkit.
This file is auto-generated by the configure script, and some pre-built versions do
exist in compilers.

reconfigure.sh Update the build tree due to changes in or the addition of configurable files (*.in
files, such as Makefile.in or the meta-makefiles) to the source tree.

relocate.sh Adjust paths to this build tree and the relevant source tree.

corelib/ncbicfg.c Define and manage the runtime path settings. This file is auto-generated by the
configure script.

status/config.{cache|log|status} These files provide information on configure's construction of the build tree, and the
cache of build settings to expedite future changes.

Page 13

Overview

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Retrieve the Source Code (FTP and Subversion)

[3]

Overview

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

The first step in working with the C++ Toolkit is getting the source code, which can be either

downloaded from anonymous FTP or checked out from a Subversion repository (note that write

access is allowed only for authenticated users).

This chapter describes how to use the command line Subversion client (svn) for checking out the

source code. In addition, this chapter describes the use of utility scripts that can help getting only

the necessary source code components.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! Public Read-only Access to the Source Code

! Source Code Retrieval for Users with Read-Write Access

" NCBI Source Tree Contents

" Source Code Retrieval under Unix

Retrieval of the C++ Toolkit Source Code Tree

! Checking Out the Development NCBI C++ Toolkit Source Tree

! Checking Out the Production NCBI C++ Toolkit Source Tree

! svn_core: Retrieving core components

" svn_core: Retrieve Only the Portable and Core

Components

" svn_core Arguments

" Contents of the Portable Core Source Tree

" Supplement Contents Using the svn_core Options

! import_project: Retrieve Source for an Existing Project

! update_core: Update the Portable and Core Components

! update_projects: Check out and Update Sources of Selected

Projects

" Source Code Retrieval under MS Windows

" Source Code Retrieval under Mac OS X

! FTP Retrieval

! Source Tree Structure Summary

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Public Read-only Access to the Source Code Repository

Read-only access to the C++ Toolkit repository is temporarily not available to the Internet

users.

When external access will be restored, the following options will be available:

1 Checking out the source tree directly from the repository.

2 Browsing the repository with an HTTP browser.

3 Accessing the repository with a WebDAV client.

Source Code Retrieval for Users with Read-Write Access

Subversion client installation and usage instructions are available on separate pages for UNIX,

MS Windows, and Mac OS systems.

For a detailed description of the Subversion Version Control System please download book

"Version Control with Subversion" or run command svn help on your workstation for quick

reference.

The following is an outline of the topics presented in this section. Select the instructions

appropriate for your development environment.

! NCBI Source Tree Contents

! Source Code Retrieval under Unix

" Retrieval of the C++ Toolkit Source Tree

Checking Out the Development NCBI C++ Toolkit Source Tree

Checking Out the Production NCBI C++ Toolkit Source Tree

svn_core: Retrieving core components

! svn_core: Retrieve Only the Portable and Core Components

! svn_core Arguments

! Contents of the Portable Core Source Tree

! Supplement Contents Using the svn_core Options

import_project: Retrieve Source for an Existing Project

update_core: Update the Portable and Core Components

update_projects: Check out and Update Sources of Selected Projects

! Source Code Retrieval under MS Windows

! Source Code Retrieval under Mac OS X

NCBI Source Tree Contents

The NCBI C++ Toolkit Subversion repository contains all source code, scripts, utilities, tools,

tests and documentation required to build the Toolkit on the major classes of operating systems

(Unix, MS Windows and Mac OS).

Source Code Retrieval under Unix

Retrieval of the C++ Toolkit Source Code Tree—This section discusses the methods

of checking out the entire source tree or just the necessary portions. An important point to note

is that the entire NCBI C++ tree is very big because it contains a lot of internal projects. There

are also numerous platform-specific files, and even platform-specific sub-trees, which you will

Page 2

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://svnbook.red-bean.com
http://svnbook.red-bean.com

never need unless you work on those platforms. Therefore it is frequently sufficient, and in

fact, usually advisable, to retrieve only files of interest using the shell scripts from the path (it

is in the default $PATH):

/am/ncbiapdata/bin

They can also be checked out directly from the Subversion repository at:

https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/scripts/common

The auxiliary script svn_core checks out only the core NCBI C++ Toolkit sources for a desired

platform. A similar auxiliary script, import_project, can be used to import the source from a

single project. To facilitate the creation of a new project, use the script new_project which

generates new directories and makefiles for the new project from templates. This script also

checks out a specified sample application from the source tree that may be adapted for the new

project or built directly as a demonstration.

Checking Out the Development NCBI C++ Toolkit Source Tree: You can checkout the

entire development NCBI C++ source tree from the repository to your local directory (e.g.,

foo/c++/) just by running:

cd foo

svn checkout https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++

For internal projects use:

cd foo

svn checkout https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/c++

Caution: Be aware that sources checked out through the development source tree have the latest

sources and are different from the public release that is done at periodic intervals. These sources

are relatively unstable "development" sources, so they are not guaranteed to work properly or

even compile. Use these sources at your own risk (and/or to apply patches to stable

releases).The sources are usually better by the end of day and especially by the end of the week

(like Sunday evening).

Checking Out the Production NCBI C++ Toolkit Source Tree: Besides the development

NCBI C++ source tree, there is the C++ Toolkit "production" source tree that has been added

to the public Subversion repository. This tree contains stable snapshots of the "development"

C++ Toolkit tree. Please note that these sources are lagging behind, sometimes months behind

the current snapshot of the sources.

You can checkout the entire "production" NCBI C++ source tree from the public repository to

your local directory by running:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/production/latest/c++

This repository path corresponds to the latest production build of the Toolkit. If you want to

check out sources for an older production build, please specify the exact date of that build as

follows:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/production/20031212/c++

Page 3

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

where 20031212 is the date when this specific build was originated. You can easily find out

the available production builds by running

svn ls https://svn.ncbi.nlm.nih.gov/repos/toolkit/production

This command will print directories under production/, which correspond to the production

builds.

svn_core: Retrieving core components: svn_core: Retrieve Only the Portable and Core

Components: For usage info, run it without arguments, and see the path note for using scripts:

svn_core

The arguments to svn_core are discussed in the svn_core Arguments subsection.

Default settings:

svn_core <dir> --date=<current> --all --development

For the major three platforms, a typical invocation for "core" source retrieval is shown below:

Unix:

svn_core <dir> --unix

MS-Win:

svn_core <dir> --msvc

MacOS:

svn_core <dir> --mac

NCBI C++ Toolkit has many features and extensions beyond the core of portable functionality.

Often one wants to obtain a set of the Toolkit sources that is free of non-portable elements, and

the svn_core script performs this task across the range of supported platforms. Options to the

basic command allow the developer to further tailor the retrieved source by including (or

excluding) portions of the Toolkit not checked out by default.

svn_core Arguments: Table 1 describes the arguments of svn_core, along with their default

values. Only the target directory is mandatory. The optional --with/without-<feature>

argument pairs include or exclude portions of the Toolkit from the checked-out source. While

both members of the pair may appear on the command line, only the last one influences the

behavior of the script. Certain settings are meaningful only for certain <platform>s (most often

with respect to MS Windows platforms).

Contents of the Portable Core Source Tree: In this section, all paths and filenames are in the

source tree and unless otherwise specified, should be taken as relative to the following common

directory within the repository: https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++.

Common Source: Table 2 lists those being recursively checked out, regardless of the arguments

to svn_core.

Supplement Contents Using the svn_core Options: Platform-Specific Source: in addition to

the above common source, the various <platform> options will populate the remainder of the

Page 4

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

checked-out source tree differently. A laundry-list for each platform option is not provided

here, however you may view the source to examine the most current status. In general, the

platform and argument-sensitive parts of the source reside in the directories shown in Table 3.

Feature-Specific Source: The --with/--without-<feature> options enable or inhibit portions of

the source tree from being included in the checked-out out source tree. Consult Table 4 to

identify where a certain option affects the source tree.

import_project: Retrieve Source for an Existing Project: Summary (path note):

import_project <relative_tree_path> [builddir]

In many cases, you work on your own project which is a part of the NCBI C++ tree, and you

do not want to check out, update and rebuild the entire NCBI C++ tree. Instead, you just want

to use headers and libraries of the pre-built NCBI C++ Toolkit to build your project.

The shell script import_project will checkout your project's src and include directories from

the repository, and it will create a (temporary) makefiles based on the project's customized

makefiles. Those makefiles will also contain a reference to the pre-built NCBI C++ Toolkit.

For example:

import_project serial/datatool

will check out the datatool project from the NCBI C++ tree (trunk/c++/{src,include}/serial/

datatool/), and create a makefile Makefile.datatool_app that uses the project's customized

makefile Makefile.datatool.app. Now you can just go to the created working directory c++/src/

serial/datatool/ and build the application datatool using:

make -f Makefile.datatool_app

update_core: Update the Portable and Core Components: Summary (path note):

update_core [--no-projects] [<dirs>]

Once you have obtained the core C++ Toolkit sources, with svn_core or otherwise, the local

copies will become out of sync with the master SVN repository contents when other developers

commit their changes. update_core will update your local core source tree with any changed

files without the side-effect of simultaneously checking out non-core portions of the tree.

Subdirectory */internal does not get updated by this script.

The --no-projects switch excludes any Windows or MacOS project files from the update.

Specifically, those subdirectory names of the form *_prj are skipped during the update when

this flag is set.

The list [<dirs>], when present, identifies the set of directories relative to the current directory

to update. The default list of updated directories is:

! .

! compilers

! doc

! include

! scripts

Page 5

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/svn_core.sh

! src

Note that the default list is not pushed onto a user-supplied list of directories.

update_projects: Check out and update Source of Selected Projects: Summary (path note):

update_projects <project-list> [<directory>]

Script update_projects facilitates the original retrieval and subsequent updates of selected parts

of the Toolkit tree. Because the source code and makefiles are distributed over more than one

subdirectory under repository path trunk/c++, this script assembles the set of required files and

places them in your local C++ source tree.

The projects to be retrieved (or updated) must be specified in the command line as the <project-

list> parameter. Its value can be either of the following:

1 Explicit specification of the pathname of the project listing file. This project listing

file can contain project directory names as well as references to other project listings

and must be formatted according to the simple syntax used by the configure script.

2 Specify one of the standard project names. Standard projects are those whose project

listing files are located in one of the system directories, which are trunk/c++/scripts/

projects and trunk/c++/scripts/internal/projects. When a project name is specified on

the command line, the “.lst” extension is added to it and the resulting file name is

searched for in the above mentioned system directories.

The parameter to update_projects indicates the target directory where the sources will be

checked out to and where the project will be configured and built. This parameter is optional

and is set to the current directory by default.

Source Code Retrieval under MS Windows

1 In NCBI, the SVN clients must be set up and ready to use. Ask Systems if you don’t

have the client installed on your workstation. If you are working outside of NCBI,

then you can download the latest version of Subversion from http://

subversion.tigris.org/servlets/ProjectDocumentList?folderID=91. Run the

Subversion installer and follow the instructions. The latest version may not come with

an executable installer though. In this case, please unpack the zip archive with the

latest Subversion binaries to a local directory, for example C:\Program Files\svn-

win32-1.4.2. Change the PATH environment variable so that it points to the bin

subdirectory under your Subversion installation directory, for example set PATH=%

PATH%;C:\Program Files\svn-win32-1.4.2\bin

2 Start your favorite command shell. Change current directory to the designated

working directory. At the command prompt, type:svn co https://svn.ncbi.nlm.nih.gov/

repos/toolkit/trunk/c++

3 Modify source files as required. Refer to Svnbook for the documentation on particular

Subversion commands. Monitor your changes using svn diff, synchronize your

working copy with the trunk using svn update, and finally commit them using svn

commit.

Source Code Retrieval under Mac OS X

Download and install the latest Subversion binaries for MacOSX from http://

subversion.tigris.org/.

Page 6

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://subversion.tigris.org
http://subversion.tigris.org
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://subversion.tigris.org/servlets/ProjectDocumentList?folderID=91
http://svnbook.red-bean.com

The rest should be the same as when using Subversion under UNIX systems. See Source Code

Retrieval under Unix.

FTP Retrieval

! FTP Download Now

! Available FTP Archives: Select the archive for your system. When the dialog box

appears, choose the destination in your file system for the downloaded archive.

Note: With some browsers, you may need to right-click-and-hold with your mouse and

use the 'Save Link As...', 'Copy to Folder...', or similar options from the drop-down

menu to properly save the archive.For a current list of the source code archives for

different operating system/compiler combinations consult the current Release Notes

available at ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/

RELEASE_NOTES--Dec_31_2008.html

! Unpack the Source Archive

" Unix SystemsThe Unix distributions have been archived using the standard

tar command and compressed using gzip. When unpacked, all files will be

under the directory ncbi_cxx, which will be created in the current directory.

(Caution: If ncbi_cxx already exists, tar extraction will overwrite existing

files.)To unpack the the archive: gunzip -c ncbi_cxx_*.tar.gz | tar xvf -

" Windows SystemsThe Microsoft Windows versions of the source distribution

have been prepared as self-extracting executables. By default a sub-folder

ncbi_cxx will be created in the current folder to contain the extracted source.

If ncbi_cxx already exists in the folder where the executable is launched, user

confirmation is required before files are overwritten. To actually perform the

extraction, do one of the following:

Double-click on the archive's icon to create ncbi_cxx in the current

folder.

Right-click on the archive's icon, and select 'Extract to...' to unpack

the archive to a user-specified location in the filesystem.

" Macintosh SystemsThe Macintosh version of the source distribution has been

prepared as a 'Stuff-It' archive, and is usable from within Metrowerks

CodeWarrior. The sources will be deployed to a directory ncbi_cxx created in

the current folder.Further Mac-specific details are forthcoming.

Source Tree Structure Summary

To summarize the Getting Started page, the source tree is organized as follows:

! The top-level has configuration files and the directories include/, src/, scripts/,

compilers/ and doc/

! The src and include directories contain "projects" as subdirectories. Projects may

contain sub-projects in a hierarchical fashion.

! src/ additionally contains makefile and meta-makefile templates.

! Projects contain "modules" and various customized makefiles and meta-makefiles to

control their compilation.

Page 7

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/RELEASE_NOTES--Dec_31_2008.html
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/RELEASE_NOTES--Dec_31_2008.html
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT

Table 1. svn_core Arguments

Argument Description Permitted Values

<dir> Path to where the source tree will
be checked out. This argument is
required.

Valid writable directory name (must not exist already); name cannot start with "-"

--<platform> Obtain sources for the specified
platform(s).

--unix - Unix systems; --msvc - Microsoft Visual C++ environment; --mac - Macintosh
systems; --cygwin - Red Hat's Cygwin UNIX environment for MS Windows; --all - all
systems. Default: --all

--export Get a clean source tree
without .svn directories.

If present, it excludes Subversion-related directories from the resultant tree by executing
Subversion "export" as of the date specified by the date parameter instead of checking
out.

--date Checkout as at the start of the
specified timestamp.

If the --date flag is missing, today’s date and current time are used.

--with-objects Generate ASN.1 serialization
code in the objects/ directory.

If the --with-objects flag is present, the objects, object manager and object tools are
checked out and serialization code is generated from the ASN.1 specifications. If the --
with-objects flag is not present, the objects, object manager and object tools are still
checked out (unless overridden by the --without-objects flag) but no serialization code is
generated. If the --without-objects flag is present, then the object components will not be
checked out. (Unix platforms: the code generation can be done later, during the build)

--without-objects Do not check out the objects,
object manager or object tools
directory or generate ASN.1
serialization code.

If not present, this flag has no affect and the behavior for --with-objects applies. That is,
unless explicitly turned off by providing this argument the objects, object manager and
object tools are always checked out. The main purpose of this flag is to ensure that the
object components are not checked out.

--with-ctools Checkout core projects
responsible for working together
with the NCBI C Toolkit (ctools/
directory).

If not present, it defaults to still checking out the ctools/ directory unless overridden by
the --without-ctools flag.

--without-ctools Do not checkout core projects
responsible for working together
with the NCBI C Toolkit.

If not present, this flag has no affect and the behavior for --with-ctools applies. That is,
unless explicitly turned off by providing --without-ctools, the ctools are always checked
out. The main purpose of this flag is to ensure that the ctools components are not checked
out.

--with-gui Checkout projects that depend on
wxWindows.

If not present, it defaults to still checking out the gui components unless overridden by
the --without-gui flag.

--without-gui Do not checkout projects that
depend on wxWindows.

If not present, this flag has no affect and the behavior for --with-gui applies. That is, unless
explicitly turned off by providing --without-gui, the gui components are always checked
out. The main purpose of this flag is to ensure that the gui components are not checked
out.

--<srctree> Whether to include internal
NCBI components of the source
tree.

The --<srctree> is replaced by either --production or --. If --is specified, the development
source tree branch for NCBI users is checked out. If --production is specified, the
production source tree branch for non-NCBI users is checked out. If not specified, this
option defaults to --.

Page 8

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 2. List of the directories that are always checked out

doc

include/corelib src/corelib

include/connect src/connect/test

include/serial src/serial

include/cgi src/cgi

include/html src/html

include/util src/util

include/bdb src/bdb

include/dbapi src/dbapi

include/app src/app

Page 9

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 3. Directories containing argument sensitive parts

compilers

connect/daemons

connect/mitsock

scripts

Page 10

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 4. Directories affected by enabling/disabling the --with/--without option

Feature Affected Directories

ctools include/ctools, src/ctools, compilers

gui include/gui, src/gui, compilers

objects include/objects/*, src/objects/*, compilers, scripts, src

Page 11

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Configure, Build, and Use the Toolkit

[4]

Introduction

This chapter describes in detail how to configure, build, and use the NCBI C++ Toolkit (or

selected components of it) on supported platforms. See the Getting Started chapter for a

general overview of the process. A list of all supported platforms can be seen here.

Configuring is the process of creating configuration files that define exactly what can be

built and what options may be used in the build process. The created configuration files

include C headers that define suitable preprocessor macros, as well makefiles (for UNIX)

or project solutions (for MS Visual C++ or for Xcode) used in the build step.

With some compilers that include an Integrated Development Environment (e.g. MS Visual

C++), a top-level build target, called CONFIGURE, is available. On UNIX-like systems it

is necessary to execute a configuration script configure – sometimes via a special wrapper

script that first performs some platform-specific pre-configuration steps and then runs the

configuration process.

The configuration process defines the set of targets that can be built. It is up to the user to

choose which of those targets to build and to choose the desired build options. For more

details on the build system and the Makefiles created by the configuration process, see the

chapter on Working with Makefiles.

Successful builds result in immediately usable libraries and applications, and generally there

is no need for a separate installation step on any platform.

In addition to building the Toolkit libraries and applications, this chapter also discusses

building test suites and sample applications. You might want to build and run a test suite if

you are having trouble using the Toolkit and you aren’t sure if it is working properly. While

it isn’t necessary to build a test suite to use the Toolkit, it can be useful for ensuring that

the Toolkit has been properly configured and built. Building a sample application may be

a good first step toward learning how to build your own applications.

Overview

General Information for All Platforms

! Supported Platforms

UNIX

! General Information for UNIX Platforms

! Special Considerations for Specific UNIX Platforms

MS Windows

! MS Visual C++

! Cygwin / GCC

Mac OS X

! Xcode 3.0, 3.1

! Xcode 1.0, 2.0

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Darwin / GCC

! Code Warrior (discontinued as of April 30, 2006)

General Information for All Platforms

Using the Toolkit on any platform requires these basic high-level steps:

1 Get the source files from NCBI and place them in your working directory.

2 Choose a build scope.

3 Configure the build.

4 Build.

5 Use the Toolkit from your application.

Choosing a build scope means deciding whether you want to build the entire Toolkit or just

some portion of it. The build system includes methods on most platforms for building pre-

defined scopes, such as just the core libraries and applications, the Genome Workbench, etc.

Choosing a build scope must be done before configuring on some platforms. On other platforms

it can be done either before or after configuring. See the section for your platform for more

details on pre-defined build scope choices.

For the configuration step you also can specify (using command-line arguments on UNIX or

special config files on MSVC++ and Xcode) whether to use static or dynamically-linked

libraries; whether to generate multithread-safe code; whether to look for various 3rd-party

libraries at alternative locations; whether or not to include debugging information; etc.

You can also build a suite of test applications and/or sample applications if desired.

Supported Platforms

The term “platform” in this chapter has a specific meaning: the combination of operating

system, architecture, and compiler. A supported platform is one for which the Toolkit has been

configured, built, tested, and used by other applications.

The list of supported platforms may change with new releases. For the platforms supported in

the release you are using, see the Supported Platforms section in the release notes. Note that

some platforms are only partially supported.

UNIX

This section covers the following topics:

! General Information for UNIX Platforms

" Choosing a Build Scope

" Configuring

" Building

" Using

! Special Considerations for Specific UNIX Platforms

" Linux / ICC

" Cygwin / GCC

Page 2

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

General Information for UNIX Platforms

This section provides information on configuring, building, and using the Toolkit that is

applicable to all UNIX platforms. The section Special Considerations for Specific UNIX

Platforms addresses platform-specific details.

Note, however, that the sections on specific platforms do not address the level of support for

specific compilers. See the Supported Platforms section in the release notes for information on

partially supported compilers.

The following topics are discussed in this section:

! Choosing a Build Scope

! Configuring

" Configuration Script configure

" Structure of the Build Tree Produced by configure

" Options for Fine-Tuning the configure Script

" Quick Reconfiguration

! Building

" General Principles for Building with UNIX

" Building Only Core Libraries and Applications

" Building GUI Libraries and Applications

" Building the Genome Workbench

" Building the Entire Toolkit

! Using

" Modify an Existing Toolkit Application

" Modify an Existing Toolkit Library

Choosing a Build Scope with UNIX—The Toolkit is very large and you may not want to

retrieve and build the entire Toolkit if you don’t need to. Therefore, several mechanisms are

provided to enable working with only a portion of the Toolkit.

The first thing you can do is to limit the source code retrieved from the repository:

! using the shell script import_project; or

! using the shell script update_projects.

Next, you can limit what is built:

! by configuring with the --with-projects option; or

! by running make only within directories of interest; or

! by building only a selected list of end targets using flat makefile

You can also choose between static and shared libraries - or build both. Building with static

libraries will result in much larger applications and require much more disk space.

Configuring with UNIX—The following topics are discussed in this section:

! Configuration Script configure

! Structure of the Build Tree Produced by configure

! Options for Fine-Tuning the configure Script

Page 3

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Getting a Synopsis of Available Configuration Options

! Debug vs. Release Configuration

! Multi-Thread Safe Compilation and Linking with MT Libraries

! Building Shared Libraries (DLLs)

! Finer-grained Control of Projects: --with-projects

! Building in the 64-bit mode

! Localization for the System and Third-Party Packages

! Naming the Build Tree

! Hard-Coding Run-Time DLL Path into Executables and DLLs

! Automatic Generation of Dependencies (for GNU make Only)

! After-Configure User Callback Script

! Tools and Flags

! Prohibiting the Use of Some of the System and Third-party Packages

! Optional Projects

! Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask)

" Quick Reconfiguration

Configuration Script configure: Different build setups compile C++ (and even C!) code

differently; they may vary in the OS standard and 3rd-party libraries and header files,

completeness of the C++ implementation, and in compiler bugs. There are also different

versions of make and other tools and different file naming conventions on different platforms.

Thus, configuration is needed to use the platform- and compiler-specific features. For this

purpose, we are using a script produced by the GNU autoconf utility to automatically generate

the build-specific header file ncbiconf.h and makefiles that would work for the given platform.

The user performs configuration by merely running platform-independent (sh, bash) shell

script configure (which we pre-generate in-house from the template configure.ac using

autoconf).

During the configuration process, many compiler features are tested, and the results of this

testing are recorded in the configuration header ncbiconf.h by the means of C preprocessor

variables. For example, the preprocessor variable NO_INCLASS_TMPL indicates whether

the compiler supports template class methods. Also contained in the ncbiconf.h file are

preprocessor variables used to define sized integer and BigScalar types.

The configure script will create a build tree, a hierarchy of directories where object modules,

libraries, and executables are to be built. It will also configure all *.in template files located in

the NCBI C++ source tree (src/) and deploy the resultant configured files in the relevant places

of the build tree. This way, all platform- and compiler-specific tools and flags will be "frozen"

inside the configured makefiles in the build tree. The ncbiconf.h (described above, also

configured for the given compiler) will be put to the inc/ sub-directory of the resultant build

tree.

You can create as many build trees as needed. All build trees refer to the same source tree, but

contain their own platform/compiler-specific ncbiconf.h header and/or different set of

compilation/linking flags and tools ("frozen" in the makefiles, particularly in Makefile.mk).

Page 4

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.gnu.org/software/autoconf
http://www.gnu.org/software/autoconf

This allows building libraries and executables using different compilers and/or flags, yet from

the same source, and in a uniform way.

Structure of the Build Tree Produced by configure: Each configuration process results in

a new build tree. The top-level directories in the tree are:

inc/ - contains the ncbiconf.h configuration header generated by the configure script.

build/ - contains a hierarchy of directories that correspond to those in the src/ (in NCBI C++

original sources). These directories will contain makefiles (Makefile.*) generated by the

configure script from the makefile templates (Makefile.*.in) of the corresponding project

located in the source tree. The resultant scripts and makefiles will keep references to the original

NCBI C++ source directories. There is a "very special" file, Makefile.mk, that contains all

configured tools, flags, and local paths. This file is usually included by other makefiles. All

build results (object modules, libraries, and executables, as well as any auxiliary files and

directories created during the build) will go exclusively into the build tree and not to the original

NCBI C++ source directories. This allows for several build trees to use the same source code

while compiling and linking with different flags and/or compilers.

lib/ - contains the libraries built by the build/-located projects.

bin/ - contains the executables built by the build/-located projects.

status/ - contains:

! config.cache, a cache file;

! config.log, a log file;

! config.status, a secondary configuration script produced by configure;

! *.enabled files, with package and feature availability; and

! .*.dep files, with timestamps of the built Toolkit libraries.

Options for Fine-Tuning the configure Script: The configure script is highly customizable.

The following sections describe some of the configuration options:

! Getting a Synopsis of Available Configuration Options

! Debug vs. Release Configuration

! Multi-Thread Safe Compilation and Linking with MT Libraries

! Building Shared Libraries (DLLs)

! Finer-grained Control of Projects: --with-projects

! Building in the 64-bit mode

! Localization for the System and Third-Party Packages

! Naming the Build Tree

! Hard-Coding Run-Time DLL Path into Executables and DLLs

! Automatic Generation of Dependencies (for GNU make Only)

! After-Configure User Callback Script

! Tools and Flags

! Prohibiting the Use of Some of the System and Third-party Packages

! Optional Projects

! Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask)

Page 5

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Getting Synopsis of Available Configuration Options: To get the full list of available

configuration options, run ./configure --help. The NCBI-specific options are at the end of the

printout.

NOTE: Do not use the "standard" configure options listed in the "Directory and file

names:" section of the help printout (such as --prefix= , --bindir=, etc.) because these are

usually not used by the NCBI configure script.

Debug vs. Release Configuration: The following two configure flags control whether to target

for the Debug or Release version. These options (the default being --with-debug) control the

appearance of preprocessor flags -D_DEBUG and -DNDEBUG and compiler/linker flags -g

and -O, respectively:

--with-debug -- engage -D_DEBUG and -g, strip -DNDEBUG and -O (if not --with-

optimization)

--without-debug -- strip -D_DEBUG and -g, engage -DNDEBUG and -O (if not --without-

optimization)

--with-optimization -- unconditionally engage -DNDEBUG and -O

--without-optimization -- unconditionally strip -DNDEBUG and -O

default: --with-debug --without-optimization

Multi-Thread Safe Compilation and Linking with MT Libraries: --with-mt - compile all code

in an MT-safe manner; link with the system thread library.

--without-mt - compile with no regard to MT safety.

default: --without-mt

Building Shared Libraries (DLLs): On the capable platforms, you can build libraries as shared

(dynamic).

--with-dll --with-static -- build libraries as both dynamic and static; however, if the library

project makefile specifies LIB_OR_DLL = lib, then build the library as static only, and if the

library project makefile specifies LIB_OR_DLL = dll, then build the library as dynamic only.

Note that the resulting static libraries consist of position-independent objects.

--with-dll -- build libraries as dynamic; however, if the library project makefile specifies

LIB_OR_DLL = lib, then build the library as static

--without-dll -- always build static libraries, even if the library project makefile specifies

LIB_OR_DLL = dll

default: build libraries as static (albeit with position-independent code); however, if the library

project makefile specifies LIB_OR_DLL = dll, then build the library as dynamic

Finer-grained Control of Projects: --with-projects: If the above options aren't specific enough

for you, you can also tell configure which projects you want to build by passing the flag --

with-projects=FILE, where FILE contains a list of extended regular expressions indicating

which directories to build in. With this option, the make target all_p will build all selected

projects under the current directory. If there is a project that you want to keep track of but not

automatically build, you can follow its name with "update-only". To exclude projects that

Page 6

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.opengroup.org/onlinepubs/007904975/basedefs/xbd_chap09.html

would otherwise match, list them explicitly with an initial hyphen. (Exclusions can also be

regular expressions rather than simple project names.)

For instance, a file containing the lines

corelib$

util

serial

-serial/test

test update-only

would request a non-recursive build in corelib and a recursive build in util, and a recursive

build in serial that skipped serial/test. It would also request keeping the test project up-to-date

(for the benefit of the programs in util/test).

NOTE: The flags listed above still apply; for instance, you still need --with-internal to enable

internal projects. However, update_projects can automatically take care of these for you; it will

also take any lines starting with two hyphens as explicit options.

Building in the 64-bit Mode: --with-64 - compile all code and build executables in 64-bit

mode.

default: depends on the platform; usually --without-64 if both 32-bit and 64-bit build modes

are available.

Localization for the System and Third-Party Packages: There is some configuration info that

usually cannot be guessed or detected automatically, and thus in most cases it must be specified

"manually" for the given local host's working environment. The following localization

environment variables can be set (see Table 2) in addition to the "generic" ones (CC, CXX,

CPP, AR, RANLIB, STRIP, CFLAGS, CXXFLAGS, CPPFLAGS, LDFLAGS, LIBS):

On the basis of Table 2, configure will derive the variables shown in Table 3 to use in the

generated makefiles.

Naming the Build Tree: The configuration process will produce the new build tree in a

subdirectory of the root source directory. The default base name of this subdirectory will reflect

the compiler name and a Release/Debug suffix, e.g., GCC-Release/. The default build tree

name can be alternated by passing the following flags to the configure script:

--without-suffix - do not add Release/Debug, MT, and/or DLL suffix(es) to the build tree name.

Example: GCC/ instead of GCC-ReleaseMT/

--with-hostspec - add full host specs to the build tree name. Example: GCC-Debug--i586-pc-

linux-gnu/

--with-build-root=/home/foo/bar - specify your own build tree path and name.

With --with-build-root=, you still can explicitly use --with-suffix and --with-hostspec to add

suffix(s) to your build tree name in a manner described above.

Page 7

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Example: --with-build-root=/home/foo/bar--with-mt --with-suffix would deploy the new build

tree in /home/foo/bar-DebugMT.

There is also a special case with "--with-build-root=." for those who prefer to put object files,

libraries, and executables in the same directory as the sources. But be advised that this will not

allow you to configure other build trees.

Hard-Coding Run-Time DLL Paths into Executables and DLLs: To be able to run

executables linked against dynamic libraries (DLLs), you have to specify the location (runpath)

of the DLLs. It can be done by hard-coding (using linker flags such as-R.....) the runpath into

the executables.

--with-runpath - hard-code the path to the lib/ dir of the Toolkit build tree.

--with-runpath=/foo/bar - hard-code the path to the user-defined /foo/bar dir.

--without-runpath - do not hard-code any runpath.

default: if --without-dll flag is specified, then act as if --without-runpath was specified;

otherwise, engage the --with-runpath scenario.

The makefile macro ncbi_runpath will be set to the resulting runpath, if any.

NOTE: When running an executable you also can use environment variable

$LD_LIBRARY_PATH to specify the runpath, like this:

env LD_LIBRARY_PATH="/home/USERNAME/c++/WorkShop6-ReleaseDLL/lib" \

/home/USERNAME/c++/WorkShop6-ReleaseDLL/bin/coretest

HINT: The --with-runpath=.... option can be useful to build production DLLs and executables,

which are meant to use production DLLs. The latter are usually installed not in the lib/ dir of

your development tree (build tree) but at some well-known dir of your production site. Thus,

you can do the development in a "regular" manner (i.e., in a build tree configured using only

--with-runpath); then, when you want to build a production version (which is to use, let's say,

DLLs installed in "/some_path/foo/ "), you must reconfigure your C++ build tree with just the

same options as before, plus "--with-runpath=/some_path/foo". Then rebuild the DLLs and

executables and install them into production. Then re-reconfigure your build tree back with its

original flags (without the "--with-runpath =/some_path/foo ") and continue with your

development cycle, again using local in-tree DLLs.

Automatic Generation of Dependencies (for GNU make only): --with-autodep - add build

rules to automatically generate dependencies for the compiled C/C++ sources.

--without-autodep - do not add these rules.

default: detect if the make command actually calls GNU make; if it does, then --with-

autodep, else --with-autodep

Also, you can always switch between these two variants "manually", after the configuration is

done, by setting the value of the variable Rules in Makefile.mk to either rules or

rules_with_autodep.

Page 8

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

NOTE: You must use GNU make if you configured with --with-autodep, because in this case

the makefiles would use very specific GNU make features!

After-Configure User Callback Script: You can specify your own script to call from the

configure script after the configuration is complete:

--with-extra-action="<some_action>"

where <some_action> can be some script with parameters. The trick here is that in the

<some_action> string, all occurrences of "{}" will be replaced by the build dir name.

Example:

configure --with-extra-action="echo foobar {}"

will execute (after the configuration is done):

echo foobar /home/user/c++/GCC-Debug

Tools and Flags: There is a predefined set of tools and flags used in the build process. The

user can alternate these tools and flags by setting the environment variables shown in Table 1

for the configure script. In particular, if you intend to debug the Toolkit with Insure++, you

should run configure with CC and CXX set to insure.

Later, these tools and flags will be engaged in the makefile build rules, such as:

! To compile C sources: $(CC) -c $(CFLAGS) $(CPPFLAGS)....

! To compile C++ sources: $(CXX) -c $(CXXFLAGS) $(CPPFLAGS)....

! To compose a library: $(AR) libXXX.a xxx1.o xxx2.o xxx3.o$(RANLIB)

libXXX.a

! To link an executable: $(LINK) $(LDFLAGS) $(LIBS)

For more information on these and other variables, see the GNU autoconf documentation. The

specified tools and flags will then be "frozen" inside the makefiles of build tree produced by

this configure run.

Prohibiting the Use of Some of the System and Third-Party Packages: Some of the above

system and third-party packages can be prohibited from use by using the following

configure flags:

--without-sybase (Sybase)

--without-ftds (FreeTDS)

--without-fastcgi (FastCGI)

--without-fltk (FLTK)

--without-wxwin (wxWindows)

--without-ncbi-c (NCBI C Toolkit)

--without-sssdb (NCBI SSS DB)

--without-sssutils (NCBI SSS UTILS)

Page 9

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.gnu.org/software/autoconf/manual/autoconf.html

--without-sss (both --without-sssdb and --without-sssutils)

--without-geo (NCBI GEO)

--without-sp (NCBI SP)

--without-pubmed (NCBI PubMed)

--without-orbacus (ORBacus CORBA)

[and MANY more; ./configure –help | grep –e ‘—without-‘ will give a current list for both this

and the following heading.]

Optional Projects: You can control whether to build the following core packages using the

following configure flags:

--without-serial -- do not build C++ ASN.1 serialization library and datatool; see in internal/c

++/{ src | include }/serial directories

--without-ctools -- do not build projects that use NCBI C Toolkit see in internal/c++/{ src |

include }/ctools directories

--without-gui -- do not build projects that use wxWindows GUI package see in internal/c+

+/{ src | include }/gui directories

--with-objects -- generate and build libraries to serialize ASN.1 objects; see in internal/c+

+/{ src | include }/objects directories

--with-internal -- build of internal projects is by default disabled on most platforms; see in

internal/c++/{ src | include }/internal directories

Miscellaneous: --without-exe, --without-execopy, --with-lib-rebuilds(=ask): --without-exe --

do not build the executables enlisted in the APP_PROJ.

--without-execopy -- do not copy (yet build) the executables enlisted in the APP_PROJ.

--with-lib-rebuilds -- when building an application, attempt to rebuild all of the libraries it uses

in case they are out of date.

--with-lib-rebuilds=ask -- as above, but prompt before any needed rebuilds. (Do not prompt

for libraries that are up to date.)

Here's a more detailed explanation of --with-lib-rebuilds: There are three modes of operation:

In the default mode (--without-lib-rebuilds), starting a build from within a subtree (such as

internal) will not attempt to build anything outside of that subtree.

In the unconditional mode (--with-lib-rebuilds), building an application will make the system

rebuild any libraries it requires that are older than their sources. This can be useful if you have

made a change that affects everything under objects but your project only needs a few of those

libraries; in that case, you can save time by starting the build in your project's directory rather

than at the top level.

The conditional mode (--with-lib-rebuilds=ask) is like the unconditional mode, except that

when the system discovers that a needed library is out of date, it asks you about it. You can

Page 10

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/internal
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/include/internal
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects

then choose between keeping your current version (because you prefer it or because nothing

relevant has changed) and building an updated version.

Quick Reconfiguration: Sometimes, you change or add configurables (*.in files, such as

Makefile.in meta-makefiles) in the source tree.

For the build tree to pick up these changes, go to the appropriate build directory and run the

script reconfigure.sh. It will automatically use just the same command-line arguments that

you used for the original configuration of that build tree.

Run reconfigure.sh with argument:

update - if you did not add or remove any configurables in the source tree but only modified

some of them.

reconf - if you changed, added, and/or removed any configurables in the source tree.

recheck - if you also suspect that your working environment (compiler features, accessibility

of third-party packages, etc.) might have changed since your last (re)configuration of the build

tree and, therefore, you do not want to use the cached check results obtained during the last

(re)configuration.

without arguments - printout of script usage info.

Example:

cd /home/foobar/c++/GCC-Debug/build

./reconfigure.sh reconf

Naturally, update is the fastest of these methods, reconf is slower, and recheck (which is an

exact equivalent of re-running the configure script with the same command-line arguments as

were provided during the original configuration) is the slowest.

Building with UNIX—Following are some examples of how to build specific projects and

some additional topics:

! General Principles for Building with UNIX

! Building Only Core Libraries and Applications

! Building GUI Libraries and Applications

! Building the Genome Workbench

! Building the Entire Toolkit

General Principles for Building with UNIX: Use this key for the examples in the “Building

with UNIX” sections:

Page 11

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

$YOUR_WORK_DIR your directory corresponding to the top-level c++ directory in the source tree

$YOUR_CONFIG_OPTIONS any optional configuration options you’ve chosen

--with-flat-makefile creates a makefile that can build all or selected projects

--without-internal excludes NCBI-internal projects from the makefile

--without-gui excludes FLTK-based projects from the makefile

--with-gbench ensures that the makefile will contain everything necessary to build the Genome Workbench

GCC401-Debug will be replaced based on the compiler and configuration options you’re using

gui/ selects the GUI libraries target in the flat makefile

gui/app/ selects the sub-tree containing the primary Genome Workbench executable and its helpers

all_r selects a recursive build of all targets at this and lower levels in the source tree

The import_project script builds a single project in the working directory while referencing

the rest of a pre-built Toolkit for all other Toolkit components. For example, to build only the

app/id2_fetch application and have the rest of the pre-built Toolkit available, use these

commands:

mkdir $YOUR_WORK_DIR

cd $YOUR_WORK_DIR

import_project app/id2_fetch

cd trunk/c++/src/app/id2_fetch

make

The update_projects script builds a single project and all the components it depends on in the

working directory, and does not reference or build any other Toolkit components. For example,

to build only the corelib project, use these commands:

mkdir $YOUR_WORK_DIR

cd $YOUR_WORK_DIR

update_projects corelib .

The update_projects script will automatically retrieve updated source code and then prompt

you for configuring, compiling, building tests, and running tests.

To run a test suite after building, use this additional command:

make check_r

cd $YOUR_WORK_DIR

./configure –without-gui –without-internal $YOUR_CONFIG_OPTIONS

Page 12

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

cd GCC401-Debug/build

make all_r

cd $YOUR_WORK_DIR

./configure $YOUR_CONFIG_OPTIONS --with-flat-makefile

cd GCC401-Debug/build

make -f Makefile.flat gui/

cd $YOUR_WORK_DIR

./configure $YOUR_CONFIG_OPTIONS --with-flat-makefile --with-gbench

cd GCC401-Debug/build

make -f Makefile.flat gui/app/

(cd gui/app/gbench_install && make)

cd $YOUR_WORK_DIR

./configure $YOUR_CONFIG_OPTIONS

cd GCC401-Debug/build

make all_r

Using the Toolkit with UNIX—This section discusses the following examples of how to

use the Toolkit with UNIX:

! Modify an Existing Toolkit Application

! Modify an Existing Toolkit Library

Modify an Existing Toolkit Application with UNIX: If you want to modify, for example,

gi2taxid, use these commands:

cd $YOUR_WORK_DIR

import_project app/gi2taxid

You will be prompted to select a desired stability and configuration and then the script will

create the include and src trees necessary to work on the chosen application. It will also create

all the necessary makefiles to build the application. The makefiles will be configured to use

Page 13

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

the latest nightly build of the chosen stability and configuration to resolve all dependencies

outside the chosen application.

You can now make the desired edits and then rebuild:

cd trunk/c++/src/app/gi2taxid

edit the desired file(s)

make all_r

Modify an Existing Toolkit Library with UNIX: If you want to modify, for example, html,

use these commands:

cd $YOUR_WORK_DIR

import_project html

You will be prompted to select a desired stability and configuration and then the script will

create the include and src trees necessary to work on the chosen library. It will also create all

the necessary makefiles to build the library. The makefiles will be configured to use the latest

nightly build of the chosen stability and configuration to resolve all dependencies outside the

chosen library.

You can now make the desired edits and then rebuild:

cd trunk/c++/src/html

edit the desired file(s)

make all_r

Special Considerations for Specific UNIX Platforms

Most of the non-GCC compilers require special tools and additional mandatory flags to compile

and link C++ code properly. That's why there are special scripts that perform the required non-

standard, compiler-specific pre-initialization for the tools and flags used before running

configure.

These wrapper scripts are located in the compilers/ directory, and now we have such wrappers

for the SUN WorkShop (5.5 through 5.9), GCC and ICC compilers:

! WorkShop.sh {32|64} [build_dir] [--configure-flags]

! WorkShop55.sh {32|64} [build_dir] [--configure-flags]

! ICC.sh [build_dir] [--configure-flags]

Note that these scripts accept all regular configure flags and then pass them to the configure

script.

The following topics are discussed in this section:

! Linux / ICC

! Cygwin / GCC

Page 14

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Linux / ICC—To build a project on Linux / ICC, just follow the generic UNIX guidelines but

instead of running the ./configure.sh script you will need to run compilers/unix/ICC.sh.

Cygwin / GCC—To build a project on Cygwin / GCC, just follow the generic UNIX

guidelines but instead of running the ./configure.sh script you will need to run compilers/

cygwin/build.sh.

MS Windows

The following topics are discussed in this section:

! MS Visual C++

" Choosing a Build Scope

" Configuring

" Building

" Using

! Cygwin / GCC

MS Visual C++

The following topics are discussed in this section:

! Choosing a Build Scope

! Configuring

" Site-specific Build Tree Configuration

" Fine-Tuning with MSVC Project Files

Excluding project from the build

Adding files to project

Excluding files from project

Adjusting build tools settings

Specifying custom build rules

" DLL Configuration

" Fine-Tuning with Environment Variables

! Building

" Building a Custom Solution

" Building External Libraries (Optional)

" The Build Results

! Using

" Start a new project that uses the Toolkit

" Start a new project in the Toolkit

" Modify an existing project in the Toolkit

Choosing a Build Scope with Visual C++—The Toolkit is very large and you may not

want to retrieve and build the entire Toolkit if you don’t need to. Therefore, several mechanisms

are provided to enable working with only a portion of the Toolkit.

Page 15

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

If you are interested in building only one project, you can limit the source code retrieved from

the repository:

! using the shell script import_project; or

! using the shell script update_projects.

You can also limit what will be built by choosing a standard solution. Five standard solutions

are provided to enable working only with selected portions of the Toolkit.

...\compilers\msvc900_prj\static\build\ncbi_cpp.sln

...\compilers\msvc900_prj\dll\build\ncbi_cpp.sln

...\compilers\msvc900_prj\static\build\gui\ncbi_gui.sln

...\compilers\msvc900_prj\dll\build\gui\ncbi_gui.sln

...\compilers\msvc900_prj\dll\build\gbench\ncbi_gbench.sln

The first two solutions build console applications and required libraries only; the last three

solutions build GUI applications.

Note that the project directory, msvc900_prj, may be different for your version of Visual C+

+.

You can also choose between static and shared libraries. Building with static libraries will

result in much larger applications and require much more disk space. Using static libraries is

not an option for the Genome Workbench.

Configuring with Visual C++—Once you have chosen a build scope, you are ready to

configure.

If you used either the import_project script or the update_projects script then you don’t need

to configure because both of those scripts use existing configurations.

If you chose a standard solution then you will need to configure. Each standard solution

contains a special project called -CONFIGURE- which is used for generating a Visual Studio

project file based on UNIX-style makefile templates ...\src\....\Makefile.*

The Visual Studio specific configuration files are:

! ...\src\build-system\Makefile.mk.in.msvc

! ...\src\build-system\project_tree_builder.ini

! ...\src\....\Makefile.*.msvc

Each of the standard solutions use a predefined list of projects to build, which is taken from ...

\scripts\projects*.lst files.

To configure and generate the project list, open the chosen solution, select the desired

configuration, right click on the -CONFIGURE- project, and click 'Build'.

You can use an alternative to the -CONFIGURE- project, called -CONFIGURE-

DIALOG-, which shows a popup dialog box that can be used to modify some of the

configuration settings.

Page 16

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in.msvc

When -CONFIGURE- is finished building, a dialog will pop up stating that the solution has

been modified outside the environment - this is exactly what building -CONFIGURE- is

supposed to do. To ensure that all projects get reloaded correctly, click Ignore, not Reload, and

then close the solution and open it. The solution will now list all projects and any or all of them

can be built.

The following topics discuss configuring with Visual C++ in more detail:

! Site-specific Build Tree Configuration

! Fine-Tuning with MSVC Project Files

" Excluding a Project From the Build

" Adding Files to a Project

" Excluding Files From a Project

" Adjusting Build Tools Settings

" Specifying Custom Build Rules

! DLL Configuration

! Fine-Tuning with Environment Variables

Site-specific Build Tree Configuration: File project_tree_builder.ini (see Table 4) describes

build and source tree configurations, contains information about the location of 3rd-party

libraries and applications, and includes information used to resolve macro definitions found in

the UNIX-style makefile templates.

Toolkit project makefiles can list (in a pseudo-macro entry called 'REQUIRES') a set of

requirements that must be met in order for the project to be built. For example, a project can

be built only on UNIX, or only in multi-thread mode, or if a specific external library is available.

Depending on which of the requirements are met, the Toolkit configurator may exclude some

projects in some (or all) build configurations or define preprocessor and/or makefile macros.

Some of the Toolkit projects can be built differently depending on the availability of non-

Toolkit components. For them, there is a list of macros - defined in 'Defines' entry - that define

conditional compilation. To establish a link between such a macro and a specific component,

the configuration file also has sections with the names of the macro. For each build

configuration, project tree builder creates a header file (see 'DefinesPath' entry) and defines

these macros there depending on the availability of corresponding components.

Many of the requirements define dependency on components that are 3rd-party packages, such

as BerkeleyDB. For each one of these there is a special section (e.g. [BerkeleyDB]) in

project_tree_builder.ini that describes the path(s) to the include and library directories of the

package, as well as the preprocessor definitions to compile with and the libraries to link against.

The Toolkit configurator checks if the package's directories and libraries do exist, and uses this

information when generating appropriate MSVS projects.

There are a few indispensable external components that have analogs in the Toolkit. If the

external component is not found, the analog in the Toolkit is used. The 'LibChoices' entry

identifies such pairs, and 'LibChoiceIncludes' provides additional include paths to the builtin

headers.

NOTE: There are some requirements which, when building for MS Visual Studio, are always

or never met. These requirements are listed in 'ProvidedRequests', 'StandardFeatures', or

'NotProvidedRequests' of the 'Configure' section.

Page 17

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

Fine-Tuning with MSVC Project Files: While default MSVS project settings are defined in

Makefile.mk.in.msvc file, each project can require additional MSVC-specific fine-tuning, such

as compiler or linker options, additional source code, etc. These tune-ups can be specified in

Makefile.<project_name>.[lib|app].msvc file located in the project source directory. All

entries in such *.msvc file are optional.

Any section name can have one or several optional suffixes, so it can take the following forms:

! SectionName

! SectionName.CompilerVersion

! SectionName.Platform

! SectionName.[static|dll]

! SectionName.[debug|release]

! SectionName.CompilerVersion.[debug|release]

! SectionName.[static|dll].[debug|release]

! SectionName.[debug|release].ConfigurationName

! SectionName.[static|dll].[debug|release].ConfigurationName

CompilerVersion 710 or 800 or 900

Platform Win32 or x64

static or dll type of runtime libraries

debug or release build configuration type

ConfigurationName build configuration name (e.g. DebugDLL, or ReleaseMT)

Settings in sections with more detailed names (ones that appear later on this list) override ones

in sections with less detailed names (ones that appear earlier).

The following topics discuss further fine-tuning with MSVC project files:

! Excluding a Project From the Build

! Adding Files to a Project

! Excluding Files From a Project

! Adjusting Build Tools Settings

! Specifying Custom Build Rules

Excluding a Project From the Build: To exclude a project from the build, set the

'ExcludeProject' entry in the 'Common' section:

! [Common]

! ExcludeProject=TRUE

Adding Files to a Project: To add files to a project, add entries to the 'AddToProject' section.

The section can have the following entries:

! [AddToProject]

! SourceFiles=

! ResourceFiles=

! IncludeDirs=

! LIB=

Page 18

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/Makefile.corelib.lib.msvc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui/app/gbench/Makefile.gbench.app.msvc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in.msvc

! HeadersInInclude=

! HeadersInSrc=

SourceFiles additional (usually MS Windows specific) source files (without extension)

ResourceFiles MS Windows resource files

IncludeDirs additional include directories

LIB additional libraries

HeadersInInclude override default list of headers from include directory

HeadersInSrc override default list of headers from source directory

By default, all header files found in the project's include and source directories are added to

the MSVS project. If that's not exactly what you need, the list of headers can be overridden

using the 'HeadersInInclude' and 'HeadersInSrc' entries. There, file names should be entered

with their extension; an exclamation mark means negation; and wildcards are allowed. For

example, the entry:

HeadersInInclude = *.h file1.hpp !file2.h

means "add all files with h extension, add file1.hpp, and do not add file2.h".

NOTE: A single exclamation mark with no file name means "do not add any header files".

Excluding Files From a Project: To exclude files from a project, set the 'SourceFiles' or 'LIB'

entries of the 'ExcludedFromProject' section.

Adjusting Build Tools Settings: The build tools are 'Compiler', 'Linker', 'Librarian', and

'ResourceCompiler' - that is, the tools used by the MS Visual Studio build system. The names

of available entries in any one of these sections can be found in Makefile.mk.in.msvc file. For

the meaning and possible values of these entries, see the "Microsoft Development Environment

VC++ Project System Engine 8.0 Type Library".

Specifying Custom Build Rules: To specify custom build rules for selected files in the project

(usually non C++ files) use the 'CustomBuild' section. It has a single entry, 'SourceFiles', which

lists one or more files to apply the custom build rules to. Then, create a section with the name

of the file, and define the following entries there: 'Commandline', 'Description', 'Outputs', and

'AdditionalDependencies' - that is, the same entries as in the Custom Build Step of Microsoft

Visual Studio project property pages. This data will then be inserted "as is" into the MSVS

project file.

DLL Configuration: The Toolkit UNIX-style makefile templates give a choice of building

the library as dynamic or static (or both). However, it is often convenient to assemble a "bigger"

DLL made of the sources of several static libraries.

In the Toolkit, such compound DLLs are described using a set of special makefiles in src/dll

subdirectory. Each such file – Makefile.*.dll – contains the following entries:

DLL name of the compound DLL

HOSTED_LIBS names of the included static libraries

DEPENDENCIES dependencies on other static or dynamic libraries

CPPFLAGS additional compiler flags, specific for this DLL

Page 19

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Fine-Tuning with Environment Variables: It is possible to fine-tune the configuration

process by using the following environment variables:

! PREBUILT_PTB_EXE

! PTB_PROJECT

When the PREBUILT_PTB_EXE environment variable defines an existing file (e.g.

project_tree_builder.exe), this EXE is used. Otherwise, the configuration process builds

project_tree_builder using existing sources, and then uses this EXE. At NCBI, even when

PREBUILT_PTB_EXE is not defined, the toolkit still tries to use an external

project_tree_builder – to speed up the configuration. Normally, this is the most recent

successfully built one. To disable such behavior, this variable should be defined and have the

value bootstrap:

PREBUILT_PTB_EXE=bootstrap

The PTB_PROJECT environment variable can be used to redefine the default project list. For

example, it can be defined as follows:

PTB_PROJECT=scripts\projects\datatool\project.lst

Building with Visual C++—Once you have chosen a build scope and have configured, you

are ready to build. The configure process creates a solution containing all the projects you can

build.

To build a library, application, sample, or any other project, simply choose your configuration

(e.g. ReleaseDLL), select the desired project, and build it. To build the entire Toolkit, select

the -BUILD-ALL- project.

Note: do not use the 'Build Solution' command, as this would include building the –

CONFIGURE- project, which is inappropriate.

Following are some additional build-related topics:

! Building a Custom Solution

! Building External Libraries (Optional)

! The Build Results

Building a Custom Solution: To help jump-start a new, customized solution, there is (in

addition to the 5 standard solutions) a template solution ...\compilers\msvc900_prj\user\build

\ncbi_user.sln. The list of folders that need to be included into this solution is defined in ...

\scripts\projects\ncbi_user.lst

N.B. Do not use this solution directly. Instead, make a copy of ...\compilers\msvc900_prj\user

subtree and ...\scripts\projects\ncbi_user.lst file; then rename the copies of ncbi_user.sln and

ncbi_user.lst, and edit these copies.

Note that the project directory, msvc900_prj, may be different for your version of Visual C+

+.

For example, assuming that these new copies are named user.sln and user.lst:

Specify the list of input folders in the user.lst file

Open solution user.sln

Page 20

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Edit Custom Build settings of configure._ file in -CONFIGURE- project (change ncbi_user.lst

to user.lst)

By default, the solution uses static runtime libraries. To use DLL ones, edit configure._ file

changing the following line 'set PTB_FLAGS=' with 'set PTB_FLAGS=-dll'.

Now, build project -CONFIGURE- project.

Building External Libraries (Optional): Some of the NCBI C++ Toolkit projects make use

of the NCBI C Toolkit (not to be confused with the NCBI C++ Toolkit) and/or freely distributed

3rd-party packages (such as BerkeleyDB, LibZ, FLTK, etc.).

At NCBI, these libraries are already installed, and their locations are hard coded in the C++

Toolkit configuration files. If you are outside of NCBI, you may need to build and install these

libraries before building the C++ Toolkit.

Alternatively, the source code for the NCBI C Toolkit and the 3rd-party packages can be

downloaded from the NCBI FTP site and built - ideally, in all available configurations.

If you do not have the external libraries already installed, you can download, build, and install

the NCBI C Toolkit and the freely distributed 3rd-party packages. The source code for the

NCBI C Toolkit and the freely distributed 3rd-party packages can be downloaded from the

NCBI FTP site and built in all available configurations. Refer to the documentation on the

specific packages you wish to install for more information.

The Build Results: The built Toolkit applications and libraries will be put, respectively, to:

...\compilers\msvc900_prj\{static|dll}\bin\<config_name>

...\compilers\msvc900_prj\{static|dll}\lib\<config_name>

Note that the project directory, msvc900_prj, may be different for your version of Visual C+

+.

Using the Toolkit with Visual C++—This section dissusses the following examples of

how to use the Toolkit with Windows:

! Start a New Project That Uses the Toolkit

! Start a New Project in the Toolkit

! Modify an Existing Project in the Toolkit

Start a New Project That Uses the Toolkit: To use an already built C++ Toolkit (with all its

build settings and configured paths), use the new_project script to create a new project:

new_project <name> <type> [builddir] [flags]

where:

<name> is the name of the project to create

<type> is one of the predefined project types

[builddir] is the location of the C++ Toolkit libraries

[flags] selects a recursive build of all targets at this and lower levels in the source tree

Page 21

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/NCBI_C_Toolkit/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ThirdParty/README
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/compilers/msvc900_prj/user/build/UtilityProjects/configure._
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/NCBI_C_Toolkit/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ThirdParty/README
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

For example, if the Toolkit is built in the U:\cxx folder, then this command:

new_project test app U:\cxx\compilers\msvc900_prj

1 creates a new local build tree;

2 puts the project source files into the \src\name folder;

3 puts the header files into name\include\name;

4 puts the Visual Studio project file into name\compilers\msvc900_prj\static\build

\name; and

5 puts the solution file into name\compilers\msvc900_prj\static\build.

To add new source files or libraries to the project, edit name\src\name\Makefile.name.app

makefile template, then rebuild the -CONFIGURE- project of the solution.

Start a New Project in the Toolkit with Visual C++: Follow the regular UNIX-style

guidelines for adding a new project to the Toolkit.

Then, build the -CONFIGURE- project and reload the solution.

To start a new project that will become part of the Toolkit, create the makefile template first.

For applications it must be named Makefile.< project_name>.app; for libraries -

Makefile.<project_name>.lib. If it is a new folder in the source tree, you will also need to create

Makefile.in file in the new folder, to specify to the configuration system what should be built

in the new folder. Also, the new folder must be listed in the SUB_PROJ section of the parent

folder's Makefile.in. Finally, make sure your new project folder is listed in the appropriate

"*.lst" file in ...\scripts\projects. It can be either a subdirectory of an already listed directory,

or a new entry in the list.

Modify an Existing Project in the Toolkit with Visual C++: At NCBI, the import_project

script can be used to work on just a few projects and avoid retrieving and building the whole

source tree. For example, to work on the 'corelib' subtree, run:

import_project corelib

The script will create the build tree, copy (or extract from the repository) relevant files, and

create Visual Studio project files and a solution which reference pre-built Toolkit libraries

installed elsewhere.

Cygwin / GCC

To build the project with Cygwin / GCC, just follow the generic UNIX guidelines, noting any

special considerations.

Mac OS X

This section covers the following topics:

! Xcode 3.0, 3.1

" Choosing a Build Scope

" Configuring

" Building

! Xcode 1.0, 2.0

Page 22

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Build the Toolkit

! The Build Results

" Darwin / GCC

" CodeWarrior

Xcode 3.0, 3.1

Starting with Xcode build system version 3.0, the NCBI C++ Toolkit uses a new approach to

configuring and building the toolkit with Mac OS X. The goal is to make the build process

match the build process of Microsoft Visual C++ as closely as possible.

The following topics are discussed in this section:

" Choosing a Build Scope

" Configuring

! Site-specific Build Tree Configuration

! Dynamic Libraries Configuration

! Fine-Tuning Xcode Target Build Settings

! Adding Files to Target

! Specifying a Custom Build Script

" Building

! Building 3rd-Party Libraries (Optional)

! Building from a Command-Line

! The Build Results

Choosing a Build Scope with Xcode 3.0 or Later—The Toolkit is very large and you

may not want to retrieve and build the entire Toolkit if you don’t need to. Therefore, several

mechanisms are provided to enable working with only a portion of the Toolkit.

The first thing you can do is to limit the source code retrieved from the repository:

" using the shell script import_project; or

" using the shell script update_projects.

Next, you can limit what will be built by choosing one of the five standard projects:

.../compilers/xcode30_prj/static/ncbi_cpp.xcodeproj

.../compilers/xcode30_prj/dll/ncbi_cpp_dll.xcodeproj

.../compilers/xcode30_prj/static/ncbi_gui.xcodeproj

.../compilers/xcode30_prj/dll/ncbi_gui_dll.xcodeproj

.../compilers/xcode30_prj/dll/ncbi_gbench_dll.xcodeproj

The first two projects build console applications and required libraries only; the last three

projects build GUI applications:

Note that the project directory, xcode30_prj, may be different for your version of Xcode.

Page 23

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Configuring with Xcode 3.0 or Later—Once you have chosen a build scope, you are ready

to configure.

Each standard project contains a single special target called CONFIGURE. Building

CONFIGURE first builds an application called project tree builder (PTB) and then runs that

application. PTB overwrites the current standard project file with a new project that contains

all the other Xcode build targets. The new build targets are based on UNIX-style makefile

templates (src/.../Makefile.*) and are specified by predefined lists of projects in scripts/

projects/*.lst files.

When CONFIGURE is built, a dialog will pop up stating that the project file has been

overwritten by an external process (the external process is the PTB). Reload the project to

ensure that it is loaded correctly. Then any or all of the other targets can be built.

You may build any of the five standard projects. The projects in the static directory build

libraries and applications using static Toolkit libraries, the other three use dynamic libraries.

To build a specific target, make it an active one and invoke the Build command in the Xcode

workspace. To build all project targets, build the BUILD_ALL target.

Additional configuration files include:

! src/build-system/project_tree_builder.ini

! src/build-system/Makefile.mk.in.xcode

! src/.../Makefile.*.xcode

Modifying project_tree_builder.ini is described below in the section Site-specific Build Tree

Configuration.

Modifying Makefile.mk.in.xcode and Makefile.*.xcode is described below in the section Fine-

Tuning Xcode Target Build Settings.

The following topics discuss additional information about configuring with Xcode:

! Site-specific Build Tree Configuration

! Dynamic Libraries Configuration

! Fine-Tuning Xcode Target Build Settings

! Adding Files to Target

! Specifying a Custom Build Script

Site-Specific Build Tree Configuration: The build tree configuration can be tailored to your

site by modifying the file src/build-system/project_tree_builder.ini (see Table 4). For example,

you may need to change the location of 3rd-party libraries to match your systems. Or you may

need to specify conditions under which a certain project is excluded from the build.

project_tree_builder.ini describes build and source tree configurations; contains information

about the location of 3rd-party libraries and applications; and includes information used to

resolve macro definitions found in the UNIX-style makefile templates.

Toolkit project makefiles can list a set of requirements that must be met in order for the project

to be built. These requirements are specified in the pseudo-macro REQUIRES. For example,

a project can be built only on UNIX, or only in multi-thread mode, or only if a specific external

library is available. Depending on which of the requirements are met, the Toolkit configuration

Page 24

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

tool may exclude some projects in some (or all) build configurations, preprocessor defines,

and/or makefile macros.

Some of the Toolkit projects can be built differently depending on the availability of non-

Toolkit components. For those projects, there is a list of macros - defined in the 'Defines' entry

- that define conditional compilation. Each of these macros also has its own section in

project_tree_builder.ini that links the macro to a specific component. Using the 'Defines' entry

and the associated macro sections, a project can be linked to a list of components. For each

build configuration, project tree builder creates a header file (see 'DefinesPath' entry) and

defines these macros there depending on the availability of the corresponding components.

Many of the requirements define dependencies on 3rd-party packages, such as BerkeleyDB.

For each one of these there is a special section (e.g. [BerkeleyDB]) in

project_tree_builder.ini that describes the path(s) to the include and library directories of the

package, as well as the preprocessor definitions to compile with and the libraries to link against.

The Toolkit configurator checks if the package's directories and libraries do exist, and uses this

information when generating appropriate projects.

There are a few indispensable external components that have analogs in the Toolkit. If external

libraries for these components are not available then the internal analog can be used. The

'LibChoices' entry identifies such pairs, and 'LibChoiceIncludes' provides additional include

paths to the built-in headers.

NOTE: There may be some requirements which are always or never met. These requirements

are listed in the 'ProvidedRequests', 'StandardFeatures', or 'NotProvidedRequests' entries of the

'Configure' section.

Dynamic Libraries Configuration: The Toolkit UNIX-style makefile templates give a choice

of building the library as dynamic or static (or both). However, it is often convenient to

assemble "bigger" dynamic libraries made of the sources of several static libraries.

In the Toolkit, such compound libraries are described using a set of special makefiles in src/

dll subdirectory. Each such file – Makefile.*.dll – contains the following entries:

! DLL – the name of the compound dynamic library;

! HOSTED_LIBS – the names of the static libraries to be assembled into the compound

dynamic library;

! DEPENDENCIES – dependencies on other static or dynamic libraries; and

! CPPFLAGS – additional compiler flags, specific for this dynamic library.

Fine-Tuning Xcode Target Build Settings: While default build settings are defined in the

Makefile.mk.in.xcode file, it is possible to redefine some of them in special tune-up files –

Makefile.<project_name>.{lib|app}.xcode – located in the project source directory. All entries

in the tune-up files are optional.

Section names in the tune-up files can have one or more optional suffixes and can take any of

the following forms:

! SectionName

! SectionName.CompilerVersion

! SectionName.Platform

! SectionName.[static|dll]

Page 25

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

! SectionName.[debug|release]

! SectionName.CompilerVersion.[debug|release]

! SectionName.[static|dll].[debug|release]

! SectionName.[debug|release].ConfigurationName

! SectionName.[static|dll].[debug|release].ConfigurationName

Here, 'static' or 'dll' means the type of runtime libraries that a particular build uses; 'debug' or

'release' means the type of the build configuration; and 'ConfigurationName' means the name

of the build configuration, for example DebugDLL or ReleaseMT.

Settings in sections with more detailed names (ones that appear later on this list) override ones

in sections with less detailed names (ones that appear earlier).

Adding Files to Target: This information should be entered in the 'AddToProject' section.

The section can have the following entries:

! [AddToProject]

! SourceFiles=

! IncludeDirs=

! LIB=

! HeadersInInclude=

! HeadersInSrc=

The 'SourceFiles' entry lists additional (usually OSX specific) source files for the project.

Source file entries should not include file name extensions. The 'IncludeDirs' entry lists

additional include directories, and the 'LIB' entry lists additional libraries for the project.

By default, all header files found in the project's include and source directories are added to

the Xcode target. If that's not exactly what you need though, then the default set of headers to

be added to the target can be altered using the 'HeadersInInclude' and 'HeadersInSrc' entries.

Unlike the 'SourceFiles' entry, file names in these entries should include their extension. Use

an exclamation mark to exclude files that would otherwise be included. Wildcards are allowed.

For example, the following entry

HeadersInInclude = *.h file1.hpp !file2.h

means "add all files with the .h extension, add file1.hpp, and do not add file2.h".

NOTE: A single exclamation mark with no file name means "do not add any header files".

Specifying a Custom Build Script: For a particular target, it is possible to specify a custom

build script which will run in addition to the standard build operation. This could be used, for

example, to copy application resource files once the build is completed. Xcode will

automatically incorporate the custom script into the standard build process.

In the appropriate Makefile.*.xcode customization file, define a section called ‘CustomScript’.

It has one mandatory entry – Script, and three optional ones:

! Input – a list of input files;

! Output – a list of output files; and

! Shell – which shell to use (the default is ‘/bin/sh’).

Page 26

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Building with Xcode 3.0 or Later—Once you have chosen a build scope and have

configured, you are ready to build.

Note: Some projects may require using 3rd-party libraries.

Select the desired project and build it. To build all projects, select the BUILD-ALL project.

Following are some examples of how to build specific projects and some additional topics:

! Building 3rd-Party Libraries (Optional)

! Building from a Command-Line

! The Build Results

Build 3rd-Party Libraries (optional): Some of the NCBI C++ Toolkit projects make use of

the NCBI C Toolkit (not to be confused with the NCBI C++ Toolkit) and/or freely distributed

3rd-party packages (such as BerkeleyDB, LibZ, FLTK, etc.).

At NCBI, these libraries are already installed, and their locations are hard coded in the C++

Toolkit configuration files. If you are outside of NCBI, you may need to build and install these

libraries before building the C++ Toolkit.

If you do not have the external libraries already installed, you can download, build, and install

the NCBI C Toolkit and the freely distributed 3rd-party packages. The source code for the

NCBI C Toolkit and the freely distributed 3rd-party packages can be downloaded from the

NCBI FTP site and built in all available configurations. Refer to the documentation on the

specific packages you wish to install for more information.

Building from a Command-Line with Xcode 3.0 or Later: You may also build from the

command-line. As in the Xcode GUI, you must first build the CONFIGURE target and then

build any or all of the other targets.

For example, to build the ncbi_cpp standard project, go to the appropriate directory and run

xcodebuild:

cd compilers/xcode30_prj/static

xcodebuild -project ncbi_cpp.xcodeproj -target CONFIGURE -configuration ReleaseDLL

Then, to build all targets, run the following command:

xcodebuild -project ncbi_cpp.xcodeproj -target BUILD_ALL -configuration ReleaseDLL

NOTE: building the CONFIGURE target generates targets for all available build

configurations.

The Build Results: Applications and libraries produced by the build will be put, respectively,

into:

! compilers/xcode30_prj/{static|dll}/bin/<ConfigurationName>

! compilers/xcode30_prj/{static|dll}/lib/<ConfigurationName>

Xcode 1.0, 2.0

For versions of Xcode earlier than 3.0 the handmade scripts have to be used.

Page 27

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/project_tree_builder.ini

The following topics are discussed in this section:

! Build the Toolkit

! The Build Results

Build the Toolkit—Open, build and run a project file in compilers/xCode.

This GUI tool generates a new NCBI C++ Toolkit Xcode project. It allows you to:

! Choose which Toolkit libraries and applications to build.

! Automatically download and install all 3rd-party libraries.

! Specify third-party installation directories.

The Build Results—The above process results in the Toolkit applications and libraries being

put into the output directory selected by the user.

Apple Xcode versions 2.0 and above support build configurations. We use the default names

Debug and Release, so the built applications will go to, for example:

! <output_dir>/bin/Debug/Genome Workbench.app, or

! <output_dir>/bin/Release/Genome Workbench.app

Apple Xcode versions before 2.0 do not support build configurations, so the build results will

always go to:

! <output_dir>/bin/Genome Workbench.app

Most libraries are built as Mach-O dynamically linked and shared (.dylib) and go to:

! <output_dir>/lib

Genome Workbench plugins are built as Mach-O bundles (also with .dylib extension) and get

placed inside Genome Workbench application bundle:

! <output_dir>/Genome Workbench.app/Contents/MacOS/plugins

Darwin / GCC

To build the project with Darwin / GCC, just follow the generic UNIX guidelines.

CodeWarrior

For various reasons we have decided to drop support for CodeWarrior. The latest version of

the Toolkit that supported CodeWarrior can be found here.

Page 28

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

1. Environment variables that affect the build process

Name Default Synopsis

CC gcc, cc C compiler

CXX c++, g++, gcc, CC, cxx, cc++ C++ compiler, also being used as a linker

CPP $CC -E C preprocessor

CXXCPP $CXX -E C++ preprocessor

AR ar cru Librarian

STRIP strip To discard symbolic info

CFLAGS -g or/and/nor -O C compiler flags

CXXFLAGS -g or/and/nor -O C++ compiler flags

CPPFLAGS -D_DEBUG or/and/nor-DNDEBUG C/C++ preprocessor flags

LDFLAGS None Linker flags

LIBS None Libraries to link to every executable

CONFIG_SHELL /bin/sh Command interpreter to use in the configuration scripts and makefiles (it must be
compatible with sh)

Page 29

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

2. User-defined localization variables

Name Default Synopsis

THREAD_LIBS -lpthread System thread library

NETWORK_LIBS -lsocket -lnsl System network libraries

MATH_LIBS -lm System math library

KSTAT_LIBS -lkstat System kernel statistics library

RPCSVC_LIBS -lrpcsvc System RPC services library

CRYPT_LIBS -lcrypt[_i] System encrypting library

SYBASE_PATH /netopt/Sybase/clients/current Path to Sybase package (but see note below)

FTDS_PATH /netopt/Sybase/clients-mssql/current Path to FreeTDS package

FASTCGI_PATH $NCBI/fcgi-current Path to the in-house FastCGI client lib

FLTK_PATH $NCBI/fltk Path to the FLTK package

WXWIN_PATH $NCBI/wxwin Path to the wxWindows package

NCBI_C_PATH $NCBI Path to the NCBI C Toolkit

NCBI_SSS_PATH $NCBI/sss/BUILD Path to the NCBI SSS package

NCBI_GEO_PATH $NCBI/geo Path to the NCBI GEO package

SP_PATH $NCBI/SP Path to the SP package

NCBI_PM_PATH $NCBI/pubmed[64] Path to the NCBI PubMed package

ORBACUS_PATH $NCBI/corba/OB-4.0.1 Path to the ORBacus CORBA package

Note: It is also possible to make configure look elsewhere for Sybase by means of --with-sybase-local[=DIR]. If you specify a directory, it will

override SYBASE_PATH; otherwise, the default will change to /export/home/sybase/clients/current, but SYBASE_PATH will still take priority.

Also, the option --with-sybase-new will change the default version of Sybase from 12.0 to 12.5 and adapt to its layout.

It is also possible to override WXWIN_PATH by --with-wxwin=DIR, FLTK_PATH by --> --with-fltk=DIR, and ORBACUS_PATH by --with-

orbacus=DIR.

Page 30

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

3. Derived localization variables for makefiles

Name Value Used to...

THREAD_LIBS $THREAD_LIBS Link with system thread lib.

NETWORK_LIBS $NETWORK_LIBS Link with system network libs.

MATH_LIBS $MATH_LIBS Link with system math lib.

KSTAT_LIBS $KSTAT_LIBS Link with system kernel stat lib.

RPCSVC_LIBS $RPCSVC_LIBS Link with system RPC lib.

CRYPT_LIBS $CRYPT_LIBS Link with system encrypting lib.

SYBASE_INCLUDE -I$SYBASE_PATH/include #include Sybase headers

SYBASE_LIBS -L$SYBASE_PATH/lib[64] -lblk[_r][64] -lct[_r][64] -lcs[_r][64] -ltcl[_r]
[64] -lcomn[_r][64] -lintl[_r][64]

Link with Sybase libs.

SYBASE_DLLS -ltli[_r][64] Sybase DLL-only libs

SYBASE_DBLIBS -L$SYBASE_PATH/lib[64] -lsybdb[64] Link with Sybase DB Lib API.

FTDS_INCLUDE -I$FTDS_PATH/include #include FreeTDS headers

FTDS_LIBS -L$FTDS_PATH/lib -lsybdb -ltds Link with the FreeTDS API.

FASTCGI_INCLUDE -I$FASTCGI_PATH/include[64] #include Fast-CGI headers

FASTCGI_LIBS -L$FASTCGI_PATH/lib[64] -lfcgi or -L$FASTCGI_PATH/altlib[64] -lfcgi Link with FastCGI lib.

FLTK_INCLUDE -I$FLTK_PATH/include #include FLTK headers

FLTK_LIBS -L$FLTK_PATH/[GCC-]{Release|Debug}[MT][64]/lib -lfltk ... -lXext -
lX11 ... or -L$FLTK_PATH/lib

Link with FLTK libs.

WXWIN_INCLUDE -I$WXWIN_PATH/include #include wxWindows headers

WXWIN_LIBS -L$WXWIN_PATH/[GCC-]{Release|Debug}/lib -lwx_gtk[d] -lgtk -lgdk -
lgmodule -lglib or -L$WXWIN_PATH/lib

Link with wxWindows libs.

NCBI_C_INCLUDE -I$NCBI_C_PATH/include[64] #include NCBI C Toolkit headers

NCBI_C_LIBPATH -L$NCBI_C_PATH/lib[64] or -L$NCBI_C_PATH/altlib[64] Path to NCBI C Toolkit libs.

NCBI_C_ncbi -lncbi NCBI C Toolkit CoreLib

NCBI_SSS_INCLUDE -I$NCBI_SSS_PATH/include #include NCBI SSS headers

NCBI_SSS_LIBPATH -L$NCBI_SSS_PATH/lib/....{Release|Debug}[GNU][64][mt] Link with NCBI SSS libs.

NCBI_GEO_INCLUDE -I$NCBI_GEO_PATH/include #include NCBI GEO headers

NCBI_GEO_LIBPATH -L$NCBI_GEO_PATH/lib/.... ...[GCC-|KCC-|ICC-]{Release|Debug}[64] Link with NCBI GEO libs.

SP_INCLUDE -I$SP_PATH/include #include SP headers

SP_LIBS -L$SP_PATH/{Release|Debug}[MT][64] -lsp Link with the SP lib.

NCBI_PM_PATH $NCBI_PM_PATH Path to the PubMed package.

ORBACUS_INCLUDE -I$ORBACUS_PATH/include -I$ORBACUS_PATH/{Release|Debug}[MT]
[64]/inc

#include ORBacus CORBA headers

ORBACUS_LIBPATH -L$ORBACUS_PATH/{Release|Debug}[MT][64]/lib Link with ORBacus CORBA libs.

Page 31

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

4. Project Tree Builder INI file (Local Site)

Section Key Comments

[Configure] ThirdPartyBasePath,
ThirdParty_*
ThirdPartyAppsBasePath
ThirdParty_C_ncbi

Location of 3rd party libraries and applications

ProvidedRequests
StandardFeatures

List of requirements from UNIX makefiles that are always met

NotProvidedRequests List of requirements from UNIX makefiles that are never met. Projects with
that require any one of these, will be excluded

DefinesPath Path to .h file that will contain HAVE_XXXX definitions. The path is
relative from the project tree root.

Defines List of HAVE_XXXX preprocessor definitions.

Macros List of optional macros. Definition of any such macro depends upon
availability of Components

LibChoices List of pairs <libID>/<Component>. If the third-party library <Component>
is present, then this library will be used instead of the internal library
<libID>.

ThirdPartyLibsBinPathSuffix Part of the naming convention for third-party DLLs installation makefile.

ThirdPartyLibsBinSubDir Part of the third-party DLLs installation target location.

ThirdPartyLibsToInstall List of components, which DLLs will be automatically installed in the binary
build directory.

[ProjectTree] MetaData Makefile.mk.in - in this file the project tree builder will be looking for the
UNIX project tree macro definitions.

include include "include" branch of project tree

src src "src" branch

dll Subdirectory with DLL Makefiles

compilers compilers "compilers" branch

projects scripts/projects "projects" branch

[msvc*] Configurations List of buid configurations that use static runtime libraries

List of build configurations that use dynamic runtime libraries

msvc_prj Sub-branch of compilers branch for MSVC projects

MakefilesExt Extension of MSVC-specific makefiles

Projects "build" sub-branch

MetaMakefile Master .msvc makefile - Makefile.mk.in.msvc

[LibChoicesIncludes] CMPRS_INCLUDE et al. Definition for the include directories for LibChoices.

[Defines] Contains definition of macros from UNIX makefiles that cannot be resolved
otherwise

[HAVE_XXXX] Component List of the components to check. An empty list means that the component
is always available. A non-empty list means that the component(s) must be
checked on presentation during configure.

[Debug],[DebugDLL],etc... debug TRUE means that the debug configuration will be created.

runtimeLibraryOption C++ Runtime library to use.

[NCBI_C_LIBS],
[FLTK_LIBS_GL]

Component List of libraries to use.

Page 32

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Section Key Comments

[<LIBRARY>] INCLUDE Include path to the library headers.

DEFINES Preprocessor definition for library usage.

LIBPATH Path to library.

LIB Library files.

CONFS List of supported configurations.

[DefaultLibs] INCLUDE Default libraries will be added to each project. This section is to negotiate
the differences in the default libraries on the UNIX and Win32 platforms.
Same as for [<LIBRARY>].

LIBPATH Same as for [<LIBRARY>].

LIB Same as for [<LIBRARY>].

[Datatool] datatool ID of the datatool project. Some projects (with ASN or DTD sources) depend
on the datatool.

Location.App Location of datatool executable for APP projects.

Location.Lib Location of datatool executable for LIB projects.

CommandLine Partial command line for datatool.

Page 33

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Working with Makefiles

[5]

Overview

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

Building executables and libraries for a large, integrated set of software tools such as the C++

Toolkit, and doing so consistently on different platforms and architectures, is a daunting task.

Therefore, the Toolkit developers have expended considerable effort to design a build system

based upon the make utility as controlled by makefiles. Although it is, of course, possible to write

one's own Toolkit makefile from scratch, it is seldom desirable. To take advantage of the

experience, wisdom, and alchemy invested in Toolkit and to help avoid often inscrutable

compilation issues:

We strongly advise users to work with the Toolkit's make system.

With minimal manual editing (and after invoking the configure script in your build tree), the build

system adapts to your environment, compiler options, defines all relevant makefile macros and

targets, allows for recursive builds of the entire Toolkit and targeted builds of single modules,

and handles many other details that can confound manual builds.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! Major Makefiles

! Makefile Hierarchy

! Meta-Makefiles

" Makefile.in Meta Files

" Expendable Projects

! Project Makefiles

" List of Optional Packages, Features, and Projects

! Standard Build Targets

" Meta-Makefile Targets

" Makefile Targets

! Makefile Macros and Makefile.mk

! Example Makefiles

Major Makefiles

Before describing the make system in detail, we list the major types of makefiles used by the

Toolkit:

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! meta-makefiles. These files exist for each project and tie the project together in the

Toolkit hierarchy; defining those applications and libraries as a project is necessary

for (possibly recursively) building.

Generic makefile Templates (Makefile*.in). The configure script processes these files from

the src hierarchy to substitute for the special tags "@some_name@" and make other

specializations required for a given project. Note that meta-makefiles are typically derived

from such templates.

! Customized makefiles. (Makefile.*.[lib|app]) For each library or application, this file

gives specific targets, compiler flags, and other project-specific build instructions.

These files appear in the src hierarchy.

! Configured makefiles. (Makefile) A makefile generated by configure for each project

and sub-project and placed in the appropriate location in the build tree ready for use

will be called a “configured makefile”. Note that meta-makefiles in the build tree may

be considered “configured”.

Makefile Hierarchy

All Toolkit makefiles reside in either the src directory as templates or customized files, or in

the appropriate configured form in each of your <builddir> hierarchies as illustrated in Figure

1

Most of the files listed in Figure 1 are templates from the src directory, with each corresponding

configured makefile at the top of the build tree. Of these, <builddir>/Makefile can be

considered the master makefile in that it can recursively build the entire Toolkit. The role of

each top-level makefile template is summarized as follows:

! Makefile.in - makefile to perform a recursive build in all project subdirectories.

! Makefile.meta.in - included by all makefiles that provide both local and recursive

builds.

! Makefile.mk.in - included by all makefiles; sets a lot of configuration variables.

! Makefile.lib.in - included by all makefiles that perform a "standard" library build, when

building only static libraries.

! Makefile.dll.in - included by all makefiles that perform a "standard" library build, when

building only shared libraries.

! Makefile.both.in - included by all makefiles that perform a "standard" library build,

when building both static and shared libraries.

! Makefile.lib.tmpl.in - serves as a template for the project customized makefiles

(Makefile.*.lib[.in]) that perform a "standard" library build.

! Makefile.app.in - included by all makefiles that perform a "standard" application build.

! Makefile.app.tmpl.in - serves as a template for the project customized makefiles

(Makefile.*.app[.in]) that perform a "standard" application build.

! Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building object

files; included by most other makefiles.

The project-specific portion of the makefile hierarchy is represented in the figure by the meta-

makefile template c++/src/myProj/Makefile.in, the customized makefilec++/src/myProj/

Makefile.myProj.[app|lib] (not shown), and the configured makefilec++/myBuild/build/

myProj/Makefile. In fact, every project and sub-project in the Toolkit has analogous files

specialized to its project; in most circumstances, every new or user project should emulate this

file structure to be compatible with the make system.

Page 2

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Meta-Makefiles

A typical meta-makefile template (e.g. Makefile.in in your foo/c++/src/bar_proj/ dir) looks

like this:

Supply Makefile.bar_u1, Makefile.bar_u2 ...

USR_PROJ = bar_u1 bar_u2 ...

Supply Makefile.bar_l1.lib, Makefile.bar_l2.lib ...

LIB_PROJ = bar_l1 bar_l2 ...

Supply Makefile.bar_a1.app, Makefile.bar_a2.app ...

APP_PROJ = bar_a1 bar_a2 ...

Subprojects

SUB_PROJ = app sub_proj1 sub_proj2

srcdir = @srcdir@

include @builddir@/Makefile.meta

This template separately specifies instructions for user, library and application projects, along

with a set of three sub-projects that can be made. The mandatory final two lines "srcdir =

@srcdir@; include @builddir@/Makefile.meta" define the standard build targets.

Makefile.in Meta Files

The Makefile.in meta-make file in the project's source directory defines a kind of road map

that will be used by the configure script to generate a makefile (Makefile) in the corresponding

directory of the build tree. Makefile.in does not participate in the actual execution of make,

but rather, defines what will happen at that time by directing the configure script in the creation

of the Makefile that will be executed (see also the description of standard build targets below).

The meta-makefile myProj/Makefile.in should define at least one of the following macros:

! USR_PROJ (optional) - a list of names for user-defined makefiles. This macro is

provided for the usage of ordinary stand-alone makefiles which do not utilize the make

commands contained in additional makefiles in the top-level build directory. Each p_i

listed in USR_PROJ = p_1 ... p_N must have a corresponding Makefile.p_i in the

project's source directory. When make is executed, the make directives contained in

these files will be executed directly to build the targets as specified.

! LIB_PROJ (optional) - a list of names for library makefiles. For each library l_i listed

in LIB_PROJ = l_1 ... l_N, you must have created a corresponding project makefile

named Makefile.l_i.lib in the project's source directory. When make is executed, these

library project makefiles will be used along with Makefile.lib and Makefile.lib.tmpl

(located in the top-level of the build tree) to build the specified libraries.

! ASN_PROJ (optional) is like LIB_PROJ, with one additional feature: Any projects

listed there will be interpreted as the names of ASN.1 module specifications to be

processed by datatool.

Page 3

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! APP_PROJ (optional) - a list of names for application makefiles. Similarly, each

application (p1, p2, ..., pN) listed under APP_PROJ must have a corresponding project

makefile named Makefile.p*.app in the project's source directory. When make is

executed, these application project makefiles will be used along with Makefile.app and

Makefile.app.tmpl to build the specified executables.

! SUB_PROJ (optional) - a list of names for subproject directories (used on recursive

makes). The SUB_PROJ macro is used to recursively define make targets; items listed

here define the subdirectories rooted in the project's source directory where make

should also be executed.

Some additional meta-makefile macros (listed in Table 1) exist to specify various directory

paths that make needs to know. The "@"-delimited tokens are substituted during configuration

based on your environment and any command-line options passed to configure.

Expendable Projects

By default, failure of any project will cause make to exit immediately. Although this behavior

can save a lot of time, it is not always desirable. One way to avoid it is to run make -k rather

than make, but then major problems affecting a large portion of the build will still waste a lot

of time.

Consequently, the toolkit's build system supports an alternative approach: meta-makefiles can

define expendable projects which should be built if possible but are allowed to fail without

interrupting the build. The way to do this is to list such projects in EXPENDABLE_*_PROJ

rather than *_PROJ.

Project Makefiles

When beginning a new project, the new_project shell script will generate an initial

makefileMakefile.<project_name>_app that you can modify as needed. In addition, a working

sample application can also be checked out to experiment with or as an alternate template.

The import_project script is useful for working on existing Toolkit projects without needing

to build the whole Toolkit. In this case things are particularly straightforward as the project

will be retrieved complete with its makefile already configured as Makefile.<project_name>_

[app|lib]. (Note that there is an underscore in the name, not a period as in the similarly-named

customizable makefile from which the configured file is derived.)

If you are working outside of the source tree: In this scenario you are only linking to the

Toolkit libraries and will not need to run the configure script, so a Makefile.in template meta-

makefile is not required. Some of the typical edits required for the customized makefile are

shown in the section on working in a separate directory.

If you are working within the source tree or subtree: Project subdirectories that do not

contain any *.in files are ignored by the configure script. Therefore, you will now also need to

create a meta-makefile for the newly created project before configuring your build directory

to include the new project.

Several examples are detailed on the "Starting New Projects" section.

List of optional packages, features and projects

Table 2 displays the keywords you can list in REQUIRES in a customized application or library

makefile, along with the corresponding configure options:

Page 4

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Standard Build Targets

The following topics are discussed in this section:

! Meta-Makefile Targets

! Makefile Targets

Meta-Makefile Targets

The mandatory lines from the meta-makefile example above,

srcdir = @srcdir@

include @builddir@/Makefile.meta

provide the build rules for the following standard meta-makefile targets:

! all:

" run "make -f {Makefile.*} all" for the makefiles with the suffixes listed in

macro USR_PROJ:

make -f Makefile.bar_u1 all make -f Makefile.bar_u2 all

" build libraries using attributes defined in the customized

makefilesMakefile.*.lib with the suffixes listed in macro LIB_PROJ

" build application(s) using attributes defined in the customized

makefilesMakefile.*.app with the suffixes listed in macro APP_PROJ

! all_r -- first make target all, then run "make all_r" in all subdirectories enlisted in $

(SUB_PROJ):

cd bar_test && make -f Makefile all_r cd bar_sub_proj1 && make -f Makefile

all_r

! clean, clean_r -- run just the same makefiles but with targets clean and clean_r (rather

than all and all_r), respectively

! purge, purge_r --with targets purge and purge_r, respectively

Makefile Targets

The standard build targets for Toolkit makefiles are all, clean and purge. Recall that recursive

versions of these targets exist for meta-makefiles.

! all -- compile the object modules specified in the "$(OBJ)" macro, and use them to

build the library "$(LIB)" or the application "$(APP)"; then copy the resultant [lib|app]

to the [libdir|bindir] directory, respectively

! clean -- remove all object modules and libs/apps that have been built by all

! purge -- do clean, and then remove the copy of the [libs|apps] from the [libdir|bindir]

directory.

The customized makefiles do not distinguish between recursive (all_r, clean_r, purge_r) and

non-recursive (all, clean, purge) targets -- because the recursion and multiple build is entirely

up to the meta-makefiles.

Makefile Macros and Makefile.mk

There is a wide assortment of configured tools, flags, third party packages and paths (see

above). They can be specified for the whole build tree with the appropriate entry in

Page 5

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Makefile.mk, which is silently included at the very beginning of the customized makefiles used

to build libraries and applications.

Many makefile macros are supplied with defaults ORIG_* in Makefile.mk. See the list of

ORIG_* macros, and all others currently defined, in the Makefile.mk.in template for details.

One should not override these defaults in normal use, but add your own flags to them as needed

in the corresponding working macro; e.g., set CXX = $(ORIG_CXX) -DFOO_BAR.

Makefile.mk defines the following makefile macros obtained during the configuration process

for flags (see Table 3), system and third-party packages (see Table 4) and development tools

(see Table 5).

(*) The values of user-specified environment variables $FAST_CFLAGS,

$FAST_CXXFLAGS will substitute the regular optimization flag -O (or -O2, etc.). For

example, if in the environment: $FAST_CXXFLAGS=-fast -speedy and $CXXFLAGS=-warn

-O3 -std, then in makefile: $(FAST_CXXFLAGS)=-warn -fast -speedy -std.

Example Makefiles

Below are links to examples of typical makefiles, complete with descriptions of their content.

! Inside the Tree

" An example meta-makefile and its associated project makefiles

" Library project makefile: Makefile.myProj.lib

" Application project makefile: Makefile.myProj.app

" Custom project makefile: Makefile.myProj

! New Projects and Outside the Tree

" Use Shell Scripts to Create Makefiles

" Customized makefile to build a library

" Customized makefile to build an application

" User-defined makefile to build... whatever

Page 6

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in#L86http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/build-system/Makefile.mk.in

Figure 1. Makefile hierarchy.

Page 7

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 1. Path Specification Makefile Macros

Macro Source Synopsis

top_srcdir @top_srcdir@ Path to the whole NCBI C++ package

srcdir @srcdir@ Directory in the source tree that corresponds to the directory (./) in the build tree where the build is currently going
on

includedir @includedir@ Top include directory in the source tree

build_root @build_root@ Path to the whole build tree

builddir @builddir@ Top build directory inside the build tree

incdir @incdir@ Top include directory inside the build tree

libdir @libdir@ Libraries built inside the build tree

bindir @bindir@ Executables built inside the build tree

status_dir @status_dir@ Configuration status files

Page 8

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 2. Optional Packages, Features, and Projects

Keyword Optional... Configure option(s)

...package

Sybase Sybase libraries --without-sybase, --with-sybase-local(=DIR), --with-sybase-new

FreeTDS FreeTDS libraries --without-ftds, --with-ftds=DIR

Fast-CGI Fast-CGI library --without-fastcgi

FLTK the Fast Light ToolKit --without-fltk, --with-fltk=DIR

wxWindows wxWindows --without-wxwin, --with-wxwin=DIR

C-Toolkit NCBI C Toolkit --without-ncbi-c

SSSDB NCBI SSS DB library --without-sssdb, --without-sss

SSSUTILS NCBI SSS UTILS library --without-sssutils, --without-sss

GEO NCBI GEO libraries --without-geo

SP SP libraries --without-sp

PubMed NCBI PubMed libraries --without-pubmed

ORBacus ORBacus CORBA --without-orbacus, --with-orbacus=DIR

...feature

MT multithreading is available --with-mt

...project(s)

serial ASN.1/XML serialization library and datatool --without-serial

ctools projects based on the NCBI C toolkit --without-ctools

gui projects that use the wxWindows GUI package --without-gui

objects libraries to serialize ASN.1/XML objects --with-objects

app standalone applications like ID1_FETCH --with-app

internal all internal projects --with-internal

local_lbsm IPC with locally running LBSMD --without-local-lbsm

Page 9

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 3. Flags

Macro Source Synopsis

CFLAGS $CFLAGS C compiler flags

FAST_CFLAGS $FAST_CFLAGS (*) C compiler flags to generate faster code

CXXFLAGS $CXXFLAGS C++ compiler flags

FAST_CXXFLAGS $FAST_CXXFLAGS (*) C++ compiler flags to generate faster code

CPPFLAGS $CPPFLAGS C/C++ preprocessor flags

DEPFLAGS $DEPFLAGS Flags for file dependency lists

LDFLAGS $LDFLAGS Linker flags

LIB_OR_DLL @LIB_OR_DLL@ Specify whether to build a library as static or dynamic

STATIC @STATIC@ Library suffix to force static linkage (see example)

Page 10

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 4. System and third-party packages

Macro Source Synopsis

LIBS $LIBS Default libraries to link with

PRE_LIBS $PRE_LIBS ??? Default libraries to link with first

THREAD_LIBS $THREAD_LIBS Thread library (system)

NETWORK_LIBS $NETWORK_LIBS Network library (system)

MATH_LIBS $MATH_LIBS Math library (system)

KSTAT_LIBS $KSTAT_LIBS KSTAT library (system)

RPCSVC_LIBS $RPCSVC_LIBS RPCSVC library (system)

SYBASE_INCLUDE $SYBASE_INCLUDE SYBASE headers

SYBASE_LIBS $SYBASE_LIBS SYBASE libraries

FASTCGI_INCLUDE $FASTCGI_INCLUDE Fast-CGI headers

FASTCGI_LIBS $FASTCGI_LIBS Fast-CGI libraries

NCBI_C_INCLUDE $NCBI_C_INCLUDE NCBI C toolkit headers

NCBI_C_LIBPATH $NCBI_C_LIBPATH Path to the NCBI C Toolkit libraries

NCBI_C_ncbi $NCBI_C_ncbi NCBI C CoreLib

NCBI_SSS_INCLUDE $NCBI_SSS_INCLUDE NCBI SSS headers

NCBI_SSS_LIBPATH $NCBI_SSS_LIBPATH Path to NCBI SSS libraries

NCBI_PM_PATH $NCBI_PM_PATH Path to the PubMed package

ORBACUS_LIBPATH $ORBACUS_LIBPATH Path to the ORBacus CORBA libraries

ORBACUS_INCLUDE $ORBACUS_LIBPATH Path to the ORBacus CORBA headers

Page 11

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 5. Compiler, Linker, and other development Tools

Macro Source Synopsis

CC $CC C compiler

CXX $CXX C++ compiler

LINK $CXX Linker (C++-aware)

CPP $CPP C preprocessor

CXXCPP $CXXCPP C++ preprocessor

AR $AR Library archiver

STRIP $STRIP Tool to strip symbolic info from binaries

RM rm -f Remove file(s)

RMDIR rm -rf Remove file(s) and directory(ies) recursively

COPY cp -p Copy file (preserving the modification time)

CC_FILTER @CC_FILTER@ Filters for the C compiler

CXX_FILTER @CXX_FILTER@ Filters for the C++ compiler

CHECK_ARG @CHECK_ARG@

LN_S @LN_S@ Make a symbolic link if possible; otherwise, hard-link or copy

BINCOPY @BINCOPY@ Copy a library or an executable -- but only if it was changed

Page 12

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Project Creation and Management

[6]

Overview

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

This chapter discusses the setup procedures for starting a new project such as the location of make

files, header files, source files, etc. It also discusses the SVN tree structure and how to use SVN

for tracking your code changes, and how to manage the development environment.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! Starting New Projects

" New Projects: Location and File Structure

new_project: Starting a New Project outside the C++ Toolkit Tree

Creating a New Project Inside the C++ Toolkit Tree

" Projects and the Toolkit's SVN Tree Structure

" Creating source and include SVN dirs for a new C++ project

" Starting New Modules

" Meta-makefiles (to provide multiple and/or recursive builds)

" Project makefiles

Example 1: Customized makefile to build a library

Example 2: Customized makefile to build an application

Example 3: User-defined makefile to build... whatever

" New Project (lib, application) Development Aids

scripts/import_project <SVN_tree_path> [builddir]

scripts/new_project <name> <type> [builddir]

" An example of the NCBI C++ makefile hierarchy ("corelib/")

! Managing the Work Environment

" Obtaining the Very Latest Builds

" Working in a separate directory

Setting up Directory Location

The Project's Makefile

Testing your setup

" Working Independently In a C++ Subtree

" Working within the C++ source tree

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Checkout the source tree and configure a build directory

! The project's directories and makefiles

! Makefile.in meta files

! An example meta-makefile and its associated project makefiles

! Executing make

! Custom project makefile: Makefile.myProj

! Library project makefile: Makefile.myProj.lib

! Application project makefile: Makefile.myProj.app

! Definition and running tests

! The configure scripts

" Working with the serializable object classes

! Serializable Objects

! Locating and browsing serializable objects in the C++ Toolkit

! Base classes and user classes

! Adding methods to the user classes

Checking out source code, configuring the working

environment, building the libraries.

Adding methods

Starting New Projects

The following assumes that you have all of the necessary Toolkit components. If you need to

obtain part or the Toolkit's entire source tree, consult the FTP instructions or SVN checkout

procedures. Please visit the Getting Started page for a broad overview of the NCBI C++ Toolkit

and its use.

The following topics are discussed in this section:

New Projects: Location and File Structure

" new_project: Starting a New Project outside the C++ Toolkit Tree

" Creating a New Project Inside the C++ Toolkit Tree

Projects and the Toolkit's SVN Tree Structure

Creating source and include SVN dirs for a new C++ project

Starting New Modules

Meta-makefiles (to provide multiple and/or recursive builds)

Project makefiles

New Project (lib, application) Development Aids

An example of the NCBI C++ makefile hierarchy ("corelib/")

New Projects: Location and File Structure

Before creating the new project, you must decide if you need to work within a C++ source tree

(or subtree) or merely need to link with the Toolkit libraries and work in a separate directory.

The later case is simpler and allows you to work independently in a private directory, but it is

Page 2

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

not an option if the Toolkit source, headers, or makefiles are to be directly used or altered

during the new project's development.

! Work in the Full Toolkit Source Tree

! Work in a Toolkit Subtree

! Work in a Separate Directory

Regardless of where you build your new project, it must adopt and maintain a particular

structure. Specifically, each project's source tree relative to $NCBI/c++ should contain:

! include/*.hpp -- project's public headers

! src/*.{cpp, hpp} -- project's source files and private headers

! src/Makefile.in -- a meta-makefile template to specify which local projects (described

in Makefile.*.in) and sub-projects (located in the project subdirectories) must be built

! src/Makefile.<project_name>.{lib, app}[.in] -- one or more customized makefiles to

build a library or an application

! src/Makefile.*[.in] -- "free style" makefiles (if any)

! sub-project directories (if any)

The following topics are discussed in this section:

! new_project: Starting a New Project outside the C++ Toolkit Tree

! Creating a New Project Inside the C++ Toolkit Tree

new_project: Starting a New Project outside the C++ Toolkit Tree—Script usage:

new_project <name> <type>[/<subtype>] [builddir]

This script will create a startup makefile for a new, from-the-scratch project called "name"

which uses the NCBI C++ Toolkit (and possibly the C Toolkit as well). For new libraries,

replace <type> with lib, and for new applications replace <type> with app.

Sample code will be included in the project directory for new applications. Different samples

are available for type=app[/basic] (a command-line argument demo application based on the

corelib library), type=app/cgi (for a CGI or Fast-CGI application), type=app/objmgr (for an

application using the Object Manager), type=app/objects (for an application using ASN.1

objects), and many others.

You will need to slightly edit the resultant makefile to:

! specify the name of your library (or application)

! specify the list of source files going to it

! modify some preprocessor, compiler, etc. flags, if needed

! modify the set of additional libraries to link to it (if it's an application), if needed

For example:

new_project foo app/basic

creates a model makefile Makefile.foo_app to build an application using tools and flags hard-

coded in $NCBI/c++/Debug/build/Makefile.mk, and headers from $NCBI/c++/include/. The

file /tmp/foo/foo.cpp is also created; you can either replace this with your own foo.cpp or

modify its sample code as required.

Page 3

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src

Now, after specifying the application name, list of source files, etc., you can just go to the

created working directory foo/ and build your application using:

make -f Makefile.foo_app

You can easily change the active version of NCBI C++ Toolkit by manually setting variable

$(builddir) in the file Makefile.foo_app to the desired Toolkit path, e.g., builddir = $(NCBI)/

c++/GCC-Release/build

Creating a New Project Inside the C++ Toolkit Tree—To create your new project (e.g.,

"bar_proj") directories in the NCBI C++ Toolkit source tree (assuming that the entire NCBI C

++ Toolkit has been checked out to directory foo/c++/):

cd foo/c++/include && mkdir bar_proj && svn add bar_proj

cd foo/c++/src && mkdir bar_proj && svn add bar_proj

From there, you can now add and edit your project C++ files.

NOTE: remember to add this new project directory to the $(SUB_PROJ) list of the upper level

meta-makefile configurable template (e.g., for this particular case, to foo/c++/src/Makefile.in).

Projects and the Toolkit's SVN Tree Structure

(For the overall NCBI C++ SVN tree structure see SVN details.)

Even if you work outside of the C++ tree, it is necessary to understand how the Toolkit uses

makefiles, meta-makefiles, and makefile templates, and the SVN tree structure.

The standard SVN location for NCBI C++/STL projects is $SVNROOT/internal/c++/. Public

header files (*.hpp, *.inl) of all projects are located below the $SVNROOT/internal/c++/

include/ directory. $SVNROOT/internal/c++/src/ directory has just the same hierarchy of

subdirectories as .../include/, and its very top level contains:

! Templates of generic makefiles (Makefile.*.in):

" Makefile.in -- makefile to perform a recursive build in all project

subdirectories

" Makefile.meta.in -- included by all makefiles that provide both local and

recursive builds

" Makefile.lib.in -- included by all makefiles that perform a "standard" library

build, when building only static libraries.

" Makefile.dll.in -- included by all makefiles that perform a "standard" library

build, when building only shared libraries.

" Makefile.both.in -- included by all makefiles that perform a "standard" library

build, when building both static and shared libraries.

" Makefile.lib.tmpl.in -- serves as a template for the project customized

makefiles (Makefile.*.lib[.in]) that perform a "standard" library build

" Makefile.app.in -- included by all makefiles that perform a "standard"

application build

" Makefile.lib.tmpl.in -- serves as a template for the project customized

makefiles (Makefile.*.app[.in]) that perform a "standard" application build

Page 4

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Makefile.rules.in, Makefile.rules_with_autodep.in -- instructions for building

object files; included by most other makefiles

! Makefile.mk.in -- included by all makefiles; sets a lot of configuration

variables

" The contents of each project are detailed above. If your project is to become part of

the Toolkit tree, you need to ensure that all makefiles and Makefile*.in templates are

available so the master makefiles can properly configure and build it (see "Meta-

Makefiles" and "Project Makefiles" below). You will also need to prepare SVN

directories to hold the new source and header files.

Creating source and include SVN dirs for a new C++ project

To create your new project (e.g., "bar_proj") directories in the NCBI C++ SVN tree to directory

foo/c++/):

cd foo/c++/include && mkdir bar_proj && SVN add -m "Project Bar" bar_proj

cd foo/c++/src && mkdir bar_proj && SVN add -m "Project Bar" bar_proj

Now you can add and edit your project C++ files in there.

NOTE: remember to add this new project directory to the $(SUB_PROJ) list of the upper level

meta-makefile configurable template (e.g., for this particular case, to foo/c++/src/Makefile.in).

Starting New Modules

Projects in the NCBI C++ Toolkit consist of “modules”, which are most often a pair of source

(*.cpp) and header (*.hpp) files. To help create new modules, template source and header files

may be used, or you may modify the sample code generated by the script new_project. The

template source and header files are .../doc/public/framewrk.cpp and .../doc/public/

framewrk.hpp. The template files contain a standard startup framework so that you can just

cut-and-paste them to start a new module (just don't forget to replace the "framewrk" stubs by

your new module name).

" Header file (*.hpp) -- API for the external users. Ideally, this file contains only (well-

commented) declarations and inline function implementations for the public interface.

No less, and no more.

" Source file (*.cpp) -- Definitions of non-inline functions and internally used things

that should not be included by other modules.

On occasion, a second private header file is required for good encapsulation. Such second

headers should be placed in the same directory as the module source file.

Each and every source file must include the NCBI disclaimer and (preferably) Subversion

keywords (e.g. Id). Then, the header file must be protected from double-inclusion, and it

must define any inlined functions.

Meta-makefiles (to provide multiple and/or recursive builds)

All projects from the NCBI C++ hierarchy are tied together by a set of meta-makefiles which

are present in all project source directories and provide a uniform and easy way to perform

both local and recursive builds. See more detail on the Working with Makefiles page. A typical

meta-makefile template (e.g. Makefile.in in your foo/c++/src/bar_proj/ dir) looks like that:

Page 5

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Makefile.bar_u1, Makefile.bar_u2 ...

USR_PROJ = bar_u1 bar_u2 ...

Makefile.bar_l1.lib, Makefile.bar_l2.lib ...

LIB_PROJ = bar_l1 bar_l2 ...

Makefile.bar_a1.app, Makefile.bar_a2.app ...

APP_PROJ = bar_a1 bar_l2 ...

SUB_PROJ = app sub_proj1 sub_proj2

srcdir = @srcdir@

include @builddir@/Makefile.meta

This template separately specifies instructions for user, library and application projects, along

with a set of three sub-projects that can be made. The mandatory final two lines "srcdir =

@srcdir@ ; include @builddir@/Makefile.meta" define the standard build targets.

Project makefiles

Just like the configurable template Makefile.meta.in is used to ease and standardize the writing

of meta-makefiles, so there are templates to help in the creation of "regular" project makefiles

to build a library or an application. These auxiliary template makefiles are described on the

"Working with Makefiles" page and listed above. The configure'd versions of these templates

get put at the very top of a build tree.

In addition to the meta-makefile that must be defined for each project, a customized

makefileMakefile.<project_name>.[app|lib] must also be provided. The following three

sections give examples of customized makefiles for a library and an application, along with a

case where a user-defined makefile is required.

You have great latitude in specifying optional packages, features and projects in makefiles.

The macro REQUIRES in the examples is one way to allows you access them. See the

"Working with Makefiles" page for a complete list; the configuration page gives the

corresponding configure options.

The following examples are discussed in this section:

! Example 1: Customized makefile to build a library

! Example 2: Customized makefile to build an application

! Example 3: User-defined makefile to build... whatever

Example 1: Customized makefile to build a library— Here is an example of a

customized makefile to build library libxmylib.a from two source files xmy_src1.cpp and

xmy_src2.c, and one pre-compiled object file some_obj1.o. To make the example even more

realistic, we assume that the said source files include headers from the NCBI C Toolkit.

LIB = xmylib

Page 6

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

SRC = xmy_src1 xmy_src2

OBJ = some_obj1

REQUIRES = xrequirement

CFLAGS = $(ORIG_CFLAGS) -abc -DFOOBAR_NOT_CPLUSPLUS

CXXFLAGS = $(FAST_CXXFLAGS) -xyz

cppFLAGS = $(ORIG_cppFLAGS) -UFOO -DP1_PROJECT -I$(NCBI_C_INCLUDE)

! Skip building this library if xrequirement (an optional package or project) is disabled

or unavailable

! Compile xmy_src1.cpp using the C++ compiler $(CXX) with the flags $

(FAST_CXXFLAGS) -xyz $(cppFLAGS), which are the C++ flags for faster code,

some additional flags specified by the user, and original preprocessor flags

! Compile xmy_src2.c using the C compiler $(CC) with the flags $(CFLAGS) -abc -

DFOOBAR_NOT_CPLUSPLUS $(cppFLAGS), which are the original C flags, some

additional flags specified by the user, and original preprocessor flags

! Using $(AR) and $(RANLIB) [$(LINK_DLL) if building a shared library], compose

the library libxmylib.a [libxmylib.so] from the resultant object files, plus the pre-

compiled object file some_obj1.o.

! Copy libxmylib.* to the top-level lib/ directory of the build tree (for the later use by

other projects)

This customized makefile should be referred to as xmylib in the LIB_PROJ macro of the

relevant meta-makefile. As usual, Makefile.mk will be implicitly included.

This customized makefile can be used to build both static and dynamic (DLL) versions of the

library. To encourage its build as a DLL on the capable platforms, you can explicitly specify:

LIB_OR_DLL = dll

or

LIB_OR_DLL = both

Conversely, if you want the library be always built as static, specify:

LIB_OR_DLL = lib

Example 2: Customized makefile to build an application— Here is an example of a

customized makefile to build the application my_exe from three source files, my_main.cpp,

my_src1.cpp, and my_src2.c. To make the example even more realistic, we assume that the

said source files include headers from the NCBI SSS DB packages, and the target executable

uses the NCBI C++ libraries libxmylib.* and libxncbi.*, plus NCBI SSS DB, SYBASE, and

system network libraries. We assume further that the user would prefer to link statically against

libxmylib if building the toolkit as both shared and static libraries (configure --with-dll --with-

static ...), but is fine with a shared libxncbi.

Page 7

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

APP = my_exe

SRC = my_main my_src1 my_src2

OBJ = some_obj

LIB = xmylib$(STATIC) xncbi

REQUIRES = xrequirement

cppFLAGS = $(ORIG_cppFLAGS) $(NCBI_SSSDB_INCLUDE)

LIBS = $(NCBI_SSSDB_LIBS) $(SYBASE_LIBS) $(NETWORK_LIBS) $(ORIG_LIBS)

! Skip building this library if xrequirement (an optional package or project) is disabled

or unavailable

! Compile my_main.cpp and my_src1.cpp using the C++ compiler $(CXX) with the

flags $(cppFLAGS) (see Note below)

! Compile my_src2.c using the C compiler $(CC) with the flags $(cppFLAGS) (see Note

below)

! Using $(CXX) as a linker, build an executable my_exe from the object files

my_main.o, my_src1.o, my_src2.o, the precompiled object file some_obj.o, NCBI C

++ Toolkit libraries libxmylib.a and libxncbi.*, and NCBI SSS DB, SYBASE, and

system network libraries (see Note below)

! Copy the application to the top-level bin/ directory of the build tree (for later use by

other projects)

Note: Since we did not redefine CFLAGS, CXXFLAGS, or LDFLAGS, their default values

ORIG_*FLAGS (obtained during the build tree configuration will be used

This customized makefile should be referred to as my_exe in the APP_PROJ macro of the

relevant meta-makefile. Note also, that the Makefile.mk will be implicitly included.

Example 3: User-defined makefile to build... whatever— In some cases, we may need

more functionality than the customized makefiles (designed to build libraries and applications)

can provide.

So, if you have a "regular" non-customized user makefile, and you want to make from it, then

you must enlist this user makefile in the USR_PROJ macro of the project's meta-makefile.

Now, during the project build (and before any customized makefiles are processed), your

makefile will be called with one of the standard make targets from the project's build directory.

Additionally, the builddir and srcdir macros will be passed to your makefile (via the make

command line).

In most cases, it is necessary to know your "working environment"; i.e., tools, flags and paths

(those that you use in your customized makefiles). This can be easily done by including

Makefile.mk in your makefile.

Shown below is a real-life example of a user makefile:

! build an auxiliary application using the customized makefileMakefile.hc_gen_obj.app

(this part is a tricky one...)

Page 8

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! use the resultant application $(bindir)/hc_gen_obj to generate the source and header

files humchrom_dat.[ch] from the data file humchrom.dat

! use the script $(top_srcdir)/scripts/if_diff.sh to replace the previous copies (if any) of

humchrom_dat.[ch] with the newly generated versions if and only if the new versions

are different (or there were no old versions).

And, of course, it provides build rules for all the standard make targets.

File $(top_srcdir)/src/internal/humchrom/Makefile.hc_gen_obj:

Build a code generator for hard-coding the chrom data into

an obj file

Generate header and source "humchrom_dat.[ch]" from data

file "humchrom.dat"

Deploy the header to the compiler-specific include dir

Compile source code

#################################

include $(builddir)/Makefile.mk

BUILD__HC_GEN_OBJ = $(MAKE) -f "$(builddir)/Makefile.app.tmpl" \

srcdir="$(srcdir)" TMPL="hc_gen_obj" $(MFLAGS)

all_r: all

all: build_hc_gen_obj humchrom_dat.dep

purge_r: purge

purge: x_clean

 $(BUILD__HC_GEN_OBJ) purge

clean_r: clean

clean: x_clean

 $(BUILD__HC_GEN_OBJ) clean

x_clean:

 -rm -f humchrom_dat.h

 -rm -f humchrom_dat.c

Page 9

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

build_hc_gen_obj:

 $(BUILD__HC_GEN_OBJ) all

humchrom_dat.dep: $(srcdir)/data/humchrom.dat $(bindir)/hc_gen_obj

 -cp -p humchrom_dat.c humchrom_dat.save.c

 $(bindir)/hc_gen_obj -d $(srcdir)/data/humchrom.dat

 -f humchrom_dat

 $(top_srcdir)/scripts/if_diff.sh "mv" humchrom_dat.h

 $(incdir)/humchrom_dat.h

 -rm humchrom_dat.h

 $(top_srcdir)/scripts/if_diff.sh "mv" humchrom_dat.c

 humchrom_dat.save.c

 mv humchrom_dat.save.c humchrom_dat.c

 touch humchrom_dat.dep

New Project (lib, application) Development Aids

NOTE: in NCBI, you can use the scripts located in the pre-built NCBI C++ toolkit directory

$NCBI/c++/scripts/.

The following topics are discussed in this section:

! scripts/import_project <SVN_tree_path> [builddir]

! scripts/new_project <name> <type> [builddir]

scripts/import_project <SVN_tree_path> [builddir]— In many cases, you work on

your own project which is a part of the NCBI C++ tree, and you do not want to check out,

update and rebuild the whole NCBI C++ tree. -- Instead, you just want to use headers and

libraries of the pre-built NCBI C++ Toolkit to build your project.

The shell script import_project will checkout your project's source and include directories from

SVN, and it will create a (temporary) makefile based on the project's customized makefile.

This makefile will also contain a reference to the pre-built NCBI C++ toolkit.

For example (full usage):

import_project hello

will check out the whole hello demo project from the NCBI C++ tree ($SVNROOT/internal/

c++/src/hello/), and create a makefile Makefile.hello_app that uses the project's customized

makefile Makefile.hello.app. Now you can just go to the created working directory internal/c

++/src/hello/ and build the demo application hello.cgi using:

Page 10

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

make -f Makefile.hello_app

scripts/new_project <name> <type> [builddir]

! This script will create a startup makefile for a new, from-scratch project called "name" which

uses the NCBI C++ Toolkit (and possibly the C Toolkit as well). For new libraries, type=lib

while for new applications type=app. Sample code will be included in the project directory for

new applications. Different samples are available for type=app[/basic] (a command-line

argument demo application based on the corelib library), type=app/cgi (for a CGI or Fast-CGI

application), type=app/objmgr (for an application using the Object Manager) and type=app/

objects (for an application using ASN.1 objects).You will need to slightly edit the resultant

makefile to:

" specify the name of your library (or application)

" specify the list of source files going to it

" modify some preprocessor, compiler, etc. flags, if needed

" modify the set of additional libraries to link to it (if it's an application), if needed

For example (full usage):

new_project foo app/basic

creates a model makefileMakefile.foo_app to build an application using tools and flags hard-

coded in $NCBI/c++/Debug/build/Makefile.mk, and headers from $NCBI/c++/include/. The

file /tmp/foo/foo.cpp is also created; you can either replace this with your own foo.cpp or

modify its sample code as required. Now, after specifying the application name, list of source

files, etc., you can just go to the created working directory foo/ and build your application

using:

make -f Makefile.foo_app

You can easily change the active version of NCBI C++ Toolkit by manually setting variable

$(builddir) in the file Makefile.foo_app to the desired Toolkit path, e.g.,

builddir = $(NCBI)/c++/GCC-Release/build

An example of the NCBI C++ makefile hierarchy ("corelib/")

See also the source and build hierarchy charts.

>>>>>>>>>> c++/src/Makefile.in:

SUB_PROJ = corelib cgi html @serial@ @internal@ include @builddir@/Makefile.meta

>>>>>>>>>> c++/src/corelib/Makefile.in:

LIB_PROJ = corelib SUB_PROJ = test srcdir = @srcdir@ include @builddir@/Makefile.meta

>>>>>>>>>> c++/src/corelib/Makefile.corelib.lib:

SRC = ncbidiag ncbiexpt ncbistre ncbiapp ncbireg ncbienv ncbistd LIB = xncbi

>>>>>>>>>> c++/src/corelib/test/Makefile.in:

APP_PROJ = coretest srcdir = @srcdir@ include @builddir@/Makefile.meta

Page 11

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Managing the Work Environment

The following topics are discussed in this section:

! Obtaining the Very Latest Builds

! Working in a separate directory

" Setting up Directory Location

" The Project's Makefile

" Testing your setup

! Working Independently In a C++ Subtree

! Working within the C++ source tree

" Checkout the source tree and configure a build directory

" The project's directories and makefiles

" Makefile.in meta files

" An example meta-makefile and its associated project makefiles

" Executing make

" Custom project makefile: Makefile.myProj

" Library project makefile: Makefile.myProj.lib

" Application project makefile: Makefile.myProj.app

" Definition and running tests

" The configure scripts

! Working with the serializable object classes

" Serializable Objects

" Locating and browsing serializable objects in the C++ Toolkit

" Base classes and user classes

" Adding methods to the user classes

Checking out source code, configuring the working environment,

building the libraries.

Adding methods

Obtaining the Very Latest Builds

Each new nightly build is available in the $NCBI/c++.by-date/{date} subdirectory. This is

done regardless of whether the build succeeds or not.

There are defined symlinks into this directory tree. They include:

! $NCBI/c++ - Symbolic link to $NCBI/c++.production.

! $NCBI/c++.potluck - The most recent nightly build. It contains whatever libraries and

executables have managed to build, and it can miss some of the libraries and/or

executables. Use it if you desperately need yesterday's bug fix and do not care of the

libraries which are missing.

! $NCBI/c++.metastable - The most recent nightly build for which the compilation (but

not necessarily the test suite) succeeded in all configurations on the given platform.

Please note that some projects, including the entire "gui" tree, are considered

expendable due to their relative instability and therefore not guaranteed to be present.

Page 12

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! $NCBI/c++.current - Symbolic link to $NCBI/c++.metastable.

! $NCBI/c++.stable - The most recent nightly build for which the nightly build

(INCLUDING the gui projects) succeeded AND the test suite passed all critical tests

on the given platform. This would be the preferred build most of the time for the

developers whose projects make use of the actively developed C++ Toolkit libraries.

It is usually relatively recent (usually no more than 1 or 2 weeks behind), and at the

same time quite stable.

! $NCBI/c++.frozen - A "production candidate" build made out of the production

codebase. There are usually two such builds made for each version of production

codebase -- one is for the original production build, and another (usually made in about

2 months after the original production build) is the follow-up bugfix build.

! $NCBI/c++.production - The most recent production snapshot. This is determined

based on general stability of the Toolkit and it is usually derived off the codebase of

one of the prior "c++.stable" builds. Its codebase is the same for all platforms and

configurations. It is installed only on the major NCBI development platforms (Linux,

MS-Windows, MacOS, and Solaris/SPARC). It is the safest bet for long-term

development. It changes rarely, once in 1 to 3 months. Also, unlike all other builds

mentioned here it is guaranteed to be accessible for at least a year (or more), and its

DLLs are installed on all (including production) Linux hosts.

Working in a separate directory

The following topics are discussed in this section:

! Setting up Directory Location

! The Project's Makefile

! Testing your setup

Setting up Directory Location—There are two topics relevant to writing an application

using the NCBI C++ Toolkit:

1 Where to place the source and header files for the project

2 How to create a makefile which can link to the correct C++ libraries

What you put in your makefile will depend on where you define your working directory. In

this discussion, we assume you will be working outside the NCBI C++ tree, say in a directory

called NewProj. This is where you will write both your source and header files. The first step

then, is to create the new working directory and use the new_project script to install a makefile

there:

mkdir NewProj

new_project NewProj app $NCBI/c++/GCC-Debug/build

 Created a model makefile "/home/zimmerma/NewProj/Makefile.NewProj_app".

The syntax of the script command is:

new_project <project_name> <app | lib> [builddir]

where: - project_name is the name of the directory you will be working in - app (lib) is used

to indicate whether you will be building an application or a library - builddir (optional) specifies

what version of the pre-built NCBI C++ Toolkit libraries to link to

Page 13

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Several build environments have been pre-configured and are available for developing on

various platforms using different compilers, in either debug or release mode. These

environments include custom-made configuration files, makefile templates, and links to the

appropriate pre-built C++ Toolkit libraries. To see a list of the available environments for the

platform you are working on, use: ls -d $NCBI/c++/*/build. For example, on Solaris, the build

directories currently available are shown in Table 1.

In the example above, we specified the GNU compiler debug environment: $NCBI/c++/GCC-

Debug/build. For a list of currently supported compilers, see the Reference Manual's

Installation and configuration page. Running the new_project script will generate a ready-to-

use makefile in the directory you just created. For a more detailed description of this and other

scripts to assist you in the set-up of your working environment, see the Reference Manual page

Starting a new C++ project.

The Project's Makefile—The file you just created with the above script will be called

Makefile.NewProj_app. In addition to other things, you will see definitions for: - $(builddir)

- a path to the build directory specified in the last argument to the above script - $(srcdir) - the

path to your current working directory (".") - $(APP) - the application name - $(OBJ) - the

names of the object modules to build and link to the application - $(LIB) - specific libraries to

link to in the NCBI C++ Toolkit - $(LIBS) - all other libraries to link to (outside the C++

Toolkit)

$(builddir)/lib specifies the library path (-L), which in this case points to the GNU debug

versions of the NCBI C++ Toolkit libraries. $(LIB) lists the individual libraries in this path

that you will be linking to. Minimally, this should include xncbi - the library which implements

the foundational classes for the C++ tools. Additional library names (e.g. xhtml, xcgi, etc.) can

be added here.

Since the shell script assumes you will be building a single executable with the same name as

your working directory, the application is defined simply as NewProj. Additional targets to

build can be added in the area indicated towards the end of the file. The list of objects (OBJ)

should include the names (without extensions) of all source files for the application (APP).

Again, the script makes the simplest assumption, i.e. that there is a single source file named

NewProj.cpp. Additional source names can be added here.

Testing your setup—For a very simple application, this makefile is ready to be run. Try it

out now, by creating the file NewProj.cpp:

// File name: NewProj.cpp

#include <iostream>

using namespace std;

int main() {

cout << "Hello again, world" << endl;

}

and running:

make -f Makefile.NewProj_app

Of course, it wasn't necessary to set up the directories and makefiles to accomplish this much,

as this example does not use any of the C++ classes or resources defined in the NCBI C++

Page 14

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Toolkit. But having accomplished this, you are now prepared to write an actual application,

such as described in Writing a simple application project

Most real applications will at a minimum, require that you #include ncbistd.hpp in your header

file. In addition to defining some basic NCBI C++ Toolkit objects and templates, this header

file in turn includes other header files that define the C Toolkit data types, NCBI namespaces,

debugging macros, and exception classes. A set of template files are also provided for your

use in developing new applications.

Working Independently In a C++ Subtree

An alternative to developing a new project from scratch is to work within a subtree of the main

NCBI C++ source tree so as to utilize the header, source, and make files defined for that subtree.

One way to do this would be to check out the entire source tree and then do all your work within

the selected subtree(s) only. A better solution is to create a new working directory and check

out only the relevant subtrees into that directory. This is somewhat complicated by the

distributed organization of the C++ SVN tree: header files are (recursively) contained in an

include subtree, while source files are (recursively) contained in a src subtree. Thus, multiple

checkouts may be required to set things up properly, and the customized makefiles

(Makefile.*.app) will need to be modified. The shell script import_project will do all of this

for you. The syntax is:

import_project subtree_name [builddir]

where: - subtree is the path to a selected directory inside internal/c++/src/ - builddir (optional)

specifies what version of the pre-built NCBI C++ Toolkit libraries to link to

As a result of executing this shell script, you will have a new directory created with the

pathname ./internal/c++/ whose structure contains "slices" of the original SVN tree.

Specifically, you will find:

./internal/c++/include/subtree_name

./internal/c++/src/subtree_name

The src and include directories will contain all of the requested subtree's source and header

files along with any hierarchically defined subdirectories. In addition, the script will create

new makefiles with the suffix *_app. These makefiles are generated from the original

customized make files (Makefile.*.app) located in the original src subtrees. The customized

makefiles were designed to work only in conjunction with the build directories in the larger

NCBI C++ tree; the newly created makefiles can be used directly in your new working

directories.

The NCBI C++ Toolkit project directories, along with the libraries they implement and the

logical modules they entail, are summarized in the Reference Manual section (NCBI C++

libraries, see Part 3). Currently, there are eight project directories in the NCBI C++ source tree,

including:

! corelib - libraries for the Toolkit foundations

! connect - libraries providing client/server connections

! cgi - libraries for developing CGI applications

! html - libraries for developing HTML pages

! serial - libraries for handling ASN, XML and files of other specified formats

Page 15

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbistd.hpp

! hello - a simple example project that incorporates all but the serial libraries

Two other project directories, internal and objects, are not intended for general use, and the

mechanisms in the import_project script for generating makefiles are not guaranteed to work

for these. The objects subdirectories are used as the original repositories for ASN.1

specifications, and subsequently, for writing the object definitions and implementations created

by the datatool program. These definitions are available for use in your application as described

in the section Processing ASN.1 Data. The internal subdirectory is used for in-house

development, and is the recommended work area for new projects.

Working within the C++ source tree

The following topics are discussed in this section:

! Checkout the source tree and configure a build directory

! The project's directories and makefiles

! Makefile.in meta files

! An example meta-makefile and its associated project makefiles

! Executing make

! Custom project makefile: Makefile.myProj

! Library project makefile: Makefile.myProj.lib

! Application project makefile: Makefile.myProj.app

! Definition and running tests

! The configure scripts

Most users will find that working in a checked-out subtree or a private directory is preferable

to working directly in the C++ source tree. There are two good reasons to avoid doing so:

1 Building your own versions of the extensive libraries can be very time-consuming.

2 There is no guarantee that the library utilities your private code links to have not

become obsolete.

This section is provided for those developers who must work within the source tree. The

Reference Manual sections provide more complete and technical discussion of the topics

reviewed here, and many links to the relevant sections are provided. This page is provided as

an overview of material presented in the Reference Manual and on the Working with Makefiles

pages.

Checkout (*) the source tree and configure a build directory—To checkout full

Toolkit tree:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/internal/c++ c++

or, if you don't need internal projects:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++ c++

Once you have done so, you will need to run one of the configure scripts in the Toolkit's root

directory. For example, to configure your environment to work with the gcc compiler (on any

platform), just run: ./configure.

Users working under Windows NT should consult the MS Visual C++ section in the reference

manual.

Page 16

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

https://svn.ncbi.nlm.nih.gov/viewvc/toolkit/trunk/internal/c%252B%252B
https://svn.ncbi.nlm.nih.gov/viewvc/toolkit/trunk/c%252B%252B

The configure script is a multi-platform configuration shell script (generated from configure.in

using autoconf). Here are some pointers to sections in the Reference Manual that will help you

configure the build environment:

! Wrapper scripts supporting various platforms

! Optional configuration flags

The configure script concludes with a message describing how to build the C++ Toolkit

libraries. If your application will be working with ASN.1 data, use the --with-objects flag in

running the configure script, so as to populate the include/objects and src/objects subdirectories

and build the objects libraries. The objects directories and libraries can also be updated

separately from the rest of the compilation, by executing make inside the build/objects

directory. Prior to doing so however, you should always verify that your build/bin directory

contains the latest version of datatool.

The project's directories and makefiles—To start a new project ("myProj"), you should

begin by creating both a src and an include subtree for that project inside the C++ tree. In

general, all header files that will be accessed by multiple source modules outside the project

directory should be placed in the include directory. Header files that will be used solely inside

the project's src directory should be placed there, along with the implementation files.

In addition to the C++ source files, the src subtrees contain meta-makefiles named

Makefile*.in, which are used by the configure script to generate the corresponding makefiles

in the build subtrees. Figure 1 shows slices of the directory structure reflecting the

correspondences between the meta-makefiles in the src subtrees and makefiles in the build

subtrees. Figure 2 is a sketch of the entire C++ tree in which these directories are defined.

During the configuration process, each of the meta-makefiles in the top-level of the src tree is

translated into a corresponding Makefile* in the top-level of the build tree. Then, for each

project directory containing a Makefile.in, the configure script will: (1) create a corresponding

subdirectory of the same name in the build tree if it does not already exist, and (2) generate a

corresponding Makefile in the project's build subdirectory. The contents of the project's

Makefile.in in the src subdirectory determine what is written to the project's Makefile in the

build subdirectory. Project subdirectories that do not contain any *.in files are ignored by the

configure script.

Thus, you will also need to create a meta-makefile in the newly created src/myProj directory

before configuring your build directory to include the new project. The configure script will

then create the corresponding subtree in the build directory, along with a new Makefile

generated from the Makefile.in you created. See Makefile Hierarchy (Chapter 4, Figure 1) and

Figure 1.

Makefile.in meta files—The meta-makefile myProj/Makefile.in should define at least one

of the following macros:

! USR_PROJ (optional) - a list of names for user-defined makefiles.

This macro is provided for the usage of ordinary stand-alone makefiles which do not

utilize the make commands contained in additional makefiles in the top-level build

directory. Each p_i listed in USR_PROJ = p_1 ... p_N must have a corresponding

Makefile.p_i in the project's source directory. When make is executed, the make

directives contained in these files will be executed directly to build the targets as

specified.

Page 17

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! LIB_PROJ (optional) - a list of names for library makefiles.

For each library l_i listed in LIB_PROJ = l_1 ... l_N, you must have created a

corresponding project makefile named Makefile.l_i.lib in the project's source

directory. When make is executed, these library project makefiles will be used along

with Makefile.lib and Makefile.lib.tmpl (located in the top-level of the build tree) to

build the specified libraries.

! APP_PROJ (optional) - a list of names for application makefiles.

Similarly, each application (p1, p2, ..., pN) listed under APP_PROJ must have a

corresponding project makefile named Makefile.p*.app in the project's source

directory. When make is executed, these application project makefiles will be used

along with Makefile.app and Makefile.app.tmpl to build the specified executables.

! SUB_PROJ (optional) - a list of names for subproject directories (used on recursive

makes).

The SUB_PROJ macro is used to recursively define make targets; items listed here

define the subdirectories rooted in the project's source directory where make should

also be executed.

The Makefile.in meta file in the project's source directory defines a kind of road map that will

be used by the configure script to generate a makefile (Makefile) in the corresponding directory

of the build tree. Makefile.in does not participate in the actual execution of make, but rather,

defines what will happen at that time by directing the configure script in the creation of the

Makefile that will be executed (see also the Reference Manual's description of Makefile

targets).

An example meta-makefile and its associated project makefiles—A simple

example should help to make this more concrete. Assuming that myProj is used to develop an

application named myProj, myProj/Makefile.in should contain the following:

####### Example: src/myProj/Makefile.in

APP_PROJ = myProj

srcdir = @srcdir@

include @builddir@/Makefile.meta

The last two lines in Makefile.in should always be exactly as shown here. These two lines

specify make variable templates using the @var_name@ syntax. When generating the

corresponding Makefile in the build directory, the configure script will substitute each

identifier name bearing that notation with full path definitions.

The corresponding Makefile in build/myProj generated by the configure script for this example

will then contain:

####### Example: myBuild/build/myProj/Makefile

Generated automatically from Makefile.in by configure.

APP_PROJ = myProj

Page 18

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

srcdir = /home/zimmerma/internal/c++/src/myProj

include /home/zimmerma/internal/c++/myBuild/build/Makefile.meta

As demonstrated in this example, the @srcdir@ and @builddir@ aliases in the makefile

template have been replaced with absolute paths in the generated Makefile, while the definition

of APP_PROJ is copied verbatim.

The only build target in this example is myProj. myProj is specified as an application - not a

library - because it is listed under APP_PROJ rather than under LIB_PROJ. Accordingly, there

must also be a file named Makefile.myProj.app in the src/myProj directory. A project's

application makefile specifies:

! APP - the name to be used for the resulting executable

! OBJ - a list of object files to use in the compilation

! LIB - a list of NCBI C++ Toolkit libraries to use in the linking

! LIBS - a list of other libraries to use in the linking

There may be any number of application or library makefiles for the project, Each application

should be listed under APP_PROJ and each library should be listed under LIB_PROJ in

Makefile.in. A suitable application makefile for this simple example might contain just the

following text:

####### Example: src/myProj/Makefile.myProj.app

APP = myProj

OBJ = myProj

LIB = xncbi

In this simple example, the APP_PROJ definition in Makefile.in is identical to the definitions

of both APP and OBJ in Makefile.myProj.app. This is not always the case however, as the

APP_PROJ macro is used to define which makefiles in the src directory should be used during

compilation, while APP defines the name of the resulting executable and OBJ specifies the

names of object files. (Project makefiles for applications are described in more detail below.)

Executing make—Given these makefile definitions, executing make all_r in the build

project subdirectory indirectly causes build/Makefile.meta to be executed, which sets the

following chain of events in motion:

1 For each proj_name listed in USR_PROJ , Makefile.meta first tests to see if

Makefile.proj_name is available in the current build directory, and if so, executes:

make -f Makefile.proj_name builddir="$(builddir)"

srcdir="$(srcdir)" $(MFLAGS)

Otherwise, Makefile.meta assumes the required makefile is in the project's source directory,

and executes:

Page 19

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

make -f $(srcdir)/Makefile.proj_name builddir="$(builddir)"

srcdir="$(srcdir)" $(MFLAGS)

In either case, the important thing to note here is that the commands contained in the project's

makefiles are executed directly and are not combined with additional makefiles in the top-

level build directory. The aliased srcdir, builddir, and MFLAGS are still available and can be

referred to inside Makefile.proj_name. By default, the resulting libraries and executables are

written to the build directory only.

1 For each lib_name listed in LIB_PROJ , make -f $(builddir)/Makefile.lib.tmpl is

executed. This in turn specifies that $(builddir)/Makefile.mk, $(srcdir)/Makefile.

lib_name.lib, and $(builddir)/Makefile.lib should be included in the generated

makefile commands that actually get executed. The resulting libraries are written to

the build subdirectory and copied to the lib subtree.

2 For each app_name listed in APP_PROJ , make -f $(builddir)/Makefile.app.tmpl is

executed. This in turn specifies that $(builddir)/Makefile.mk, $(srcdir)/Makefile.

app_name.app, and $(builddir)/Makefile.app should be included in the generated

makefile commands that actually get executed. The resulting executables are written

to the build subdirectory and copied to the bin subtree.

3 For each dir_name listed in SUB_PROJ (on make all_r), cd dir_name is executed and

make all_r is executed. Steps (1) - (3) are then repeated in the project subdirectory.

More generally, for each subdirectory listed in SUB_PROJ, the configure script will create a

relative subdirectory inside the new build project directory, and generate the new subdirectory's

Makefile from the corresponding meta-makefile in the src subtree. Note that each subproject

directory must also contain its own Makefile.in along with the corresponding project makefiles.

The recursive make commands, make all_r, make clean_r, and make purge_r all refer to this

definition of the subprojects to define what targets should be recursively built or removed.

Custom project makefile: Makefile.myProj (*)—As described, regular makefiles

contained in the project's src directory will be invoked from the build directory if their suffixes

are specified in the USR_PROJ macro. This macro is originally defined in the project's src

directory in the Makefile.in meta file, and is propagated to the corresponding Makefile in the

build directory by the configure script.

For example, if USR_PROJ = myProj in the build directory's Makefile, executing make will

cause Makefile.myProj (the project makefile) to be executed. This project makefile may be

located in either the current build directory or the corresponding src directory. In either case,

although the makefile is executed directly, references to the source or object files (contained

in the project makefile) must give complete paths to those files. In the first case, make is invoked

as: make -f Makefile.myProj, so the makefile is located in the current working (build) directory

but the source files are not. In the second case, make is invoked as:

make -f $(srcdir)/Makefile.myProj,

so both the project makefile and the source files are non-local. For example:

####### Makefile.myProj

include $(NCBI)/ncbi.mk

use the NCBI default compiler for this platform

Page 20

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

CC = $(NCBI_CC)

along with the default include

INCPATH = $(NCBI_INCDIR)

and library paths

LIBPATH = $(NCBI_LIBDIR)

all: $(srcdir)/myProj.c

 $(CC) -o myProj $(srcdir)/myProj.c $(NCBI_CFLAGS) -I($INCPATH) \

 -L($LIBPATH) -lncbi

 cp -p myProj $(builddir)/bin

clean:

 -rm myProj myProj.o

purge: clean

 -rm $(builddir)/bin/myProj

will cause the C program myProj to be built directly from Makefile.myProj using the default

C compiler, library paths, include paths, and compilation flags defined in ncbi.mk. The

executables and libraries generated from the targets specified in USR_PROJ are by default

written to the current build directory only. In this example however, they are also explicitly

copied to the bin directory, and accordingly, the purge directives also remove the copied

executable.

Library project makefile: Makefile.myProj.lib (*)—Makefile. lib_name.lib should

contain the following macro definitions:

! $(SRC) - the names of all source files to compile and include in the library

! $(OBJ) - the names of any pre-compiled object files to include in the library

! $(LIB) - the name of the library being built

In addition, any of the make variables defined in build/Makefile.mk, such as $CPPFLAGS,

$LINK, etc., can be referred to and/or redefined in the project makefile, e.g.:

CFLAGS = $(ORIG_CFLAGS) -abc -DFOOBAR_NOT_CPLUSPLUS

CXXFLAGS = $(ORIG_CXXFLAGS) -xyz

CPPFLAGS = $(ORIG_CPPFLAGS) -UFOO -DP1_PROJECT -I$(NCBI_C_INCLUDE)

LINK = purify $(ORIG_LINK)

Page 21

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

For a simple example, see Makefile.corelib.lib, and for additional documentation, refer to the

Reference Manual section. This customized makefile can be used to build both static and

dynamic (DLL) versions of the library. To build as a DLL on the appropriate platforms, you

can explicitly specify:

 LIB_OR_DLL = dll

Conversely, if you want the library to always be built as static, specify:

 LIB_OR_DLL = lib

Application project makefile: Makefile.myProj.app (*)—Makefile. app_name.app

should contain the following macro definitions:

! $(SRC) - the names of the object modules to build and link to the application

! $(OBJ) - the names of any pre-compiled object files to include in the linking

! $(LIB) - specific libraries in the NCBI C++ Toolkit to include in the linking

! $(LIBS) - all other libraries to link to (outside the C++ Toolkit)

! $(APP) - the name of the application being built

For example, if C Toolkit libraries should also be included in the linking, use:

 LIBS = $(NCBI_C_LIBPATH) -lncbi $(ORIG_LIBS)

The project's application makefile can also redefine the compiler and linker, along with other

flags and tools affecting the build process, as described above for Makefile.*.lib files, For an

example, see Makefile.coretest.app. For additional documentation refer also to the Reference

Manual section.

Definition and running tests—To include an application into the testsuite it is necessary

to add just one line into its makefile Makefile. app_name.app:

CHECK_CMD =

or

CHECK_CMD = command line to run application test

If command line is not specified that a program which specified by makefiles' variable $(APP)

will be executed (without any parameters).

If there are files (such as a script or data) that you will need around, set $(CHECK_COPY) to

point to them:

CHECK_COPY = file1 file2 dir1 dir2

All specified files and directories will be copied to the build or special check directory (depends

from platform) before running tests. One of the copied files can be, for example, a shell script

which specified in the command line of $(CHECK_CMD). Note that all paths to copied files

and directories must be relative from the applications' source directory.

By default the applications' execution time is limited by 200 seconds. You can set the new limit

using next line:

Page 22

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/Makefile.corelib.lib
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/Makefile.coretest.app

CHECK_TIMEOUT = <time in seconds>

If application continues execution after specified time, it will be terminated and test marked

as FAILED.

For an example, how to run tests see An Example of Configuration, Installation, and Build.

The configure scripts—A number of compiler-specific wrappers for different platforms

are described in the Reference Manual. Each of these wrappers performs some pre-initialization

for the tools and flags used in the configure script before running it. The compiler-specific

wrappers are in the c++/compilers directory. The configure script serves two very different

types of function: (1) it tests the selected compiler and environment for a multitude of features

and generates #include and #define statements accordingly, and (2) it reads the Makefile.in

files in the src directories and creates the corresponding build subtrees and makefiles

accordingly.

Frequently during development it is necessary to make minor adjustments to the Makefile.in

files, such as adding new projects or subprojects to the list of targets. In these contexts however,

the compiler, environment, and source directory structures remain unchanged, and configure

is actually doing much more work than is necessary. In fact, there is even some risk of failing

to re-create the same configuration environment if the user does not exactly duplicate the same

set of configure flags when re-running configure. In these situations, it is preferable to run an

auxilliary script named config.status, located at the top level of the build directory in a

subdirectory named status.

In contrast, changes to the src directory structure, or the addition/deletion of Makefile.in files,

all require re-running the configure script, as these actions require the creation/deletion of

subdirectories in the build tree and/or the creation/deletion of the associated Makefile in those

directories.

Working with the serializable object classes

The following topics are discussed in this section:

! Serializable Objects

! Locating and browsing serializable objects in the C++ Toolkit

! Base classes and user classes

! Adding methods to the user classes

Serializable Objects—All of the ASN.1 data types defined in the C Toolkit have been re-

implemented in the C++ Toolkit as serializable objects. Header files for these classes can be

found in the include/objects directories, and their implementations are located in the src/

objects directories. and

The implementation of these classes as serializable objects has a number of implications. It

must be possible to use expressions like: instream >> myObject and outstream << myObject,

where specializations are entailed for the serial format of the iostreams (ASN.1, XML, etc.),

as well as for the internal structure of the object. The C++ Toolkit deploys several object stream

classes that specialize in various formats, and which know how to access and apply the type

information that is associated with the serializable object.

The type information for each class is defined in a separate static CTypeInfo object, which can

be accessed by all instances of that class. This is a very powerful device, which allows for the

implementation of many features generally found only in languages which have built-in class

Page 23

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/compilers
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects

reflection. Using the Toolkit's serializable objects will require some familiarity with the usage

of this type information, and several sections of this manual cover these topics (see Runtime

Object Type Information for a general discussion).

Locating and browsing serializable objects in the C++ Toolkit—The top level of the

include/objects subtree is a set of subdirectories, where each subdirectory includes the public

header files for a separately compiled library. Similarly, the src/objects subtree includes a set

of subtrees containing the source files for these libraries. Finally, your build/objects directory

will contain a corresponding set of build subtrees where these libraries are actually built.

If you checked out the entire C++ SVN tree, you may be surprised to find that initially, the

include/objects subtrees are empty, and the subdirectories in the src/objects subtree contain

only ASN.1 modules. This is because both the header files and source files are auto-generated

from the ASN.1 specifications by the datatool program. As described in Working within the

C++ source tree, you can build everything by running make all_r in the build directory.

Note: If you would like to have the objects libraries built locally, you must use the --with-

objects flag when running the configure script.

You can also access the pre-generated serializable objects in the public area, using the source

browsers to locate the objects you are particularly interested in. For example, if you are seeking

the new class definition for the Bioseq struct defined in the C Toolkit, you can search for the

CBioseq class, using either the LXR identifier search tool, or the Doxygen class hierarchy

browser. Starting with the name of the data object as it appears in the ASN.1 module, two

simple rules apply in deriving the new C++ class name:

1 The one letter 'C' (for class) prefix should precede the ASN.1 name

2 All hyphens ('-') should be replaced by underscores ('_')

For example, Seq-descr becomes CSeq_descr.

Base classes and user classes—The classes whose names are derived in this manner

are called the user classes, and each also has a corresponding base class implementation. The

name of the base class is arrived at by appending "_Base" to the user class name. Most of the

user classes are empty wrapper classes that do not bring any new functionality or data members

to the inherited base class; they are simply provided as a platform for development. In contrast,

the base classes are not intended for public use (other than browsing), and should never be

modified.

More generally, the base classes should never be instantiated or accessed directly in an

application. The relation between the two source files and the classes they define reflects a

general design used in developing the object libraries: the base class files are auto-generated

by datatool according to the ASN.1 specifications in the src/objects directories; the inherited

class files (the so-called user classes) are intended for developers who can extend these classes

to support features above and beyond the ASN.1 specifications.

Many applications will involve a "tangled hierarchy" of these objects, reflecting the complexity

of the real world data that they represent. For example, a CBioseq_set contains a list of

CSeq_entry objects, where each CSeq_entry is, in turn, a choice between a CBioseq and a

CBioseq_set.

Given the potential for this complexity of interactions, a critical design issue becomes how one

can ensure that methods which may have been defined only in the user class will be available

for all instances of that class. In particular, these instances may occur as contained elements

Page 24

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects

of another object which is compiled in a different library. These inter-object dependencies are

the motivation for the user classes. As shown in Figure 2, all references to external objects

which occur inside the base classes, access external user classes, so as to include any methods

which may be defined only in the user classes:

In most cases, adding non-virtual methods to a user class will not require re-compiling any

libraries except the one which defines the modified object. Note however, that adding non-

static data members and/or virtual methods to the user classes will change the class layouts,

and in these cases only, will entail recompiling any external library objects which access these

classes.

Adding methods to the user classes—Note: This section describes the steps currently

required to add new methods to the user classes. It is subject to change, and there is no guarantee

the material here is up-to-date. In general, it is not recommended practice to add methods to

the user classes, unless your purpose is to extend these classes across all applications as part

of a development effort.

The following topics are discussed in this section:

! Checking out source code, configuring the working environment, building the

libraries.

! Adding methods

1 Create a working directory (e.g. Work) and check out the C++ tree to that directory:,

using either SVN checkout or the shell script, svn_core <dirname>.

2 Configure the environment to work inside this tree using one of the configure scripts,

according to the platform you will be working on. Be sure to include the --with-objects

flag in invoking the configure script.

3 Build the xncbi, xser and xser libraries, and run datatool to create the objects header

and source files, and build all of the object module libraries:

Build the core library

cd path_to_compile_dir/build/corelib

make

Build the util library

cd path_to_compile_dir/build/util

make

might as well build datatool and avoid possible version skew cd

path_to_compile_dir/build/serial make all_r

needed for a few projects

cd path_to_compile_dir/build/connect

make

cd path_to_compile_dir/build/objects

make all_r

Here path_to_compile_dir is set to the compile work directory which depends on the compiler

settings (e.g: ~/Work/internal/GCC-Debug). In addition to creating the header and source files,

using make all_r (instead of just make) will build all the libraries. All libraries that are built

are also copied to the lib dir, e.g.:~/Work/internal/c++/GCC-Debug/lib. Similarly, all

executables (such as asn2asn) are copied to the bin dir, e.g.: ~/Work/internal/c++/GCC-Debug/

bin.

Page 25

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

You are now ready to edit the user class files and add methods.

Adding methods: As an example, suppose that we would like to add a method to the CSeq_inst

class to calculate sequence length, e.g.:CSeq_inst::CalculateLength(). We begin by adding a

declaration of this method to the public section of the user class definition in Seq_inst.hpp:

class CSeq_inst : public CSeq_inst_Base

{

public:

 CSeq_inst(void);

 ~CSeq_inst(void);

 static CSeq_inst* New(void)

 {

 return new CSeq_inst(eCanDelete);

 }

 int CalculateLength() const;

protected:

 CSeq_inst(ECanDelete);

};

and in the source file, Seq_inst.cpp, we implement

int CSeq_inst::CalculateLength() const

{

 // implementation goes here

}

These files are in the include/objects/seq and src/objects/seq subdirectories, respectively. Once

you have made the modifications to the files, you need to recompile the seq library, libseq.a,

i.e.:

cd path_to_compile_dir/GCC-Debug/build/objects/seq

make

Here path_to_compile_dir is set to the compile work directory which depends on the compiler

settings (e.g: ~/Work/internal/GCC-Debug). The new method can now be invoked from within

a CBioseq object as: myBioseq.GetInst().CalculateLength().

The key issue that determines whether or not you will need to rebuild any external libraries

that use the modified user class involves the class layout in memory. All of the external libraries

which reference the object refer to the class layout that existed prior to the changes you have

made. Thus, if your modifications do not affect the class layout, you do not have to rebuild

any external libraries. Changes that do affect memory mapping include:

! The addition of new, non-static data members

! The addition of virtual methods

If you have added either of the above to the user class, then you will need to identify all external

objects which use your object, and recompile the libraries in which these objects are defined.

Page 26

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq

Figure 1. Meta make files and the make files they generate

Page 27

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 2. Example of complex relationships between base classes and user classes

Page 28

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 1. Build Directories

Directory Compiler Version

/netopt/ncbi_tools/c++/Debug/build Sun Workshop Debug

/netopt/ncbi_tools/c++/Debug64/build Sun Workshop Debug (64 bit)

/netopt/ncbi_tools/c++/DebugMT/build Sun Workshop Debug (Multi-thread safe)

/netopt/ncbi_tools/c++/Release/build Sun Workshop Release

/netopt/ncbi_tools/c++/ReleaseMT/build Sun Workshop Release (Multi-thread safe)

/netopt/ncbi_tools/c++/GCC-Debug/build GCC Debug

/netopt/ncbi_tools/c++/GCC-Release/build GCC Release

Page 29

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Programming Policies and Guidelines

[7]

Style Guide

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

This chapter discusses the programming policies and coding styles used in the C++ Toolkit.

Adherence to these guidelines will promote uniform coding, better documentation, easy to read

code, and therefore more maintainable code.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! Naming Conventions, Indentation, and Bracing

" Naming Conventions

" Name Prefixing and/or the Use of Namespaces

" Use of the NCBI Name Scope

" Use of Include Directives

" Code Indentation and Bracing

" Class Declaration

" Function Declaration

" Function Definition

" Use of Whitespace

" Standard Header Template

! Guidelines

" Introduction to Some C++ and STL Features and Techniques

C++ Implementation Guide

! Use of STL (Standard Template Library)

! Use of C++ Exceptions

! Design

! Make Your Code Readable

C++ Tips and Tricks

Standard Template Library (STL)

! STL Tips and Tricks

" C++/STL Pitfalls and Discouraged/Prohibited Features

STL and Standard C++ Library's Bad Guys

! Non-Standard STL Classes

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! C++ Bad Guys

" Operator Overload

" Assignment and Copy Constructor Overload

" Omitting "void" in a No-Argument Function Prototype

" Do Not Mix malloc and new

Naming Conventions, Indentation, and Bracing

"In My Egotistical Opinion, most people's C programs

should be indented six feet downward and covered with dirt."

-- Blair P. Houghton

Nevertheless, here goes:

" Naming Conventions

Type Names

Preprocessor Define/Macro

Function Arguments and Local Variables

Constants

Class and Structure Data Members (Fields)

Class Member Functions (Methods)

Module Static Functions and Data

Global ("extern") Functions and Data

" Name Prefixing and/or the Use of Namespaces

" Use of the NCBI Name Scope

" Use of Include Directives

" Code Indentation and Bracing

" Class Declaration

" Function Declaration

" Function Definition

" Use of Whitespace

" Standard Header Template

Naming Conventions

Table 1. Naming Conventions

SYNOPSIS EXAMPLE

Type Names

CClassTypeName class CMyClass { };

IInterfaceName class IMyInterface { };

SStructTypeName struct SMyStruct { };

UUnionTypeName union UMyUnion { };

EEnumTypeName enum EMyEnum { };

Page 2

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

SYNOPSIS EXAMPLE

FFunctionTypeName typedef int (*FMyFunc)(void);

PPredicateName struct PMyPred { bool operator() (.... ,); };

TAuxiliaryTypedef (*) typedef map<int,string> TMyMapIntStr;

TIterator_I typedef list<int>::iterator TMyList_I;

TConstIterator_CI typedef set<string>::const_iterator TMySet_CI;

NNamespace (see also) namespace NMyNamespace { }

Preprocessor Define/Macro

MACRO_NAME #define MY_DEFINE 12345

macro_arg_name #define MY_MACRO(x, y) (((x) + 1) < (y))

Function Arguments and Local Variables

func_local_var_name void MyFunc(int foo, const CMyClass& a_class)
{
 size_t foo_size;
 int bar;

Constants

kConstantName const int kMyConst = 123;

eEnumValueName enum EMyEnum {
 eMyEnum_1 = 11,
 eMyEnum_2 = 22,
 eMyEnum_3 = 33
};

fFlagValueName enum EMyFlags {
 fMyFlag_1 = (1<<0), ///< = 0x1 (describe)
 fMyFlag_2 = (1<<1), ///< = 0x2 (describe)
 fMyFlag_3 = (1<<2) ///< = 0x4 (describe)
};
typedef int TMyFlags; // holds a binary OR of "EMyFlags"

Class and Structure Data Members (Fields)

m_ClassMemberName class C { short int m_MyClassData; };

struct_field_name struct S { int my_struct_field; };

sm_ClassStaticMemberName class C { static double sm_MyClassStaticData; };

Class Member Functions (Methods)

ClassMethod bool MyClassMethod(void);

x_ClassPrivateMethod int x_MyClassPrivateMethod(char c);

Module Static Functions and Data

s_StaticFunc static char s_MyStaticFunc(void);

s_StaticVar static int s_MyStaticVar;

Global ("extern") Functions and Data

g_GlobalFunc double g_MyGlobalFunc(void);

g_GlobalVar short g_MyGlobalVar;

(*) The auxiliary typedefs (like TAuxiliaryTypedef) are usually used for an ad-hoc type mappings (especially when using templates) and
not when a real type definition takes place.

Page 3

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

(*) The auxiliary typedefs (like TAuxiliaryTypedef) are usually used for an ad-hoc type mappings (especially when using

templates) and not when a real type definition takes place.

Name Prefixing and/or the Use of Namespaces

In addition to the above naming conventions that highlight the nature and/or the scope of things,

one should also use prefixes to:

! avoid name conflicts

! indicate the package that the entity belongs to

For example, if you are creating a new class called "Bar" in package "Foo" then it is good

practice to name it "CFooBar" rather than just "CBar". Similarly, you should name new

constants like "kFooSomeconst", new types like "TFooSometype", etc.

Use of the NCBI Name Scope

<ncbistl.hpp>

All NCBI-made “core” API code must be put into the "ncbi::" namespace. For this purpose,

there are two preprocessor macros, BEGIN_NCBI_SCOPE and END_NCBI_SCOPE, that

must enclose all NCBI C++ API code -- both declarations and definitions (see examples).

Inside these "brackets", all "std::" and "ncbi::" scope prefixes can (and must!) be omitted.

For code that does not define a new API but merely uses the NCBI C++ API, there is a macro

USING_NCBI_SCOPE (semicolon-terminated) that brings all types and prototypes from the

"std::" and "ncbi::" namespaces into the current scope, eliminating the need for the "std::" and

"ncbi::" prefixes.

Use macro NCBI_USING_NAMESPACE_STD (semicolon-terminated) if you want to bring

all types and prototypes from the "std::" namespace into the current scope, without bringing

in anything from the "ncbi::" namespace.

Use of Include Directives

If an include file is in the local directory or not on the INCLUDE path, use quotes in the include

directive (e.g. #include "foo.hpp"). In all other cases use angle brackets (e.g. #include

<foo.hpp>).

In general, if an include file is commonly used, it must be on the INCLUDE path and therefore

requires the bracketed form.

Code Indentation and Bracing

4-space indentation only! Tabulation symbol must not be used for indentation.

Try not to cross the "standard page boundary" of 80 symbols.

In if, for, while, do, switch, case, etc. and type definition statements:

if (...) {

 ;

} else if (...) {

 ;

} else {

Page 4

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 ;

}

if (...) {

 ;

}

else if (...) {

 ;

}

else {

 ;

}

for (...; ...; ...) {

 ;

}

while (...) {

 ;

}

do {

 ;

}

while (...);

switch (...) {

case ...: {

 ;

 break;

}

} // switch

struct|union|enum <[S|U|E]TypeName> {

 ;

};

class | struct | union <[C|I|P|S|U]TypeName>

{

 ;

};

try {

 ;

}

catch (exception& e) {

 ;

}

Page 5

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Class Declaration

Header files should be rich in Doxygen-style comments. This will facilitate Doxygen-based

automatic API documentation to supplement this book. Without substantial adherence to this

practice the value of the Doxygen-based API documentation will be diminished. See the NCBI

C++ Toolkit Doxygen browser.

Doxygen-style comments are essentially extensions of C/C++ comments, e.g. the use of a

triple-slash instead of a double-slash. Doxygen-style comments refer to the entity following

them by default, but can be made to refer to the entity preceeding them by appending the ‘<’

symbol to the comment token (e.g. ‘///<’).

Doxygen commands are keywords within Doxygen comments that are used during the

document generation process. Common commands are @param, @return, and @sa (i.e. ‘see

also’). See the Doxygen manual for complete usage information.

Please do not use superfluous comments, such as ‘/// Destructor’. Especially do not use the

same superfluous comment multiple times, such as using the same ‘/// Constructor’ comment

for different constructors!

/// @file FileName

/// Description of file -- note that this is _required_ if you want

/// to document global objects such as typedefs, enums, etc.

///

///

/// CFooClass

///

/// Brief description of class (or class template, struct, union) --

/// it must be followed by an empty comment line.

///

/// A detailed description of the class -- it follows after an empty

/// line from the above brief description. Note that comments can

/// span several lines and that the three /// are required.

class CFooClass

{

public:

 // Constructors and Destructor:

 /// A brief description of the constructor.

 ///

 /// A detailed description of the constructor.

 CFooClass(bool init_bool = true); ///< describe parameter here

 /// A brief description for another constructor.

 CFooClass(int init_int); ///< describe parameter here

 ~CFooClass(void); // Usually needs no Doxygen-style comment.

 // Members and Methods:

 /// A brief description of TestMe.

Page 6

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov:6224/ieb/ToolBox/CPP_DOC/doxyhtml
http://www.stack.nl/~dimitri/doxygen/manual.html

 ///

 /// A detailed description of TestMe. Use the following when

 /// parameter descriptions are going to be long, and you are

 /// describing a complex method:

 /// @param foo

 /// An int value meaning something.

 /// @param bar

 /// A constant character pointer meaning something.

 /// @return

 /// The TestMe() results.

 /// @sa CFooClass(), ~CFooClass() and TestMeToo() - see also.

 float TestMe(int foo, const char* bar);

 /// A brief description of TestMeToo.

 ///

 /// Details for TestMeToo. Use this style if the parameter

 /// descriptions are going to be on one line each:

 /// @sa TestMe()

 virtual void TestMeToo

 (char par1, ///< short description for par1

 unsigned int par2 ///< short description for par2

) = 0;

 /// Brief description of a function pointer type

 /// (note that global objects like this will not be documented

 /// unless the file itself is documented with the @file command).

 ///

 /// Detailed description of the function pointer type.

 typedef char* (*FHandler)

 (int start, ///< argument description 1 -- what start means

 int stop ///< argument description 2 -- what stop means

);

 // (NOTE: The use of public data members is

 // strictly discouraged!

 // If used they should be well documented!)

 /// Describe public member here, explain why it’s public.

 int m_PublicData;

protected:

 /// Brief description of a data member -- notice no details are

 /// given here since a brief description is adequate.

 double m_FooBar;

 /// Brief function description here.

 /// Detailed description here. More description.

 /// @return Return value description here.

 static int ProtectedFunc(char ch); ///< describe parameter here

private:

 /// Brief member description here.

Page 7

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 /// Detailed description here. More description.

 int m_PrivateData;

 /// Brief static member description here.

 static int sm_PrivateStaticData;

 /// Brief function description here.

 /// Detailed description here. More description.

 /// @return Return value description here.

 double x_PrivateFunc(int some_int = 1); ///< describe parameter here

 // Friends

 friend bool SomeFriendFunc(void);

 friend class CSomeFriendClass;

 // Prohibit default initialization and assignment

 // -- e.g. when the member-by-member copying is dangerous.

 /// This method is declared as private but is not

 /// implemented to prevent member-wise copying.

 CFooClass(const CFooClass&);

 /// This method is declared as private but is not

 /// implemented to prevent member-wise copying.

 CFooClass& operator= (const CFooClass&);

};

Function Declaration

Doxygen-style comments for functions should describe what the function does, its parameters,

and what it returns.

For global function declarations, put all Doxygen-style comments in the header file. Prefix

global functions with g_.

/// A brief description of MyFunc2.

///

/// Explain here what MyFunc2() does.

/// @return explain here what MyFunc2() returns.

bool g_MyFunc2

(double arg1, ///< short description of "arg1"

 string& arg2, ///< short description of "arg2"

 long arg3 = 12 ///< short description of "arg3"

);

Function Definition

Doxygen-style comments are not needed for member function definitions or global function

definitions because their comments are put with their declarations in the header file.

For static functions, put all Doxygen-style comments immediately before the function

definition. Prefix static functions with s_.

Page 8

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

bool g_MyFunc2

(double arg1, string& arg2, long arg3

)

{

 return true;

}

/// A brief description of s_MyFunc3.

///

/// Explain here what s_MyFunc3() does.

/// @return explain here what s_MyFunc3() returns.

static long s_MyFunc3(void)

{

}

Use of Whitespace

As the above examples do not make all of our policies on whitespace clear, here are some

explicit guidelines:

! When reasonably possible, use spaces to align corresponding elements vertically. (This

overrides most of the rules below.)

! Leave one space on either side of most binary operators, and two spaces on either side

of boolean && and ||.

! Put one space between the names of flow-control keywords and macros and their

arguments, but no space after the names of functions except when necessary for

alignment.

! Leave two spaces after the semicolons in for(...; ...; ...).

! Leave whitespace around negated conditions so that the ! stands out better.

! Leave two blank lines between function definitions.

Standard Header Template

A standard header template file, header_template.hpp, has been provided in the include/

common directory that can be used as a template for creating header files. This header file

adheres to the standards outlined in the previous sections and uses a documentation style for

files, classes, methods, macros etc. that allows for automatic generation of documentation from

the source code. It is strongly suggested that you obtain a copy of this file and model your

documentation using the examples in that file.

Guidelines

This section discusses the following topics:

! Introduction to Some C++ and STL Features and Techniques

" C++ Implementation Guide

Use of STL (Standard Template Library)

Page 9

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/include/common/header_template.hpp

! Use of C++ Exceptions

! Design

! Make Your Code Readable

" C++ Tips and Tricks

" Standard Template Library (STL)

! STL Tips and Tricks

C++/STL Pitfalls and Discouraged/Prohibited Features

" STL and Standard C++ Library's Bad Guys

! Non-Standard STL Classes

" C++ Bad Guys

! Operator Overload

! Assignment and Copy Constructor Overload

! Omitting "void" in a No-Argument Function Prototype

! Do Not Mix malloc and new

Introduction to Some C++ and STL Features and Techniques

C++ Implementation Guide

Use of STL (Standard Template Library): Use the Standard Template Library (STL), which

is part of ANSI/ISO C++. It'll make programming easier, as well as make it easier for others

to understand and maintain your code.

Exceptions are useful. However, since exceptions unwind the stack, you must be

careful to destroy all resources (such as memory on the heap and file handles) in every

intermediate step in the stack unwinding. That means you must always catch

exceptions, even those you don't handle, and delete everything you are using locally.

In most cases it's very convenient and safe to use the auto_ptr template to ensure the

freeing of temporary allocated dynamic memory for the case of exception.

Avoid using exception specifications in function declarations, such as:

void foo(void) throw ();

void bar(void) throw (std::exception);

Use abstract base classes. This increases the reusability of code. Whether a base class

should be abstract or not depends on the potential for reuse.

Don't expose class member variables, rather expose member functions that manipulate

the member variables. This increases reusability and flexibility. For example, this frees

you from having the string in-process -- it could be in another process or even on

another machine.

Don't use multiple inheritance (i.e. class A: public B, public C {}) unless creating

interface instead of implementation. Otherwise, you'll run into all sorts of problems

with conflicting members, especially if someone else owns a base class. The best time

to use multiple inheritance is when a subclass multiply inherits from abstract base

classes with only pure virtual functions.

Some people prefer the Unified Modelling Language to describe the relationships between

objects.

Page 10

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.parashift.com/c++-faq-lite/exceptions.html#faq-17.4
http://www.rational.com/uml/index.jtmpl

Make Your Code Readable: Use NULL instead of 0 when passing a null pointer. For example:

MyFunc(0,0); // Just looking at this call, you can’t tell which

 // parameter might be an int and which might be

 // a pointer.

MyFunc(0,NULL); // When looking at this call, it’s pretty clear

 // that the first parameter is an int and

 // the second is a pointer.

Avoid using bool as a type for function arguments. For example, this might be hard to

understand:

// Just looking at this call, you can’t tell what

// the third parameter means:

CompareStrings(s1, s2, true);

Instead, create a meaningful enumerated type that captures the meaning of the parameter. For

example, try something like this:

///

///

/// ECaseSensitivity --

///

/// Control case-sensitivity of string comparisons.

///

enum ECaseSensitivity {

 eCaseSensitive, ///< Consider case when comparing.

 eIgnoreCase ///< Don’t consider case when comparing.

};

.....

/// Brief description of function here.

/// @return

/// describe return value here.

int CompareStrings

(const string& s1, ///< First string.

 const string& s2, ///< Second string.

 ECaseSensitivity comp_case); ///< Controls case-sensitivity

 ///< of comparisons.

.....

// This call is more understandable because the third parameter

// is an enum constant rather than a bool constant.

CompareStrings(s1, s2, eIgnoreCase);

Page 11

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

As an added benefit, using an enumerated type for parameters instead of bool gives you the

ability to expand the enumerated type to include more variants in the future if necessary -

without changing the parameter type.

C++ Tips and Tricks

! Writing something like map<int, int, less<int>> will give you weird errors; instead

write map<int, int, less<int> >. This is because >> is reserved word.

! Do use pass-by-reference. It'll cut down on the number of pointer related errors.

! Use const (or enum) instead of #define when you can. This is much easier to debug.

! Header files should contain what they contain in C along with classes, const's, and in-

line functions (in-line functions are functions defined within the braces of the class or

declared inline. In-line functions must be in header files as compilers need to see the

source in order to inline properly.

See the C++ FAQ

Standard Template Library (STL)—The STL is a library included in ANSI/ISO C++ for

stream, string, and container(linked lists, etc.) manipulation.

STL Tips and Tricks: end() does not return an iterator to the last element of a container, rather

it returns a iterator just beyond the last element of the container. This is so you can do constructs

like

for (iterator = container.begin();

iterator != container.end(); iterator++)

If you want to access the end element, use "--container.end()".

Iterator misuse causes the same problems as pointer misuse. There are versions of the STL that

flag incorrect use of iterators.

Iterators are guaranteed to remain valid after insertion and deletion from list containers, but

not vector containers. Check to see if the container you are using preserves iterators.

If you create a container of pointers to objects, the objects are not destroyed when the container

is destroyed, only the pointers are. Other than maintaining the objects yourself, there are several

strategies for handling this situation detailed in the literature.

If you pass a container to a function, don't add a local object to the container. The local variable

will be destroyed when you leave the function.

C++/STL Pitfalls and Discouraged/Prohibited Features

! STL and Standard C++ Library's Bad Guys

" Non-Standard Classes

! C++ Bad Guys

" Operator Overload

" Assignment and Copy Constructor Overload

" Omitting "void" in a No-Argument Function Prototype

" Do Not Mix malloc and new

Page 12

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.parashift.com/c++-faq-lite

STL and Standard C++ Library's Bad Guys

Non-Standard STL Classes: Don't use the rope class from some versions of the STL. This is

a non-standard addition. If you have questions about what is/isn't in the standard library, consult

the C++ standards.

The NCBI C++ Toolkit includes a hash class (see Doxygen classes).

C++ Bad Guys

Operator Overload: Do not use operator overloading for the objects where they have

unnatural or ambiguous meaning. For example, the defining of operator==() for your class

"CFoo" so that there exist { CFoo a,b,c; } such that (a == b) and (b == c) are true while (a ==

c) is false would be a very bad idea. It turns out that otherwise, especially in large projects,

people have different ideas of what an overloaded operator means, leading to all sorts of bugs.

Assignment and Copy Constructor Overload: Be advised that the default initialization

{CFoo foo = bar;} and assignment {CFoo foo; ...; foo = bar;} do a member-by-member

copying. This is not suitable and can be dangerous sometimes. And if you decide to overwrite

this default behavior by your own code like:

class CFoo {

 // a copy constructor for initialization

 CFoo(const CFoo& bar) { ... }

 // an overloaded assignment(=) operator

 CFoo& operator=(const CFoo& bar) { if (&bar != this) ... }

};

it is extremely important that:

! both copy constructor and overloaded assignment be defined

! they have just the same meaning; that is {CFoo foo = bar;} is equivalent to {CFoo

foo; foo = bar;}

! there is a check to prevent self-assignment in your overloaded assignment operator

In many cases when you don't want to have the assignment and copy constructor at all, just

add to your class something like:

class CFoo {

private:

 // Prohibit default initialization and assignment

 CFooClass(const CFooClass&);

 CFooClass& operator=(const CFooClass&);

};

Omitting "void" in a No-Argument Function Prototype: Do not omit "void" in the

prototype of a function without arguments (e.g. always write "int f(void)" rather than just "int

f()").

Do Not Mix malloc and new: On some platforms, malloc and new may use completely

different memory managers, so never "free()" what you created using "new" and never "delete"

Page 13

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.parashift.com/c++-faq-lite/big-picture.html#faq-6.12
http://intranet.ncbi.nlm.nih.gov:6224/ieb/ToolBox/CPP_DOC/doxyhtml/classes.html

what you created using "malloc()". Also, when calling C code from C++ always allocate any

structs or other items using "malloc()". The C routine may use "realloc()" or "free()" on the

items, which can cause memory corruption if you allocated using "new."

Page 14

Development Framework

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Portability, Core Functionality and Application Framework

[8]

Overview

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

! CORELIB library xncbi:include | src

The CORELIB provides a portable low-level API and many useful application framework classes

for argument processing, diagnostics, environment interface, object and reference classes,

portability definitions, portable exceptions, stream wrappers, string manipulation, threads, etc.

This chapter provides reference material for many of CORELIB's facilities. For an overview of

CORELIB, please refer to the CORELIB section in the introductory chapter on the C++ Toolkit.

Note: The CORELIB must be linked to every executable that uses the NCBI C++ Toolkit!

! UTIL library xutil:include | src

The UTIL module is a collection of useful classes which can be used in more then one application.

This chapter provides reference material for many of UTIL's facilities. For an overview of the

UTIL module please refer to the UTIL section in the introductory chapter on the C++ Toolkit.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! Writing a Simple Application

" NCBI C++ Toolkit Application Framework Classes

CNcbiApplication

CNcbiArguments

CNcbiEnvironment

CNcbiRegistry

CNcbiDiag

" Creating a Simple Application

UNIX Systems

MS Windows

Discussion of the Sample Application

" Inside the NCBI Application Class

! Processing Command-Line Arguments

" Capabilities of the Command-Line API

" The Relationships between the CArgDescriptions, CArgs, and CArgValue

Classes

" Command-Line Syntax

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/util
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/util
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib

! The CArgDescriptions (*) Class

" The CArgDescriptions Constructor

" Describing Argument Attributes

" Argument Types

" Restricting the Input Argument Values

" Implementing User-defined Restrictions Using the CArgAllow Class

" Using CArgDescriptions in Applications

" Generating a USAGE Message

! The CArgs (*) Class: A Container Class for CArgValue (*) Objects

! CArgValue (*) Class: The Internal Representation of Argument Values

! Code Examples

Namespace, Name Concatenation, and Compiler-specific Macros

! NCBI Namespace

! Other Namespace Macros

! Name Concatenation

! Compiler-specific Macros

Using the CNcbiRegistry Class

! Working with the Registry Class: CNcbiRegistry

! Syntax of the Registry Configuration File

! Search Order for Initialization (*.ini) Files

! Setting Persistency and Modifiability of Registry Parameters Using

CNcbiRegistry::EFlags

! Main Methods of CNcbiRegistry

! Additional Registry Methods

Portable Stream Wrappers

Working with Diagnostic Streams (*)

! Setting Diagnostic Severity Levels

! Diagnostic Messages Filtering

! Controlling Appearance of Diagnostic Message Using Post Flags

! Defining the Output Stream

! The Message Buffer

! Error Codes and Their Descriptions

" Preparing an Error Message File

" Using Error Codes in a Program

! Defining Custom Handlers Using CDiagHandler

! The ERR_POST Macro

! The _TRACE macro

! Example Usage of the CNcbiDiag Class

Debug Macros

Handling Exceptions

Page 2

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Defining the Standard NCBI C++ Types and Their Limits

" Headers Files Containing Portability Definitions

" Built-in Integral Types

" Auxiliary Types

" Fixed-Size Integer Types

" The "Ncbi_BigScalar" Type

" Encouraged and Discouraged Types

! Understanding Smart Pointers: the CObject and CRef Classes

" STL auto_ptrs

" The CRef (*) Class

" The CObject (*) Class

" The CObjectFor (*) Class: Using Smart Pointers for Standard Types

" When to Use CRefs and auto_ptrs

" CRef Pitfalls

Inadvertent Object Destruction

! Atomic Counters

! Portable Mechanisms for Loading DLLs

" CDll Constructor

" CDll Basename

" Other CDll Methods

! Executing Commands and Spawing Processes Using the CExec Class

" Executing a System Command Using the System() Method

" Defining Spawned Process Modes (EMode Type)

" Spawning a Process Using SpawnX() Methods

" Waiting for a Process to Terminate Using the Wait() Method

! Implementing Parallelism Using Threads and Synchronization Mechanisms

" Using Threads

" CThread (*) Class Public Methods

" CThread (*) Class Protected Methods

" Thread Life Cycle

" Referencing Thread Objects

" Thread Local Storage (CTls<> class [*])

" Mutexes

CMutex

CFastMutex

SSystemMutex and SSystemFastMutex

CMutexGuard and CFastMutexGuard

Lock Classes

! CRWLock

Page 3

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! CAutoRW

! CReadLockGuard

! CWriteLockGuard

! CInternalRWLock

! CSemaphore

! Working with File and Directories Using CFile and CDir

" CDirEntry Class

" CFile Class

" CDir Class

" CMemoryFile Class

! String APIs

" String Constants

" NStr Class

" UTF Strings

" PCase and PNocase

! Portable Time Class

" CTime Class Constructors

" Other CTime Methods

! Template Utilities

" Function Objects

" Template Functions

! Miscellaneous Types and Macros

" Miscellaneous Enumeration Types

" AutoPtr Class

" ITERATE Macros

" Sequence Position Types

! Containers

" template<typename Coordinate> class CRange

Typedefs

Methods

" template<typename Object, typename Coordinate = int> class CRangeMap

" template<typename Object, typename Coordinate = int> class CRangeMultiMap

" class CIntervalTree

! Thread Pools

! CThreadPool

! CThreadPool_Task

! CThreadPool_Thread

! CThreadPool_Controller

! CThreadPool_Controller_PID

Page 4

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Miscellaneous Classes

" class CTempString

" class CChecksum

! Input/Output Utility Classes

" class CIStreamBuffer

" class COStreamBuffer

" class CByteSource

" class CStreamByteSource

" class CFStreamByteSource

" class CFileByteSource

" class CMemoryByteSource

" class CByteSourceReader

" class CSubSourceCollector

Demo Cases [src/sample/app/basic]

Writing a Simple Application

This section discusses how to write a simple application using the CNcbiApplication and

related class. A conceptual understanding of the uses of the CNcbiApplication and related

classes is presented in the introductory chapter on the C++ Toolkit.

This section discusses the following topics:

! Basic Classes of the NCBI C++ Toolkit

! Creating a Simple Application

! Inside the NCBI Application Class

NCBI C++ Toolkit Application Framework Classes

The following five fundamental classes form the foundation of the C++ Toolkit:

! CNcbiApplication

! CNcbiArguments (see also CArgDescriptions, CArgs, ...)

! CNcbiEnvironment

! CNcbiRegistry

! CNcbiDiag

Each of these classes is discussed in the following sections:

CNcbiApplication—CNcbiApplication is an abstract class used to define the basic

functionality and behavior of an NCBI application. Because this application class effectively

supersedes the C-style main() function, minimally, it must provide the same functionality, i.e.:

! a mechanism to execute the actual application

! a data structure for holding program command-line arguments ("argv")

! a data structure for holding environment variables

Page 5

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic

In addition, the application class provides the same features previously implemented in the C

Toolkit, namely:

! mechanisms for specifying where, when, and how errors should be reported

! methods for reading, accessing, modifying, and writing information in the application's

registry (configuration) file

! methods to describe, and then automatically parse, validate, and access program

command-line arguments and to generate the USAGE message

The mechanism to execute the application is provided by CNcbiApplication's member function

Run(), for which you must write your own implementation. The Run() function will be

automatically invoked by CNcbiApplication::AppMain(), after it has initialized its

CNcbiArguments, CNcbiEnvironment, CNcbiRegistry, and CNcbiDiag data members.

CNcbiArguments— The CNcbiArguments class provides a data structure for holding the

application's command-line arguments, along with methods for accessing and modifying these.

Access to the argument values is implemented using the built-in [] operator. For example, the

first argument in argv (following the program name) can be retrieved using the

CNcbiApplication::GetArguments() method:

string arg1_value = GetArguments()[1];

Here, GetArguments() returns the CNcbiArguments object, whose argument values can then

be retrieved using the [] operator. Four additional CNcbiArguments member functions support

retrieval and modification of the program name (initially argv[0]). A helper class, described

in Processing Command-Line Arguments, supports the generation of USAGE messages and

the imposition of constraints on the values of the input arguments.

In addition to the CNcbiArguments class, there are other related classes used for argument

processing. The CArgDescriptions and CArgDesc classes are used for describing unparsed

arguments; CArgs and CArgValue for parsed argument values; CArgException and

CArgHelpException for argument exceptions; and CArgAllow, CArgAllow_{Strings, ...,

Integers, Doubles} for argument constraints. These classes are discussed in the section on

Processing Command-Line Arguments.

When using the C++ Toolkit on the Mac OS, you can specify command-line arguments in a

separate file with the name of your executable and ".args" extension. Each argument should

be on a separate line (see Table 1).

CNcbiEnvironment— The CNcbiEnvironment class provides a data structure for storing,

accessing, and modifying the environment variables accessed by the C library routine getenv

().

The following describes the public interface to the CNcbiEnvironment:

class CNcbiEnvironment

{

public:

 /// Constructor.

Page 6

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiArguments.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiEnvironment.html

 CNcbiEnvironment(void);

 /// Constructor with the envp parameter.

 CNcbiEnvironment(const char* const* envp);

 /// Destructor.

 virtual ~CNcbiEnvironment(void);

 /// Reset environment.

 ///

 /// Delete all cached entries, load new ones from "envp" (if not NULL).

 void Reset(const char* const* envp = 0);

 /// Get environment value by name.

 ///

 /// If environmnent value is not cached then call "Load(name)" to load

 /// the environmnent value. The loaded name/value pair will then be

 /// cached, too, after the call to "Get()".

 const string& Get(const string& name) const;

};

For example, to retrieve the value of environment variable PATH:

string arg1_value = GetEnvironment().Get("PATH");

In this example, the GetEnvironment() is defined in the CNcbiApplication class and returns

the CNcbiEnvironment object for which the Get() method is called with the environment

variable PATH.

To delete all of the cached entries and reload new ones from the environment pointer (envp),

use the CNcbiEnvironment::Reset() method.

CNcbiRegistry— The CNcbiRegistry class is used to load, access, modify, and store runtime

information read from a configuration file. Previously, these files were by convention

named .*rc files on UNIX systems. The convention for all platforms now is to name such files

*.ini (where * is by default the application name).

The name of the configuration file is specified by argument conf of

CNcbiApplication::AppMain() (see Table 2).

Page 7

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html

On success, you can access the loaded configuration (registry) using the method

CNcbiApplication::GetConfig(). The application will show an exception if the config file is

found, it is not empty, and either cannot be opened or contains invalid entries. If conf is not

NULL and the config file cannot be found, then a warning will be posted to the application

diagnostic.

Additional details for the CNcbiRegistry can be found in the section on The CNcbiRegistry

Class.

CNcbiDiag— The CNcbiDiag class implements much of the functionality of the NCBI C

Toolkit error-processing mechanisms. Each instance of CNcbiDiag has a private buffer to

handle a single message, along with a private severity level and post flags and their associated

get/set methods. A CNcbiDiag object has the look and feel of an output stream; its member

functions and friends include output operators >> and format manipulators. The default is to

post errors to stderr, with the action determined by the severity level of the message; however,

the user can provide another stream to post to or create an arbitrary callback to do the job, or

just ignore all diagnostics. See also the sections on Diagnostic Streams and Message Posting.

Creating a Simple Application

This section discusses the following topics:

! UNIX Systems

! MS Windows

! Discussion of the Sample Application

UNIX Systems—Using the new_project shell script, create a new project sample in the folder

sample:

new_project sample app

This will create:

1 the project folder - sample

2 the source file - sample.cpp

3 the makefile - Makefile.sample_app

Then build the project and run the application:

cd sample; make -f Makefile.sample_app; ./sample

MS Windows

1 In Microsoft Visual Studio, create a new project/workspace: choose Win32 Console

Application; then supply a Project name (such as Sample) and select OK; then choose

An empty project and select Finish.

2 Copy the sample source file into the project directory, rename it, and then add to the

project.

3 Modify the project settings:

! Enable Run-time type information (in C/C++ - C++ language).

! Disable using precompiled headers (in C/C++ - Precompiled headers).

Page 8

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiApplication.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic/basic_sample.cpp

! Add additional include directory (in C/C++ - Preprocessor). Here, at NCBI,

it could be \\snowman\win-coremake\Lib\Ncbi\CXX_Toolkit\msvc71

\cxx.production\cxx\include, that is, the "root" of all includes.

! Add an additional library path (Link-Input). Here, at NCBI it could be \

\snowman\win-coremake\Lib\Ncbi\CXX_Toolkit\msvc71\cxx\lib\static

\Debug. Please note, this library path is configuration dependent, that is, it

must be different for each configuration of the project you are going to build.

! Remove all standard libraries in Link-Input-Object/library modules. Add

standard system library dbghelp.lib.

! Add xncbi.lib NCBI library to the project.

4 Build the project and run the application.

Discussion of the Sample Application—In the sample application above:

1 There is an application class derived from CNcbiApplication, which overrides the

purely virtual function Run() as well as the initialization (Init()) and cleanup (Exit())

functions:

class CSampleApplication : public CNcbiApplication

{

private:

virtual void Init(void);

virtual int Run(void);

virtual void Exit(void);

};

1 The program's main function creates an object of the application class and calls its

AppMain() function:

int main(int argc, const char* argv[])

{

CSampleApplication theApp;

// Execute main application function

theApp.AppMain(argc, argv, 0, eDS_Default, 0);

}

1 The application's initialization function creates an argument descriptions object,

which describes the expected command-line arguments and the usage context:

void CSampleApplication::Init(void)

{

// Create command-line argument descriptions

auto_ptr<CArgDescriptions> arg_desc(new CArgDescriptions);

// Specify USAGE context

arg_desc->SetUsageContext(GetArguments().GetProgramBasename(),

"CArgDescriptions demo program");

...

// Setup arg.descriptions for this application

SetupArgDescriptions(arg_desc.release());

}

1 The application's Run() function prints those arguments into the standard output

stream or in a file.

More realistic examples of applications that use the NCBI C++ Toolkit are available.

Page 9

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/basic/basic_sample.cpp

Inside the NCBI Application Class

Here is a somewhat simplified view of the application's class definition:

class CNcbiApplication

{

public:

 /// Main function (entry point) for the NCBI application.

 ///

 /// You can specify where to write the diagnostics

 /// to (EAppDiagStream), and where to get

 /// the configuration file (LoadConfig()) to load

 /// to the application registry (accessible via GetConfig()).

 ///

 /// Throw exception if:

 /// - not-only instance

 /// - cannot load explicitly specified config.file

 /// - SetupDiag() throws an exception

 ///

 /// If the application name is not specified, a default of "ncbi" is

used.

 /// Certain flags such as -logfile, -conffile, and -version are

 /// special, so AppMain() processes them separately.

 /// @return

 /// Exit code from Run(). Can also return a non-zero value if

 /// the application threw an exception.

 /// @sa

 /// Init(), Run(), Exit()

 int AppMain(int argc, const char **argv, const char **envp,

Page 10

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 EAppDiagStream diag, const char* config, const string& name);

 /// Initialize the application.

 ///

 /// The default behavior of this is "do nothing". If you have

 /// special initialization logic that needs to be performed,

 /// then you must override this method with your own logic.

 virtual void Init(void);

 /// Run the application.

 ///

 /// It is defined as a pure virtual method -- so you must(!)

 /// supply theRun() method to implement the

 /// application-specific logic.

 /// @return

 /// Exit code.

 virtual int Run(void) = 0;

 /// Cleanup on application exit.

 ///

 /// Perform cleanup before exiting. The default behavior of this

 /// is "do nothing". If you have special cleanup logic that needs

 /// to be performed, then you must override this method with

 /// your own logic.

 virtual void Exit(void);

 /// Get the application's cached unprocessed command-line

Page 11

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 /// arguments.

 const CNcbiArguments& GetArguments(void) const;

 /// Get parsed command-line arguments.

 ///

 /// Get command-line arguments parsed according to the arg

 /// descriptions set by SetArgDescriptions(). Throw exception

 /// if no descriptions have been set.

 /// @return

 /// The CArgs object containing parsed cmd.-line arguments.

 /// @sa

 /// SetArgDescriptions().

 const CArgs& GetArgs(void) const;

 /// Get the application's cached environment.

 const CNcbiEnvironment& GetEnvironment(void) const;

 /// Get the application's cached configuration parameters.

 const CNcbiRegistry& GetConfig(void) const;

 /// Flush the in-memory diagnostic stream (for "eDS_ToMemory"

 /// case only).

 ///

 /// In case of "eDS_ToMemory", the diagnostics is stored in

 /// the internal application memory buffer ("m_DiagStream").

 /// Call this function to dump all the diagnostics to stream "os" and

 /// purge the buffer.

 /// @param os

 /// Output stream to dump diagnostics to. If it is NULL, then

Page 12

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 /// nothing will be written to it (but the buffer will still be

 /// purged).

 /// @param close_diag

 /// If "close_diag" is TRUE, then also destroy "m_DiagStream".

 /// @return

 /// Total number of bytes actually written to "os".

 SIZE_TYPE FlushDiag(CNcbiOstream* os, bool close_diag = false);

 /// Get the application's "display" name.

 ///

 /// Get name of this application, suitable for displaying

 /// or for using as the base name for other files.

 /// Will be the 'name' argument of AppMain if given.

 /// Otherwise will be taken from the actual name of the

 /// application file or argv[0].

 string GetProgramDisplayName(void) const;

protected:

 /// Setup application specific diagnostic stream.

 ///

 /// Called from SetupDiag when it is passed the eDS_AppSpecific

 /// parameter. Currently, this calls SetupDiag(eDS_ToStderr) to setup

 /// diagonistic stream to the std error channel.

 /// @return

 /// TRUE if successful, FALSE otherwise.

 virtual bool SetupDiag_AppSpecific(void);

Page 13

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 /// Load configuration settings from the configuration file to

 /// the registry.

 ///

 /// Load (add) registry settings from the configuration file

 /// specified as the "conf" arg passed to AppMain(). The

 /// "conf" argument has the following special meanings:

 /// - NULL -- don't even try to load the registry from any

 /// file at all;

 /// - non-empty -- if "conf" contains a path, then try to load

 /// from theconf.file of name "conf" (only!). Else -

 /// see NOTE.

 /// TIP: if the path is not fully qualified then:

 /// if it starts from "../" or "./" -- look

 /// starting from the current working dir.

 /// - empty -- compose conf.file name from the application

 /// name plus ".ini". If it does not match an existing

 /// file, then try to strip file extensions, e.g., for

 /// "my_app.cgi.exe" -- try subsequently:

 /// "my_app.cgi.exe.ini", "my_app.cgi.ini",

 /// "my_app.ini".

 ///

 /// NOTE:

 /// If "conf" arg is empty or non-empty, but without path, then

 /// config file will be sought for in the following order:

 /// - in the current work directory;

 /// - in the dir defined by environment variable "NCBI";

Page 14

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 /// - in the user home directory;

 /// - in the program dir.

 ///

 /// Throw an exception if "conf" is non-empty, and cannot open

 /// file.

 /// Throw an exception if file exists, but contains invalid entries.

 /// @param reg

 /// The loaded registry is returned via the reg parameter.

 /// @param conf

 /// The configuration file to loaded the registry entries from.

 /// @return

 /// TRUE only if the file was non-NULL, found and successfully

 /// read.

 virtual bool LoadConfig(CNcbiRegistry& reg, const string* conf);

};

The AppMain() function is also inherited from the parent class. Although this function accepts

up to six arguments, this example passes only the first two, with missing values supplied by

defaults. The remaining four arguments specify:

! (#3) a NULL-terminated array of '\0'-terminated character strings from which the

environment variables can be read

! (#4) how to setup a diagnostic stream for message posting

! (#5) the name of a .ini configuration file (see above for its default location)

! (#6) a program name (to be used in lieu of argv[0])

To avoid the display of a warning message when no configuration file is present, the .ini file

should be explicitly specified as NULL (zero), as in:

AppMain (argc, argv, envp, diag_stream, 0, progname);

AppMain() begins by resetting the internal data members with the actual values provided by

the arguments of main(). Once these internal data structures have been loaded, AppMain() calls

the virtual functions Init(), Run(), and Exit() in succession to execute the application.

Page 15

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

The Init() and Exit() virtual functions are provided as places for developers to add their own

methods for specific applications. Because this example does not require any additional

initialization/termination, these two functions are empty. The Run() method prints out the

message defined in justApp.cpp and exits.

The FlushDiag() method is useful if the diagnostic stream has been set to eDS_toMemory,

which means that diagnostic messages are stored in an internal application memory buffer.

You can then call FlushDiag() to output the stored messages on the specified output stream.

The method will also return the number of bytes written to the output stream. If you specify

NULL for the output stream, the memory buffers containing the diagnostic messages will be

purged but not deallocated, and nothing will be written to the output. If the close_diag parameter

to FlushDiag() is set to TRUE, then the memory buffers will be deallocated (and purged, of

course).

The GetProgramDisplayName() method simply returns the name of the running application,

suitable for displaying in reports or for using as the base name for building other related file

names.

The protected virtual function SetupDiag_AppSpecific() can be redefined to set up error

posting specific for your application. SetupDiag_AppSpecific() will be called inside AppMain

() by default if the error posting has not been set up already. Also, if you pass diag =

eDS_AppSpecific to AppMain(), then SetupDiag_AppSpecific() will be called for sure,

regardless of the error posting setup that was active before the AppMain() call.

The protected virtual function LoadConfig() reads the program's .ini configuration file to load

the application's parameters into the registry. The default implementation of LoadConfig()

expects to find a configuration file named progname.ini and will generate a warning to the user

if no such file is found.

The NCBI application (application built by deriving from CNcbiApplication) throws the

exception CAppException when any of the following conditions are true:

! Command-line argument description cannot be found and argument descriptions have

not been disabled (via call to protected method DisableArgDescription().

! Application diagnostic stream setup has failed.

! Registry data failed to load from a specified configuration file.

! An attempt is made to create a second instance of the CNcbiApplication (at any time,

only one instance can be running).

! The specified configuration file cannot be opened.

As shown above, source files that utilize the CNcbiApplication class must #include the header

file where that class is defined, corelib/ncbiapp.hpp, in the include/ directory. This header file

in turn includes corelib/ncbistd.hpp, which should always be #include'd.

Processing Command-Line Arguments

This section discusses the classes that are used to process command-line arguments. A

conceptual overview of these classes is covered in an introductory section. This section

discusses these classes in detail and gives sample programs that use these classes.

This section discusses the following topics:

! Capabilities of the Command-Line API

! The Relationships between the CArgDescriptions, CArgs, and CArgValue Classes

Page 16

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Command-Line Syntax

! The CArgDescriptions Class

! The CArgs Class: A Container Class for CArgValue Objects

! CArgValue Class: The Internal Representation of Argument Values

! Code Examples

Capabilities of the Command-Line API

The set of classes for argument processing implement automated command-line parsing.

Specifically, these classes allow the developer to:

! Specify attributes of expected arguments, such as name, synopsis, comment, data type,

etc.

! validate values of the arguments passed to the program against these specifications

! validate the number of positional arguments in the command line

! generate a USAGE message based on the argument descriptions

NOTE: -h flag to print the USAGE is defined by default.

! access the input argument values specifically typecast according to their descriptions

Normally, a CArgDescriptions object that contains the argument description is required and

should be created in the application's Init() function before any other initialization. Otherwise,

CNcbiApplication creates a default one, which allows any program that uses the NCBI C++

Toolkit to provide some standard command -line options, namely:

! to obtain a general description of the program as well as description of all available

command line parameters (-h flag)

! to redirect the program's diagnostic messages into a specified file (-logfile key)

! to read the program's configuration data from a specified file (-conffile key)

See Table 3 for the standard command-line options for the default instance of

CArgDescriptions.

To avoid creation of a default CArgDescriptions object that may not be needed, for instance

if the standard flags described in Table 3 are not used, one should call the

CNcbiApplication::DisableArgDescriptions() function from an application object constructor.

It is also possible to use the CNcbiApplication::HideStdArgs(THideStdArgs hide_mask)

method to hide description of the standard arguments (-h, -logfile, -conffile) in the USAGE

message. Please note: This only hides the description of these flags; it is still possible to use

them.

The Relationships between the CArgDescriptions, CArgs, and CArgValue Classes

The CArgDescriptions class provides an interface to describe the data type and attributes of

command-line arguments via a set of AddXxx() methods. Additional constraints on the

argument values can be imposed using the SetConstraint() method. The CreateArgs() method

is passed the values of all command-line arguments at runtime. This method verifies their

overall syntactic structure and matches their values against the stored descriptions. If the

arguments are parsed successfully, a new CArgs object is returned by CreateArgs().

The resulting CArgs object will contain parsed, verified, and ready-to-use argument values,

which are stored as CArgValue. The value of a particular argument can be accessed using the

argument's name (as specified in the CArgDescriptions object), and the returned CArgValue

Page 17

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

object can then be safely type-cast to a correct C++ type (int, string, stream, etc.) because the

argument types have been verified. These class relations and methods can be summarized

schematically as shown in Figure 1.

The last statement in this example implicitly references a CArgValue object, in the value

returned when the [] operator is applied to myArgs. The method CArgValue::AsDouble() is

then applied to this object to retrieve a double.

Command-Line Syntax

This API can describe and work with command-line arguments that fit the following profile:

progname {arg_key, arg_key_opt, arg_key_dflt, arg_flag} [--]

 {arg_pos} {arg_pos_opt, arg_pos_dflt}

 {arg_extra} {arg_extra_opt}

where:

arg_key -<key> <value> -- (mandatory)

arg_key_opt [-<key> <value>] -- (optional, without default value)

arg_key_dflt [-<key> <value>] -- (optional, with default value)

arg_flag -<flag> -- (always optional)

-- optional delimiter to indicate the beginning of pos. args

arg_pos <value> -- (mandatory)

arg_pos_opt [<value>] -- (optional, without default value)

arg_pos_dflt [<value>] -- (optional, with default value)

arg_extra <value> -- (dep. on the constraint policy)

arg_extra_opt [<value>] -- (dep. on the constraint policy)

and: <key> must be followed by <value> In all cases '-<key> <value>' is equivalent to '-

<key>=<value>'. If '=' is used as separator, the value can be empty ('-<key>='). For arguments

with a single-char name fOptionalSeparator flag can be set. In this case the value can be

specified without any separator: -<k><value>

NOTE: No other argument's name can start with the same char to avoid conflicts. <flag> and

<key> are case-sensitive, and they can contain only alphanumeric characters and dash ('-').

Only one leading dash is allowed. The leading dash can be used to create arguments which

look like --<key> in the command line. <value> is an arbitrary string (additional constraints

can be applied in the argument description, see "EType") {arg_pos***} and {arg_extra***}

-- position-dependent arguments, with no tag preceding them. {arg_pos***} -- have individual

names and descriptions (see methods AddPositional***). {arg_extra***} have one description

for all (see method AddExtra). User can apply constraints on the number of mandatory and

optional {arg_extra***} arguments.

Examples:

Page 18

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

MyProgram1 -reverse -depth 5 -name Lisa -log foo.log 1.c 2.c 3.c

MyProgram2 -i foo.txt -o foo.html -color red

MyProgram3 -a -quiet -pattern 'Error:' bar.txt

MyProgram4 -int-value=5 -str-value= -kValue

The CArgDescriptions (*) class

CArgDescriptions contains a description of unparsed arguments, that is, user-specified

descriptions that are then used to parse the arguments. CArgDescriptions is used as a container

to store the command-line argument descriptions. The argument descriptions are used for

parsing and verifying actual command-line arguments.

The following is a list of topics discussed in this section:

! The CArgDescriptions Constructor

! Describing Argument Attributes

! Argument Types

! Restricting the Input Argument Values

! Implementing User-defined Restrictions Using the CArgAllow Class

! Using CArgDescriptions in Applications

! Generating a USAGE Message

The CArgDescriptions Constructor— The constructor for CArgDescriptions accepts a

Boolean argument, auto_help, set to TRUE by default.

CArgDescriptions(bool auto_help = true);

If "auto_help" is passed TRUE, then a special flag "-h" will be added to the list of accepted

arguments, and passing "-h" in the command line will print out USAGE and ignore all other

passed arguments.

Describing Argument Attributes—CNcbiArguments contains many methods, called

AddXxx(). The "Xxx" refers to the types of arguments, such as mandatory key (named)

arguments, optional key arguments, positional arguments, flag arguments, etc. For example,

the AddKey() method refers to adding a description for a mandatory key argument.

The methods for AddXxx() are passed the following argument attributes:

! name, the string that will be used to identify the variable, as in: CArgs[name]. For all

tagged variables in a command line, name is also the key (or flag) to be used there, as

in: "-name value" (or "-name").

! synopsis, for key_*** arguments only. The automatically generated USAGE message

includes an argument description in the format: -name [synopsis] <type, constraint>

comment.

! comment, to be displayed in the USAGE message, as described above.

! value type, one of the scalar values defined in the EType enumeration, which defines

the type of the argument.

Page 19

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html

! default, for key_dflt and pos_dflt arguments only. A default value to be used if the

argument is not included in the command line (only available for optional program

arguments).

! flags, the flags argument, to provide additional control of the arguments' behavior.

Argument Types—The CArgDescriptions class enables registration of command-line

arguments that fit one of the following pattern types:

Mandatory named arguments:-<key> <value> (example: -age 31) Position-independent

arguments that must be present in the command line. AddKey (key, synopsis, comment,

value_type, flags)

Optional named arguments:[-<key> <value>] (example: -name Lisa) Position-independent

arguments that are optional. AddOptionalKey (key, synopsis, comment, value_type, flags) A

default value can be specified in the argument's description to cover those cases where the

argument does not occur in the command line. AddDefaultKey (key, synopsis, comment,

value_type, default_value, flags)

Optional named flags:[-<flag>] (example: -reverse) Position-independent boolean (without

value) arguments. These arguments are always optional. AddFlag (flag, comment, set_value)

Mandatory named positional arguments:<value> (example: 12 Feb) These are position-

dependent arguments (of any type), which are read using a value only. They do, however, have

names stored with their descriptions, which they are associated with in an order-dependent

fashion. Specifically, the order in which untagged argument descriptions are added to the

CArgDescriptions object using AddPositional() defines the order in which these arguments

should appear in the command line. AddPositional (key, comment, value_type, flags)

Optional named positional arguments:[value] (example: foo.txt bar) Position-dependent

arguments that are optional. They always go after the mandatory positional arguments. The

order in which untagged argument descriptions are added to the CArgDescriptions object using

Add[Optional|Default]Positional() defines the order in which these arguments should appear

in the command line. AddOptionalPositional (key, comment, value_type, flags)

AddDefaultPositional (key, comment, value_type, default_value, flags)

Unnamed positional arguments (all of the same type: <value1> | [valueN] (example: foo.c

bar.c xxx.c). These are also position-dependent arguments that are read using a value only.

They are expected to appear at the very end of the command line, after all named arguments.

Unlike the previous argument type, however, these arguments do not have individual, named

descriptions but share a single "unnamed" description. You can specify how many mandatory

and how many optional arguments to expect using n_mandatory and n_optional parameters:

AddExtra (n_mandatory, n_optional, comment, type, flags)

Aliases can be created for any arguments. They allow using an alternative argument name in

the command line. However, only the original argument name can be used to access its value

in the C++ code.

Any of the registered descriptions can be tested for existence and/or deleted using the following

CArgDescriptions methods:

bool Exist(const string& name) const;

Page 20

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html

void Delete(const string& name);

These methods can also be applied to the unnamed positional arguments (as a group), using:

Exist(kEmptyStr) and Delete(kEmptyStr).

Restricting the Input Argument Values—Although each argument's input value is

initially loaded as a simple character string, the argument's specified type implies a restricted

set of possible values. For example, if the type is eInteger, then any integer value is acceptable,

but floating point and non-numerical values are not. The EType enumeration quantifies the

allowed types and is defined as:

 /// Available argument types.

 enum EType {

 eString = 0, ///< An arbitrary string

 eBoolean, ///< {'true', 't', 'false', 'f'}, case-insensitive

 eInteger, ///< Convertible into an integer number (int)

 eDouble, ///< Convertible into a floating point number (double)

 eInputFile, ///< Name of file (must exist and be readable)

 eOutputFile, ///< Name of file (must be writeable)

 k_EType_Size ///< For internal use only

 };

Implementing User-defined Restrictions Using the CArgAllow Class—It may be

necessary to specify a restricted range for argument values. For example, an integer argument

that has a range between 5 and 10. Further restrictions on the allowed values can be specified

using the CArgDescriptions::SetConstraint() method with the CArgAllow class. For example:

auto_ptr<CArgDescriptions> args(new CArgDescriptions);

// add descriptions for "firstint" and "nextint" using AddXxx(...)

...

CArgAllow* constraint = new CArgAllow_Integers(5,10);

args->SetConstraint("firstInt", constraint);

args->SetConstraint("nextInt", constraint);

Page 21

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgDescriptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow.html

This specifies that the arguments named "firstInt" and "nextInt" must both be in the range [5,

10].

The CArgAllow_Integers class is derived from the abstractCArgAllow class. The constructor

takes the two integer arguments as lower and upper bounds for allowed values. Similarly, the

CArgAllow_Doubles class can be used to specify a range of allowed floating point values. For

both classes, the order of the numeric arguments does not matter, because the constructors will

use min/max comparisons to generate a valid range.

A third class derived from the CArgAllow class is the CArgAllow_Strings class. In this case,

the set of allowed values cannot be specified by a range, but the following construct can be

used to enumerate all eligible string values:

CArgAllow* constraint = (new CArgAllow_Strings())->

 Allow("this)->Allow("that")->Allow("etc");

args.SetConstraint("someString", constraint);

Here, the constructor takes no arguments, and the Allow() method returns this. Thus, a list of

allowed strings can be specified by daisy-chaining a set of calls to Allow(). A bit unusual yet

terser notation can also be used by engaging the comma operator, as in:

args.SetConstraint("someString",

 &(*new CArgAllow_Strings, "this", "that", "etc"));

There are two other pre-defined constraint classes: CArgAllow_Symbols and

CArgAllow_String. If the value provided on the command line is not in the allowed set of

values specified for that argument, then an exception will be generated. This exception can be

caught and handled in the usual manner, as described in the discussion of Generating a USAGE

message.

Using CArgDescriptions in Applications—The description of program arguments

should be provided in the application's Init() function before any other initialization. A good

idea is also to specify the description of the program here:

auto_ptr<CArgDescriptions> arg_desc(new CArgDescriptions);

arg_desc->SetUsageContext(GetArguments().GetProgramBasename(),

 "program's description here");

// Define arguments, if any

...

SetupArgDescriptions(arg_desc.release());

Page 22

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Symbols.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__String.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Integers.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Doubles.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgAllow__Strings.html

The SetUsageContext() method is used to define the name of the program and its description,

which is to be displayed in the USAGE message. As long as the initialization of the application

is completed and there is still no argument description, CNcbiApplication class provides a

"default" one. This behavior can be overridden by calling the DisableArgDescriptions() method

of CNcbiAppliation.

Generating a USAGE Message—One of the functions of the CArgDescriptions object is

to generate a USAGE message automatically (this gives yet another reason to define one).

Once such object is defined, there is nothing else to worry about; CNcbiApplication will do

the job for you. The SetupArgDescriptions() method includes parsing the command-line and

matching arguments against their descriptions. Should an error occur, e.g., a mandatory

argument is missing, the program prints a message explaining what was wrong and terminates.

The output in this case might look like this:

USAGE

 myApp -h -k MandatoryKey [optarg]

DESCRIPTION

 myApp test program

REQUIRED ARGUMENTS

 -k <String>

 This is a mandatory alpha-num key argument

OPTIONAL ARGUMENTS

 -h

 Print this USAGE message; ignore other arguments

 optarg <File_Out>

 This is an optional named positional argument without default

 value

The message shows a description of the program and a summary of each argument. In this

example, the description of the input file argument was defined as:

arg_desc->AddKey("k", "MandatoryKey",

 "This is a mandatory alpha-num key argument",

 CArgDescriptions::eString);

The information generated for each argument is displayed in the format:

me [synopsis] <type [, constraint] > comment [default =]

Page 23

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

The arguments in the USAGE message can be arranged into groups by using SetCurrentGroup

() method of the CArgDescriptions object.

The CArgs (*) Class: A Container Class for CArgValue (*) Objects

The CArgs class provides a data structure where the values of the parsed arguments can be

stored and includes access routines in its public interface. Argument values are obtained from

the unprocessed command-line arguments via the CNcbiArguments class and then verified and

processed according to the argument descriptions defined by the user in CArgDescriptions.

The following describes the public interface methods in CArgs:

class CArgs

{

public:

 /// Constructor.

 CArgs(void);

 /// Destructor.

 ~CArgs(void);

 /// Check existence of argument description.

 ///

 /// Return TRUE if arg 'name' was described in the parent

CArgDescriptions.

 bool Exist(const string& name) const;

 /// Get value of argument by name.

 ///

 /// Throw an exception if such argument does not exist.

 /// @sa

 /// Exist() above.

 const CArgValue& operator[] (const string& name) const;

 /// Get the number of unnamed positional (a.k.a. extra) args.

 size_t GetNExtra(void) const { return m_nExtra; }

 /// Return N-th extra arg value, N = 1 to GetNExtra().

Page 24

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgs.html

 const CArgValue& operator[] (size_t idx) const;

 /// Print (append) all arguments to the string 'str' and return 'str'.

 string& Print(string& str) const;

 /// Add new argument name and value.

 ///

 /// Throw an exception if the 'name' is not an empty string, and if

 /// there is an argument with this name already.

 ///

 /// HINT: Use empty 'name' to add extra (unnamed) args, and they will be

 /// automatically assigned with the virtual names: '#1', '#2', '#3', etc.

 void Add(CArgValue* arg);

 /// Check if there are no arguments in this container.

 bool IsEmpty(void) const;

};

The CArgs object is created by executing the CArgDescriptions::CreateArgs() method. What

happens when the CArgDescriptions::CreateArgs() method is executed is that the arguments

of the command line are validated against the registered descriptions, and a CArgs object is

created. Each argument value is internally represented as a CArgValue object and is added to

a container managed by the CArgs object.

All named arguments can be accessed using the [] operator, as in: myCArgs["f"], where "f"

is the name registered for that argument. There are two ways to access the N-th unnamed

positional argument: myCArgs["#N"] and myCArgs[N], where 1 <= N <= GetNExtra().

CArgValue (*) Class: The Internal Representation of Argument Values

The internal representation of an argument value, as it is stored and retrieved from its CArgs

container, is an instance of a CArgValue. The primary purpose of this class is to provide type-

validated loading through a set of AsXxx() methods where "Xxx" is the argument type such

as "Integer", "Boolean", "Double", etc. The following describes the public interface methods

in CArgValue:

class CArgValue : public CObject

{

public:

Page 25

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCArgValue.html

 /// Get argument name.

 const string& GetName(void) const { return m_Name; }

 /// Check if argument holds a value.

 ///

 /// Argument does not hold value if it was described as optional argument

 /// without default value, and if it was not passed a value in the

command

 /// line. On attempt to retrieve the value from such "no-value"

argument,

 /// exception will be thrown.

 virtual bool HasValue(void) const = 0;

 operator bool (void) const { return HasValue(); }

 bool operator!(void) const { return !HasValue(); }

 /// Get the argument's string value.

 ///

 /// If it is a value of a flag argument, then return either "true"

 /// or "false".

 /// @sa

 /// AsInteger(), AsDouble(), AsBoolean()

 virtual const string& AsString(void) const = 0;

 /// Get the argument's integer value.

 ///

 /// If you request a wrong value type, such as a call to "AsInteger()"

 /// for a "boolean" argument, an exception is thrown.

 /// @sa

 /// AsString(), AsDouble, AsBoolean()

 virtual int AsInteger(void) const = 0;

Page 26

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 /// Get the argument's double value.

 ///

 /// If you request a wrong value type, such as a call to "AsDouble()"

 /// for a "boolean" argument, an exception is thrown.

 /// @sa

 /// AsString(), AsInteger, AsBoolean()

 virtual double AsDouble (void) const = 0;

 /// Get the argument's boolean value.

 ///

 /// If you request a wrong value type, such as a call to "AsBoolean()"

 /// for a "integer" argument, an exception is thrown.

 /// @sa

 /// AsString(), AsInteger, AsDouble()

 virtual bool AsBoolean(void) const = 0;

 /// Get the argument as an input file stream.

 virtual CNcbiIstream& AsInputFile (void) const = 0;

 /// Get the argument as an output file stream.

 virtual CNcbiOstream& AsOutputFile(void) const = 0;

 /// Close the file.

 virtual void CloseFile (void) const = 0;

};

Each of these AsXxx() methods will access the string storing the value of the requested

argument and attempt to convert that string to the specified type, using for example, functions

such as atoi() or atof(). Thus, the following construct can be used to obtain the value of a floating

point argument named "f":

float f = args["f"].AsDouble();

Page 27

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

An exception will be generated with an appropriate error message, if:

! the conversion fails, or

! "f" was described as an optional key or positional argument without default value (i.e.,

using the AddOptional***() method), and it was not defined in the command line.

Note that you can check for this case using the CArgValue::HasValue() method.

Code Examples

A simple application program, test_ncbiargs_sample.cpp demonstrates the usage of these

classes for argument processing. See also test_ncbiargs.cpp (especially main(), s_InitTest0()

and s_RunTest0() there), and asn2asn.cpp for more examples.

Namespace, Name Concatenation, and Compiler-specific Macros

The file ncbistl.hpp provides a number of macros on namespace usage, name concatenation,

and macros for handling compiler-specific behavior.

These topics are discussed in greater detail in the following subsections:

! NCBI Namespace

! Other Name Space Macros

! Name Concatenation

! Compiler Specific Macros

NCBI Namespace

All new NCBI classes must be in the ncbi:: namespace to avoid naming conflicts with other

libraries or code. Rather than enclose all newly defined code in the following, it is, from a

stylistic point of view, better to use specially defined macros such as BEGIN_NCBI_SCOPE,

END_NCBI_SCOPE, USING_NCBI_SCOPE:

namespace ncbi {

 // Indented code etc.

}

The use of BEGIN_NCBI_SCOPE, END_NCBI_SCOPE, and USING_NCBI_SCOPE is

discussed in use of the NCBI name scope.

Other Namespace Macros

The BEGIN_NCBI_SCOPE, END_NCBI_SCOPE, and USING_NCBI_SCOPE macros in

turn use the more general purpose BEGIN_SCOPE(ns), END_SCOPE(ns), and

USING_SCOPE(ns) macros, where the macro parameter ns is the namespace being defined.

All NCBI-related code should be in the ncbi:: namespace so the BEGIN_NCBI_SCOPE,

END_NCBI_SCOPE, and USING_NCBI_SCOPE should be adequate for new NCBI code.

However, in those rare circumstances, if you need to define a new name scope, you can directly

use the BEGIN_SCOPE(ns), END_SCOPE(ns), and USING_SCOPE(ns) macros.

Page 28

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiargs.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiargs_sample.cpp

Name Concatenation

The macros NCBI_NAME2 and NCBI_NAME3 define concatenation of two and three names,

respectively. These are used to build names for program-generated class, struct, or method

names.

Compiler-specific Macros

To cater to the idiosyncrasies of compilers that have non-standard behavior, certain macros are

defined to normalize their behavior.

The BREAK(it) macro advances the iterator to the end of the loop and then breaks out of the

loop for the Sun WorkShop compiler with versions less than 5.3. This is done because this

compiler fails to call destructors for objects created in for-loop initializers. This macro prevents

trouble with iterators that contain CRefs by advancing them to the end using a while-loop, thus

avoiding the "deletion of referenced CObject" errors. For other compilers, BREAK(it) is

defined as the keyword break.

The ICC compiler may fail to generate code preceded by template<>. In this case, use the

macro EMPTY_TEMPLATE instead, which expands to an empty string for the ICC compiler

and to template<> for all other compilers.

For MSVC v6.0, the for keyword is defined as a macro to overcome a problem with for-loops

in the compiler. The local variables in a for-loop initalization are visible outside the loop:

for (int i; i < 10; ++i) {

// scope of i

}

// i should not be visible, but is visible in MSVC 6.0

Another macro called NCBI_EAT_SEMICOLON is used in creating new names that can allow

a trailing semicolon without producing a compiler warning in some compilers.

Using the CNcbiRegistry Class

This section provides reference information on the use of the CNcbiRegistry class. For an

overview of these classes, refer to the introductory chapter.

The following topics are discussed in this section:

! Working with the Registry class: CNcbiRegistry

! Syntax of the Registry Configuration File

! Search Order for Initialization (*.ini) Files

! Setting Persistency and Modifiability of Registry Parameters Using

CNcbiRegistry::EFlags

! Main Methods of CNcbiRegistry

! Additional Registry Methods

Page 29

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Working with the Registry Class: CNcbiRegistry

The CNcbiRegistry class is used to access, modify, and store runtime information read from a

configuration file. The registry classes can be used to perform operations such as reading and

parsing configuration files, searching, and editing the retrieved configuration information and

writing information back to configuration file.

If you are programming in the standard C++ Toolkit framework, using the CNcbiApplication

class, you should definitely read the rules on where the application is looking for the

configuration file and how you can access the loaded application-wide configuration (registry)

from your code. This is described in the earlier discussion on the CNcbiRegistry class.

Syntax of the Registry Configuration File

The configuration file is composed of section headers and "name=value" strings, which occur

within the named sections. It is also possible to include comments in the file, which are

indicated by a new line with a leading semicolon. An example configuration file is shown

below.

Registry file comment (begin of file)

MyProgram.ini

; parameters for section1

[section1]

name1 = value1 and value1.2

n-2.3 = " this value has two spaces at its very beginning and at the end "

name3 = this is a multi\

line value

name4 = this is a single line ended by back slash\\

name5 = all backslashes and \

new lines must be \\escaped\\...

[section2.9-bis]

; This is a comment...

name2 = value2

All comments and empty lines are ignored by the registry file parser. Line continuations, as

usual, are indicated with a backslash escape. More generally, backslashes are processed as:

! [backslash] + [backslash] -- converted into a single [backslash]

! [backslash] + [space(s)] + [EndOfLine] -- converted to an [EndOfLine]

! [backslash] + ["] -- converted into a ["]

Page 30

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiRegistry.html

Character strings with embedded spaces do not need to be quoted, and an unescaped double

quote at the very beginning or end of a value is ignored. All other combinations with [backslash]

and ["] are invalid.

The following restrictions apply to the section and name identifiers occurring in a registry file:

! the string must contain only: [a-z], [A-Z], [0-9], [_.-/] characters

! the interpretation of the string is not case sensitive, e.g., PATH == path == PaTh

! all leading and trailing spaces will be truncated

Search Order for Initialization (*.ini) Files

On Unix platforms if an application dir1/app1 is a symlink to dir2/app2, the search order for

initialization files (*.ini files) will be as shown below:

1 ./app1.ini

2 $NCBI/app1.ini

3 ~/app1.ini

4 dir1/app1.ini

5 dir2/app1.ini

6 ./app2.ini

7 $NCBI/app2.ini

8 ~/app2.ini

9 dir1/app2.ini

10 dir2/app2.ini

Setting Persistency and Modifiability of Registry Parameters Using CNcbiRegistry::EFlags

In addition to the constructor, which initializes the registry in memory and loads parameters

from a file, the CNcbiRegistry class provides methods for saving the registry (as a new

configuration file), and reading in additional parameters from a secondary file(s). Each

"name=value" pair stored in the registry has three attributes, specifying whether or not that

value is:

! persistent, meaning the value will be written to a file when the registry is saved

! overridable meaning the value can be overridden by a new value with the same name

! truncatable meaning that leading and trailing blanks can be truncated from the value

By default, all of the configuration's parameters are persistent, overridable, and truncatable.

The EFlags enumeration that quantifies these attributes, and the related typedefTFlags, are

defined as:

 /// Registry parameter settings.

 ///

 /// A Registry parameter can be either transient or persistent,

 /// overrideable or not overridable, truncatable or not truncatable.

 enum EFlags {

Page 31

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 eTransient = 0x1, ///< Transient -- Wont be saved

 ePersistent = 0x100,///< Persistent -- Saved when file is written

 eOverride = 0x2,///< Existing value can be overriden

 eNoOverride = 0x200, ///< Cannot change existing value

 eTruncate = 0x4,///< Leading, trailing blanks can be truncated

 eNoTruncate = 0x400///< Cannot truncate parameter value

 };

 typedef int TFlags; ///< Binary OR of "EFlags"

TFlags is simply used to clarify that an int derived from a combination (bit-wise OR) of EFlags

is expected - not just an arbitrary "regular" int. Many of CNcbiRegistry's methods take an

optional TFlags argument, which qualifies the selected values with respect to these attributes.

For example, the following code excerpt sets the value of registry entry MyName in section

MySection to "Eugene". In particular, the TFlags argument, derived from the bit-wise OR of

eTruncate and eNoOverride, specifies that (1) all leading and trailing blanks in the new value

should be truncated, and (2) that the new value cannot be applied to override a previous value

if one exists:

CNcbiRegistry reg(.....);

...

reg.Set("MySection", "MyName", " Eugene ",

 CNcbiRegistry::eNoOverride | CNcbiRegistry::eTruncate);

Main Methods of CNcbiRegistry

The CNcbiRegistry class constructor takes two arguments - an input stream to read the registry

from (usually a file), and an optional TFlags argument, where the latter can be used to specify

that all of the values should be stored as transient rather than in the default mode, which is

persistent:

CNcbiRegistry(CNcbiIstream& is, TFlags flags = 0);

Once the registry has been initialized by its constructor, it is also possible to load additional

parameters from other file(s) using the Read() method:

void Read(CNcbiIstream& is, TFlags flags = 0);

Valid flags for the Read() method include eTransient and eNoOverride. The default is for all

values to be read in as persistent, with the capability of overriding any previously loaded value

associated with the same name. Either or both of these defaults can be modified by specifying

Page 32

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

eTransient, eNoOverride, or (eTransient | eNoOverride) as the flags argument in the above

expression.

The Write() method takes as its sole argument, a destination stream to which only the persistent

configuration parameters will be written.

bool Write(CNcbiOstream& os) const;

The configuration parameter values can also be set directly inside your application, using:

bool Set(const string& section, const string& name,

 const string& value, TFlags flags = 0);

Here, valid flag values include ePersistent, eNoOverride, eTruncate, or any logical combination

of these. If eNoOverride is set and there is a previously defined value for this parameter, then

the value is not reset, and the method returns false.

The Get() method first searches the set of transient parameters for a parameter named name,

in section section, and if this fails, continues by searching the set of persistent parameters.

However, if the ePersistent flag is used, then only the set of persistent parameters will be

searched. On success, Get() returns the stored value. On failure, the empty string is returned.

const string& Get(const string& section, const string& name,

 TFlags flags = 0) const;

Additional Registry Methods

Four additional note-worthy methods defined in the CNcbiRegistry interface are:

bool Empty(void) const;

void Clear(void);

void EnumerateSections(list<string>*sections) const;

void EnumerateEntries(const string& section, list<string>* entries) const;

Empty() returns true if the registry is empty. Clear() empties out the registry, discarding all

stored parameters. EnumerateSections() writes all registry section names to the list of strings

parameter named "sections". EnumerateEntries() writes the list of parameter names in section

to the list of strings parameter named "entries".

Portable Stream Wrappers

Because of differences in the C++ standard stream implementations between different

compilers and platforms, the file ncbistre.hpp contains portable aliases for the standard classes.

To provide portability between the supported platforms, it is recommended the definitions in

ncbistre.hpp be used.

The ncbistre.hpp defines wrappers for many of the standard stream classes and contains

conditional compilation statements triggered by macros to include portable definitions. For

Page 33

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

example, not all compilers support the newer '#include <iostream>' form. In this case, the older

'#include <iostream.h>' is used based on whether the macro NCBI_USE_OLD_IOSTREAM

is defined.

Instead of using the iostream, istream or ostream, you should use the portable CNcbiIostream,

CNcbiIstream and CNcbiOstream. Similarly, instead of using the standard cin, cout, cerr you

can use the more portable NcbiCin, NcbiCout, and NcbiCerr.

The ncbistre.hpp also defines functions that handle platform-specific end of line reads. For

example, Endl() represents platform specific end of line, and NcbiGetline() reads from a

specified input stream to a string, and NcbiGetlineEOL() reads from a specified input stream

to a string taking into account platform specific end of line.

Working with Diagnostic Streams (*)

This section provides reference information on the use of the diagnostic stream classes. For an

overview of the diagnostic stream concepts refer to the introductory chapter.

The CNcbiDiag class implements the functionality of an output stream enhanced with error

posting mechanisms similar to those found in the NCBI C Toolkit. A CNcbiDiag object has

the look and feel of an output stream; its member functions and friends include output operators

and format manipulators. A CNcbiDiag object is not itself a stream, but serves as an interface

to a stream which allows multiple threads to write to the same output. Each instance of

CNcbiDiag includes the following private data members:

! a buffer to store (a single) message text

! a severity level

! a set of post flags

Limiting each instance of CNcbiDiag to the storage and handling of a single message ensures

that multiple threads writing to the same stream will not have interleaving message texts.

The following topics are discussed in this section:

! Setting Diagnostic Severity Levels

! Diagnostic Messages Filtering

! Controlling Appearance of Diagnostic Message using Post Flags

! Defining the Output Stream

! The Message Buffer

! Error codes and their Descriptions

! Defining Custom Handlers using CDiagHandler

! The ERR_POST Macro

! The _TRACE macro

! Example Usage of the CNcbiDiag class

Setting Diagnostic Severity Levels

Each CNcbiDiag instance has its own (EDiagSev) severity level, which is compared to a global

severity threshold to determine whether or not its message should be posted. Six levels of

severity are defined by the EDiagSev enumeration:

Page 34

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiDiag.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDiagSev

/// Severity level for the posted diagnostics.

enum EDiagSev {

 eDiag_Info = 0, ///< Informational message

 eDiag_Warning, ///< Warning message

 eDiag_Error, ///< Error message

 eDiag_Critical, ///< Critical error message

 eDiag_Fatal, ///< Fatal error -- guarantees exit(or abort)

 eDiag_Trace, ///< Trace message

 // Limits

 eDiagSevMin = eDiag_Info, ///< Verbosity level for min. severity

 eDiagSevMax = eDiag_Trace ///< Verbosity level for max. severity

};

The default is to post only those messages whose severity level exceeds the eDiag_Warning

level (i.e. eDiag_Error, eDiag_Critical, and eDiag_Fatal). The global severity threshold for

posting messages can be reset using SetDiagPostLevel (EDiagSev postSev). A parallel

function, SetDiagDieLevel (EDiagSev dieSev), defines the severity level at which execution

will abort.

Tracing is considered to be a special, debug-oriented feature, and therefore messages with

severity level eDiag_Trace are not affected by these global post/die levels. Instead,

SetDiagTrace (EDiagTrace enable, EDiagTrace default) is used to turn tracing on or off. By

default, the tracing is off -- unless you assign the environment variable $DIAG_TRACE to an

arbitrary non-empty string or, alternatively, define a DIAG_TRACE entry in the [DEBUG]

section of your registry file.

diag << Info; // set severity level to eDiag_Infodiag << Warning; // set

severity level to eDiag_Warning

 /// set severity level to eDiag_Error [default]

diag << Error;

 /// set severity level to eDiag_Fatal

diag << Fatal;

 /// set severity level to eDiag_Trace

Page 35

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagDieLevel
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagTrace
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostLevel

diag << Trace;

Diagnostic Messages Filtering

Diagnostic messages from CNcbiDiag or CException class can be filtered by path of the source

file, or by module, class or function name. Messages from CNcbiDiag class can also be filtered

by error code. If prev_exception in CException is set then all exceptions in the chain are

checked against the filter and CException passes if any CException in the chain passes (even

if one of them suppressed by negative condition). Filter can be set by a string from

TRACE_FILTER or POST_FILTER entry in the [DIAG] section of your registry file or during

runtime through SetDiagFilter. Messages with severity level set to eDiag_Fatal are not filtered,

messages with severity level set to eDiag_Trace are filtered by TRACE_FILTER and any other

message filtered by POST_FILTER. Filter string contains filtering conditions separated by

space. Empty filter string means all messages will appear in the log unfiltered. Filtering

conditions are processed from left to right until matched one for the message is found. If the

message does not match any of the conditions, then the message will be filtered out. Filtering

conditions in the string may have exclamation mark on the front, which means negative

behavior (so if a message matches this condition, then it shall be suppressed). See Table 4 for

filtering condition samples and syntax description.

For example:

! To log diagnostic messages from source files located in src/corelib with error codes

from 101 to 106 and any subcode, use the following filter: “/corelib (101-106.)”.

! To exclude log messages from sources in src/serial and src/dbapi, use this filter: “!/

serial !/dbapi”.

! To log messages from sources in src/serial excluding those with error code 802 and

subcode 4 and from 10 to 12, and to exclude messages from sources in src/dbapi/driver,

use the following filter: “/serial !(802.4,10-12) !/dbapi/driver”.

Controlling Appearance of Diagnostic Message using Post Flags

The post flags define additional information that will be inserted into the output messages and

appear along with the message body. The standard format of a message is:

"<file>", line <line>: <severity>: (<err_code>.<err_subcode>)

[<prefix1>::<prefix2>::<prefixN>] <message>\n

<err_code_message\n

<err_code_explanation>

where the each field is displayed (or not) depending on the post flags EDiagPostFlag associated

with the CNcbiDiag:

enum EDiagPostFlag {

 eDPF_File = 0x1, ///< Set by default #if _DEBUG; else not

set

 eDPF_LongFilename = 0x2, ///< Set by default #if _DEBUG; else not

set

Page 36

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagFilter
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDiagPostFlag

 eDPF_Line = 0x4, ///< Set by default #if _DEBUG; else not

set

 eDPF_Prefix = 0x8, ///< Set by default (always)

 eDPF_Severity = 0x10, ///< Set by default (always)

 eDPF_ErrCode = 0x20, ///< Set by default (always)

 eDPF_ErrSubCode = 0x40, ///< Set by default (always)

 eDPF_ErrCodeMessage = 0x100, ///< Set by default (always)

 eDPF_ErrCodeExplanation = 0x200, ///< Set by default (always)

 eDPF_ErrCodeUseSeverity = 0x400, ///< Set by default (always)

 eDPF_DateTime = 0x80, ///< Include date and time

 eDPF_OmitInfoSev = 0x4000,///< No severity indication if

eDiag_Info

 /// Set all flags.

 eDPF_All = 0x3FFF,

 /// Set all flags for using with __FILE__ and __LINE__.

 eDPF_Trace = 0x1F,

 /// Print the posted message only; without severity, location, prefix,

etc.

 eDPF_Log = 0x0,

 /// Ignore all other flags, use global flags.

 eDPF_Default = 0x8000

};

The default message format displays only the severity level and the message body. This can

be overridden inside the constructor for a specific instance of CNcbiDiag, or globally, using

SetDiagPostFlag(EDiagPostFlagflag) on a selected flag.

Defining the Output Stream

All CNcbiDiag objects are associated with a global output stream. The default is to post

messages to cerr ouput stream, but the stream destination can be reset at any time using:

Page 37

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostFlag

SetDiagStream(CNcbiOstream* os, bool quick_flush, FDiagCleanupcleanup, void*

cleanup_data)

This function can be called numerous times, thus allowing different sections of the executable

to write to different files. At any given time however, all CNcbiDiag objects will be associated

with the same global output stream. Because the messages are completely buffered, each

message will appear on whatever stream is active at the time the message actually completes.

And, of course, you can provide (using SetDiagHandler) your own message posting handler

CDiagHandler, which does not necessarily write the messages to a standard C++ output stream.

To preserve compatibility with old code, SetDiagHandler also continues to accept raw callback

functions of type FDiagHandler.

The Message Buffer

The CNcbiDiag message buffer is initialized when the class is first instantiated. Additional

information can then be appended to the message using the overloaded stream operator <<.

Messages can then be terminated explicitly using CNcbiDiag's stream manipulator Endm, or

implicitly, when the CNcbiDiag object exits scope.

Implicit message termination also occurs as a side effect of applying one of the severity level

manipulators. Whenever the severity level is changed, CNcbiDiag also automatically executes

the following two manipulators:

! Endm -- the message is complete and the message buffer will be flushed

! Reset -- empty the contents of the current message buffer

When the message controlled by an instance of CNcbiDiag is complete, CNcbiDiag calls a

global callback function (of type FDiagHandler) and passes the message (along with its severity

level) as the function arguments. The default callback function posts errors to the currently

designated output stream, with the action (continue or abort) determined by the severity level

of the message.

Error codes and their Descriptions

The CNcbiDiag class is capable of posting messages with error codes using the

ErrCodemanipulator. For example:

diag << ErrCode(2,1); // set error code 2, subcode 1

Error codes and subcodes are posted to an output stream only if applicable post flags were set.

In addition to error codes, CNcbiDiag can also post their text explanations. It uses

CDiagErrCodeInfo class to find an error message, which corresponds to a given error code/

subcode. Such descriptions could be specified directly in the program code or placed in a

separate message file. It is even possible to use several such files simultaneously.

CDiagErrCodeInfo can also read error descriptions from any input stream(s), not necessarily

files.

The following additional topics are discussed in the following subsections:

! Preparing an Error Message File

! Using Error Codes in a Program

Preparing an Error Message File—The error message file contains plain ASCII text data.

We would suggest using the .msg extension, but this is not mandatory. For example, the

message file for an application named SomeApp might be called SomeApp.msg.

Page 38

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ErrCode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDiagErrCodeInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagStream
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagCleanup
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDiagHandler.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FDiagHandler

The message file must contain a line with the keyword MODULE in it, followed by the name

of the module (in our example SomeApp). This line must be placed in the beginning of the

file, before any other declarations. Lines with symbol # in the first position are treated as

comments and ignored.

Here is an example of the message file:

This is a message file for application "SomeApp"

MODULE SomeApp

------ Code 1 ------

$$ NoMemory, 1, Fatal : Memory allocation error

------ Code 2 ------

$$ File, 2, Critical : File error

$^ Open, 1 : Error open a specified file

This often indicates that the file simply does not exist.

Or, it may exist but you do not have permission to access

the file in the requested mode.

$^ Read, 2, Error : Error read file

Not sure what would cause this...

$^ Write, 3, Critical

This may indicate that the filesystem is full.

------ Code 3 ------

$$ Math, 3

$^ Param, 20

$^ Range, 3

Lines beginning with $$ define a top-level error code. Similarly, lines beginning with $^ define

subcodes of the top-level error code. In the above example Open is a subcode of File top-level

error, which means the error with code 2 and subcode 1.

Both types of lines have similar structure:

$$/$^ <mnemonic_name>, <code> [, <severity>] [: <message>] \n

[<explanation>]

Page 39

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

where

! mnemonic_name (required) Internal name of the error code/subcode. This is used as

a part of an error name in a program code - so, it should also be a correct C/C++

identifier.

! code (required) Integer identifier of the error.

! severity (optional) This may be supplied to specify the severity level of the error. It

may be specified as a severity level string (valid values are Info, Warning, Error,

Critical, Fatal, Trace) or as an integer in the range from 0 (eDiag_Info) to 5

(eDiag_Trace). While integer values are acceptable, string values are more readable.

If the severity level was not specified or could not be recognized, it is ignored, or

inherited from a higher level (the severity of a subcode becomes the same as the severity

of a top-level error code, which contains this subcode). As long as diagnostic

eDPF_ErrCodeUseSeverity flag is set, the severity level specified in the message file

overrides the one specified in a program, which allows for runtime customization. In

the above example, Critical severity level will be used for all File errors, except Read

subcode, which would have Error severity level.

! message (optional) Short description of the error. It must be a single-line message. As

long as diagnostic eDPF_ErrCodeMessage flag is set, this message is posted as a part

of the diagnostic output.

! explanation (optional) Following a top-level error code or a subcode definition string,

it may be one or several lines of an explanation text. Its purpose is to provide additional

information, which could be more detailed description of the error, or possible reasons

of the problem. This text is posted in a diagnostic channel only if

eDPF_ErrCodeExplanaton flag was set.

Using Error Codes in a Program—Taking a message file as an input, script

msg2hpp.sh could generate a C/C++ header file with macro definitions of error codes. Based

on our example, this script would generate the following:

#ifndef __MODULE_SomeApp__

#define __MODULE_SomeApp__

#define ERR_NoMemory 1,0

#define ERR_Fil 2,0

#define ERR_File_Open 2,1

#define ERR_File_Read 2,2

#define ERR_File_Write 2,3

#define ERR_Math 3,0

#define ERR_Math_Param 3,20

#define ERR_Math_Range 3,3

#endif

Page 40

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/msg2hpp.sh

Having included this file in an application, it is possible to use mnemonic error names:

diag << ErrCode(ERR_File_Open);

instead of their numeric representations:

diag << ErrCode(2,1);

Defining Custom Handlers using CDiagHandler

The user can install his own handler (of type CDiagHandler,) using SetDiagHandler().

CDiagHandler is a simple abstract class:

class CDiagHandler

{

public:

 /// Destructor.

 virtual ~CDiagHandler(void) {}

 /// Post message to handler.

 virtual void Post(const SDiagMessage& mess) = 0;

};

where SDiagMessage is a simple struct defined in ncbidiag.hpp whose data members' values

are obtained from the CNcbiDiag object. The transfer of data values occurs at the time that

Post is invoked. See also the section on Message posting for a more technical discussion.

The ERR_POST Macro

An ERR_POST(message) macro is also available for routine error posting. This macro

implicitly creates a temporary CNcbiDiag object and puts the passed "message" into it with a

default severity of eDiag_Error. A severity level manipulator can be applied if desired, to

modify the message's severity level. For example:

long lll = 345;

ERR_POST("My ERR_POST message, print long: " << lll);

would write to the diagnostic stream something like:

"somefile.cpp", line 111: Error: My ERR_POST message, print long: 345

while:

Page 41

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagHandler
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SDiagMessage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDiagHandler.html

double ddd = 123.345;

ERR_POST(Warning << "...print double: " << ddd);

would write to the diagnostic stream something like:

"somefile.cpp", line 222: Warning: ...print double: 123.345

The _TRACE macro

The _TRACE(message) macro is a debugging tool that allows the user to insert trace statements

that will only be posted if the code was compiled in debug mode, and provided that the tracing

has been turned on. If DIAG_TRACE is defined as an environment variable, or as an entry in

the [DEBUG] section of your configuration file (*.ini), the initial state of tracing is on. By

default, if no such variable or registry entry is defined, tracing is off. SetDiagTrace (EDiagTrace

enable, EDiagTrace default) is used to turn tracing on/off.

Just like ERR_POST, the _TRACE macro takes a message, and the message will be posted

only if tracing has been enabled. For example:

SetDiagTrace(eDT_Disable);

_TRACE("Testing the _TRACE macro");

SetDiagTrace(eDT_Enable);

_TRACE("Testing the _TRACE macro AGAIN");

Here, only the second trace message will be posted, as tracing is disabled when the first

_TRACE() macro call is executed.

Example Usage of the CNcbiDiag class

Normally, one should use ERR_POST() and _TRACE() macro to post messages, and regulate

the severity level by using severity level manipulators, like:

ERR_POST(Info << "A notice" << "Fooo");

ERR_POST(Critical << "Some critical error");

Examples in diag.cpp demonstrate the use of ERR_POST and _TRACE. CTestApp::Run()

begins by testing the ERR_POST and _TRACE macros. Initially, tracing is enabled (from the

registry file), so the first _TRACE message is posted. Tracing is then explicitly disabled, so

the second _TRACE message is not posted.

Next, the global severity level for posting messages is set to the lowest level (eDiag_Info) so

that all but the trace messages will be visible. Trace messages are still disabled by the explicit

call to SetDiagTrace(). Five instances of the CNcbiDiag class are then created, each with an

associated file name, line number, severity level, and enumerated value for the post flags. A

single message, Msg will be posted on all of the diagnostic streams.

myHandler() is then installed to replace the default message handler. The last two messages,

which are created after the new handler has been installed, are handled by myHandler(). The

first of these is a trace message however, and because tracing is now disabled, this message

Page 42

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagTrace

will not be made visible. All of the messages which do not explicitly use the Endm manipulator

are automatically terminated when Run() exits.

Output generated by diag.cpp:

"/home/zimmerma/internal/c++/src/Demos/DiagStream/diag.cpp",

 line 23: Error: My ERR_POST message, print long: 345

"/home/zimmerma/internal/c++/src/Demos/DiagStream/diag.cpp",

 line 26: Warning: ...print double: 123.345

"/home/zimmerma/internal/c++/src/Demos/DiagStream/diag.cpp",

 line 34: Trace: Testing the _TRACE macro

"diag.cpp", line 41: Info: This is a test message

"diag.cpp", line 42: Warning: This is a test message

"diag.cpp", line 43: Error: This is a test message

Installed Handler "diag.cpp", line 45: Critical: This is a test message

Debug Macros

A number of debug macros such as _TRACE, _TROUBLE, _ASSERT, _VERIFY,

_DEBUG_ARG can be used when the _DEBUG macro is defined.

These macros are part of CORELIB. However, they are discussed in a separate chapter on

Debugging, Exceptions, and Error Handling.

Handling Exceptions

The CORELIB defines an extended exception handling mechanism based on the C++

std::exception, but which considerably extends this mechanism to provide a backlog, history

of unfinished tasks, and more meaningful reporting on the exception itself.

While the extended exception handling mechanism is part of CORELIB, it is discussed in a

separate chapter on Debugging, Exceptions, and Error Handling.

Defining the Standard NCBI C++ types and their Limits

The following section provides a reference to the files and limit values used to in the C++

Toolkit to write portable code. An introduction to the scope of some of these portability

definitions is presented the introduction chapter.

The following topics are discussed in this section:

! Headers Files containing Portability Definitions

! Built-in Integral Types

! Auxiliary Types

Page 43

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! Fixed-size Integer Types

! The "Ncbi_BigScalar" Type

! Encouraged and Discouraged Types

Headers Files containing Portability Definitions

! corelib/ncbitype.h -- definitions of NCBI fixed-size integer types

! corelib/ncbi_limits.h -- numeric limits for:

" NCBI fixed-size integer types

" built-in integer types

" built-in floating-point types

! corelib/ncbi_limits.hpp -- temporary (and incomplete) replacement for the Standard C

++ Template Library's API

Built-in Integral Types

We encourage the use of standard C/C++ types shown in Table 5, and we state that the following

assumptions (no less, no more) on their sizes and limits will be valid for all supported platforms:

Auxiliary Types

Use type "bool" to represent boolean values. It accepts one of { false, true }.

Use type "size_t" to represent a size of memory structure, e.g. obtained as a result of sizeof

operation.

Use type "SIZE_TYPE" to represent a size of standard C++ "string", -- this is a portable

substitution for "std::string::size_type".

Fixed-size Integer Types

Sometimes it is necessary to use an integer type which:

! has a well-known fixed size(and lower/upper limits)

! be just the same on all platforms(but maybe a byte/bit order, depending on the processor

architecture)

NCBI C++ standard headers provide the fixed-size integer types shown in Table 6:

In Table 7, the "kM*_*" are constants of relevant fixed-size integer type. They are guaranteed

to be equal to the appropriate preprocessor constants from the old NCBI C headers

("INT*_M*"). Please also note that the mentioned "INT*_M*" are not defined in the C++

headers -- in order to discourage their use in the C++ code.

The "Ncbi_BigScalar" Type

NCBI C++ standard headers also define a special type "Ncbi_BigScalar". The only assumption

that can be made(and used in your code) is that "Ncbi_BigScalar" variable has a size which is

enough to hold any integral, floating-point or pointer variable like "Int8", or "double"("long

double"), or "void*". This type can be useful e.g. to hold a callback data of arbitrary

fundamental type; however, in general, the use of this type is discouraged.

Encouraged and Discouraged Types

For the sake of code portability and for better compatibility with the third-party and system

libraries, one should follow the following set of rules:

Page 44

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbi_limits.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbitype.h

! Use standard C/C++ integer types "char", "signed char", "unsigned char", "short",

"unsigned short", "int", "unsigned int" in any case where the assumptions made for

them in Table 5 are enough.

! It is not recommended to use "long" type unless it is absolutely necessary (e.g. in the

lower-level or third-party code), and even if you have to, then try to localize the use

of "long" as much as possible.

! The same(as for "long") is for the fixed-size types enlisted in Table 6. -- If you have

to use these in your code, try to keep them inside your modules and avoid mixing them

with standard C/C++ types (as in assignments, function arg-by-value passing and in

arithmetic expressions) as much as possible.

! For the policy on other types see in sections "Auxiliary types" and "Floating point

types".

Understanding Smart Pointers: the CObject and CRef Classes

This section provides reference information on the use of CRef and CObject classes. For an

overview of these classes refer to the introductory chapter.

The following is a list of topics discussed in this section:

! STL auto_ptrs

! The CRef Class

! The CObject Class

! The CObjectFor class: using smart pointers for standard types

! When to use CRefs and auto_ptrs

! CRef Pitfalls

STL auto_ptrs

C programmers are well-acquainted with the advantages and pitfalls of using pointers. As is

often the case, the good news is also the bad news:

! memory can be dynamically allocated as needed, but may not be deallocated as needed,

due to unanticipated execution paths;

! void pointers allow heterogeneous function arguments of different types, but type

information may not be there when you need it.

C++ adds some additional considerations to pointer management: STL containers cannot hold

reference objects, so you are left with the choice of using either pointers or copies of objects.

Neither choice is attractive, as pointers can cause memory leaks and the copy constructor may

be expensive.

The idea behind a C++ smart pointer is to create a wrapper class capable of holding a pointer.

The wrapper class's constructors and destructors can then handle memory management as the

object goes in and out of scope. The problem with this solution is that it does not handle multiple

pointers to the same resource properly, and it raises the issue of ownership. This is essentially

what the auto_ptr offers, but this strategy is only safe to use when the resource maps to a single

pointer variable.

For example, the following code has two very serious problems:

Page 45

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=auto_ptr

int* ip = new int(5);

{

 auto_ptr<int> a1(ip);

 auto_ptr<int> a2(ip);

}

*ip = 10/(*ip);

The first problem occurs inside the block where the two auto_ptrs are defined. Both are

referencing the same variable pointed to by yet another C pointer, and each considers itself to

be the owner of that reference. Thus, when the block is exited, the delete[] operation is executed

twice for the same pointer.

Even if this first problem did not occur - for example if only one auto_ptr had been defined -

the second problem occurs when we try to dereference ip. The delete operation occurring as

the block exits has now reset *ip to 0, so an attempt to divide by zero occurs.

The problem with using auto_ptr is that it provides semantics of strict ownership. When an

auto_ptr is destructed, it deletes the object it points to, and therefore the object should not be

pointed to simultaneously by others. Two or more auto_ptrs should not own the same object;

that is, point to the same object. This can occur if two auto_ptrs are initialized to the same

object, as seen in the above example where auto pointers a1 and a2 are both initialized with

ip. In using auto_ptr, the programmer must ensure that situations similar to the above do not

occur.

The CRef (*) Class

These issues are addressed in the NCBI C++ Toolkit by using reference-counted smart pointers:

a resource cannot be deallocated until all references to it have ceased to exist. The

implementation of a smart pointer in the NCBI C++ Toolkit is actually divided between two

classes: CRef and CObject.

The CRef class essentially provides a pointer interface to a CObject, while the CObject actually

stores the data and maintains the reference count to it. The constructor used to create a new

CRef pointing to a particular CObject automatically increments the object's reference count.

Similarly, the CRef destructor automatically decrements the reference count. In both cases

however, the modification of the reference count is implemented by a member function of the

CObject. The CRef class itself does not have direct access to the reference count and contains

only a single data member -- its pointer to a CObject. In addition to the CRef class's constructors

and destructors, its interface to the CObject pointer includes access/mutate functions such as:

bool Empty()

bool NotEmpty()

CObject* GetPointer()

CObject& GetObject()

Page 46

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCRef.html

CObject* Release()

void Reset(CObject* newPtr)

void Reset(void)

operator bool()

bool operator!()

CRefBase& operator=(const CRefBase& ref)

Both the Release() and Reset() functions set the CRef object's m_ptr to 0, thus effectively

removing the reference to its CObject. There are important distinctions between these two

functions however. The Release() method removes the reference without destroying the object,

while the Reset() method may lead to the destruction of the object if there are no other

references to it.

If the CObject's internal reference count is 1 at the time Release() is invoked, that reference

count will be decremented to 0, and a pointer to the CObject is returned. The Release() method

can throw two types of exceptions: (1) a null pointer exception if m_ptr is already 0, and (2)

an Illegal CObject::ReleaseReference() exception if there are currently other references to that

object. An object must be free of all references (but this one) before it can be "released". In

contrast, the Reset(void) function simply resets the CRef's m_ptr to 0, decrements the CObject's

reference count, and, if the CObject has no other references and was dynamically allocated,

deletes the CObject.

Each member function of the CRef class also has a const implementation that is invoked when

the pointer is to a const object. In addition, there is also a CConstRef class that parallels the

CRef class. Both CRef and CConstRef are implemented as template classes, where the template

argument specifies the type of object which will be pointed to. For example, in the section on

Traversing an ASN.1 Data Structure we examined the structure of the CBiostruc class and

found the following type definition

typedef list< CRef< ::CBiostruc_id > > TId;

As described there, this typedef defines TId to be a list of pointers to CBiostruc_id objects.

And as you might expect, CBiostruc_id is a specialized subclass of CObject.

The CObject (*) Class

The CObject class serves as a base class for all objects requiring a reference count. There is

little overhead entailed by deriving a new class from this base class, and most objects in the

NCBI C++ Toolkit are derived from the CObject class. For example, CNCBINode is a direct

descendant of CObject, and all of the other HTML classes descend either directly or indirectly

from CNCBINode. Similarly, all of the ASN.1 classes defined in the include/objects directory,

as well as many of the classes defined in the include/serial directory are derived either directly

or indirectly from the CObject class.

The CObject class contains a single private data member, the reference counter, and a set of

member functions which provide an interface to the reference counter. As such, it is truly a

Page 47

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCConstRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNCBINode.html

base class which has no stand-alone utility, as it does not even provide allocation for data

values. It is the descendant classes, which inherit all the functionality of the CObject class, that

provide the necessary richness in representation and allocation required for the widely diverse

set of objects implemented in the NCBI C++ Toolkit. Nevertheless, it is often necessary to use

smart pointers on simple data types, such as int, string etc. The CObjectFor class, described

below, was designed for this purpose.

The CObjectFor (*) class: using smart pointers for standard types

The CObjectFor class is derived directly from CObject, and is implemented as a template class

whose argument specifies the standard type that will be pointed to. In addition to the reference

counter inherited from its parent class, CObjectFor has a private data member of the

parameterized type, and a member function GetData() to access it.

An example program, smart.cpp, uses the CRef and CObjectFor classes, and demonstrates the

differences in memory management that arise using auto_ptr and CRef. Using an auto_ptr to

reference an int, the program tests whether or not the reference is still accessible after an

auxilliary auto_ptr which goes out of scope has also been used to reference it. The same

sequence is then tested using CRef objects instead.

In the first case, the original auto_ptr, orig_ap, becomes NULL at the moment when ownership

is transferred to copy_ap by the copy constructor. Using CRef objects however, the reference

contained in the original CRef remains accessible (via orig) in all blocks where orig is defined.

Moreover, the reference itself, i.e. the object pointed to, continues to exist until all references

to it have been removed.

When to use CRefs and auto_ptrs

There is some overhead in using CRef and auto_ptr, and these objects should only be used

where needed. Memory leaks are generally caused as a result of unexpected execution paths.

For example:

{

 int *num = new int(5);

 ComplexFunction (num);

 delete num;

 ...

}

If ComplexFunction() executes normally, control returns to the block where it was invoked,

and memory is freed by the delete statement. Unforeseen events however, may trigger

exceptions, causing control to pass elsewhere. In these cases, the delete statement may never

be reached. The use of a CRef or an auto_ptr is appropriate for these situations, as they both

guarantee that the object will be destroyed when the reference goes out of scope.

Page 48

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectFor.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectFor.html

One situation where they may not be required is when a pointer is embedded inside another

object. If that object's destructor also handles the deallocation of its embedded objects, then it

is sufficient to use a CRef on the containing object only.

CRef Pitfalls

Inadvertent Object Destruction—When the last reference to a CRef object goes out of

scope or the CRef is otherwise marked for garbage collection, the object to which the CRef

points is also destroyed. This feature helps to prevent memory leaks, but it also requires care

in the use of CRefs within methods and functions.

class CMy : public CObject

{

.....

};

void f(CMy* a)

{

 CRef b = a;

 return;

}

CMy* a = new CMy();

f(a);

// the object "a" is now destroyed!

In this example the function f() establishes a local CRef to the CMy object a. On exiting f()

the CRefb is destroyed, including the implied destruction of the CMy objects a. To avoid this

behavior, pass a CRef to the function f() instead of a normal pointer variable:

CRef a = new CMy();

f(a);

// the CMy object pointed to by "a" is not destroyed!

Page 49

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Atomic Counters

The CORELIB implements efficient atomic counters that are used for CObject reference

counts. The classes CAtomicCounter and CMutableAtomicCounter provide respectively a

base atomic counter class, and a mutable atomic counter for multithreaded applications. These

classes are used to in reference counted smart pointers.

The CAtomicCounter base class provides the base methods Get(), Set(), Add() for atomic

counters:

class CAtomicCounter

{

public:

 ///< Alias TValue for TNCBIAtomicValue

 typedef TNCBIAtomicValue TValue;

 /// Get atomic counter value.

 TValue Get(void) const THROWS_NONE;

 /// Set atomic counter value.

 void Set(TValue new_value) THROWS_NONE;

 /// Atomically add value (=delta), and return new counter value.

 TValue Add(int delta) THROWS_NONE;

};

TNCBIAtomicValue is defined as a macro and its definition is platform dependent. If threads

are not used (Macro NCBI_NO_THREADS defined), TNCBIAtomicValue is an unsigned int

value. If threads are used, then a number of defines in file "ncbictr.hpp" ensure that a platform

specific definition is selected for TNCBIAtomicValue.

The CMutableAtomicCounter uses the CAtomicCounter as its internal structure of the atomic

counter but declares this counter value as mutable. The Get(), Set(), Add() methods for

CMutableAtomicCounter are implemented by calls to the corresponding Get(), Set(), Add()

methods for the CAtomicCounter:

class CMutableAtomicCounter

Page 50

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

{

public:

 typedef CAtomicCounter::TValue TValue; ///< Alias TValue simplifies

syntax

 /// Get atomic counter value.

 TValue Get(void) const THROWS_NONE

 { return m_Counter.Get(); }

 /// Set atomic counter value.

 void Set(TValue new_value) const THROWS_NONE

 { m_Counter.Set(new_value); }

 /// Atomically add value (=delta), and return new counter value.

 TValue Add(int delta) const THROWS_NONE

 { return m_Counter.Add(delta); }

private:

 ...

};

Portable mechanisms for loading DLLs

The CDll class defines a portable way of dynamically loading shared libraries and finding entry

points for functions in the library. Currently this portable behavior is defined for Unix and MS-

Windows platforms only. On Unix systems loading of the shared library is implemented using

the Unix system call dlopen() and the entry point address obtained using the Unix system call

dlsym(). On MS Windows systems the system call LoadLibraray() is used to load the library,

and the system call GetProcAddress() is used to get a function's entry point address.

All methods of CDll class, except the destructor, throw the exception CCoreException::eDll

on error.

You can specify when to load the DLL -- when the CDll object is created (loading in the

constructor), or by an explicit call to CDll::Load(). You can also specify whether the DLL is

unloaded automatically when CDll's destructor is called or if the DLL should remain loaded

in memory. This behavior is controlled by arguments to CDll's constructor.

The following additional topics are described in this section:

! CDll Constructor

Page 51

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! CDll Basename

! Other CDll Methods

CDll Constructor

The CDll constructor has two forms:

! Constructor 1: CDll(const string& name, ELoad when_to_load = eLoadNow,

EAutoUnload auto_unload = eNoAutoUnload, EBasename treate_as = eBasename);

! Constructor 2: CDll(const string& path, const string& name, ELoad when_to_load =

eLoadNow, EAutoUnload auto_unload = eNoAutoUnload, EBasename treate_as =

eBasename);

The two constructor forms are very similar with the exception that constructor 2 uses two

parameters: the path and name parameters to build a path to the DLL, whereas in constructor

1, the name parameter contains the full path to the DLL. The other parameters in the

constructors are the same.

The parameter when_to_load is defined as an enum type of ELoad and has the values

eLoadNow or eLoadLater. When eLoadNow is passed to the constructor (default value), the

DLL is loaded in the constructor; otherwise it has to be loaded via an explicit call to the Load

() method.

The parameter auto_load is defined as an enum type of EAutoLoad and has the values

eAutoUnload or eNoAutoUnload. When eAutoUnload is passed to the constructor (default

value), the DLL is unloaded in the destructor; otherwise it will remain loaded in memory.

The parameter treat_as is defined as an enum type of EBasename and has the values eBasename

or eExactName. When eBasename is passed to the constructor (default value), the name

parameter is treated as a basename if it looks like one; otherwise the exact name or "as is" value

is used with no addition of prefix or suffix.

CDll Basename

The DLL name is considered the basename if it does not contain embedded '/', '\', or ':' symbols.

Also, in this case, if the DLL name does not match the pattern "lib*.so", "lib*.so.*", or "*.dll"

and if eExactName flag is not passed to the constructor, then it will be automatically

transformed according to the following rules:

! UNIX: <name> -> lib<name>.so

! MS Windows: <name> -> <name>.dll

If the DLL is specified by its basename, then it will be searched after the transformation

described above in the following locations:

! UNIX:

" The directories that are listed in the LD_LIBRARY_PATH environment

variable which are analyzed once at the process startup.

" The directory from which the application loaded

" Hard-coded (e.g. with `ldconfig' on Linux) paths

! MS Windows:

" The directory from which the application is loaded

" The current directory

" The Windows system directory

Page 52

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! The Windows directory

! The directories that are listed in the PATH environment variable

Other CDll Methods

Two methods mentioned earlier for the CDll class are the Load() and Unload() methods. The

Load() method loads the DLL using the name specified in the constructor's DLL name

parameter. The Load() method is expected to be used when the DLL is not explictly loaded in

the constructor. That is, when the CDll constructor is passed the eLoadLater parameter. If the

Load() is called more than once without calling Unload() in between, then it will do nothing.

The syntax of the Load() methods is

 void Load(void);

The Unload() method unloads that DLL whose name was specified in the constructor's DLL

name parameter. The Unload() method is expected to be used when the DLL is not explicitly

unloaded in the destructor. This occurs, when the CDll constructor is passed the

eNoAutoUnload parameter. If the Unload() is called when the DLL is not loaded, then it will

do nothing. The syntax of the Unload() methods is

 void Unload(void);

Once the DLL is loaded, you can call the DLL's functions by first getting the function's entry

point (address), and using this to call the function. The function template GetEntryPoint()

method is used to get the entry point address and is defined as:

 template <class TPointer>

 TPointer GetEntryPoint(const string& name, TPointer* entry_ptr);

This method returns the entry point's address on success, or NULL on error. If the DLL is not

loaded when this method is called, then this method will call Load() to load the DLL which

can result in throwing an exception if Load() fails.

Some sample code illustrating the use of these methods is shown in src/corelib/test/

test_ncbidll.cpp

Executing Commands and Spawning Processes using the CExec class

The CExec defines a portable execute class that can be used to execute system commands and

spawn new processes.

The following topics relating to the CExec class are discussed, next:

" Executing a System Command using the System() Method

" Defining Spawned Process Modes (EMode type)

" Spawning a Process using SpawnX() Methods

" Waiting for a Process to Terminate using the Wait() method

Page 53

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbidll.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbidll.cpp

Executing a System Command using the System() Method

You can use the class-wide CExec::System() method to execute a system command:

 static int System(const char* cmdline);

CExec::System() returns the executed command's exit code and throws an exception if the

command failed to execute. If cmdline is a null pointer, CExec::System() checks if the shell

(command interpreter) exists and is executable. If the shell is available, System() returns a non-

zero value; otherwise, it returns 0.

Defining Spawned Process Modes (EMode type)

The spawned process can be created in several modes defined by the enum type EMode . The

meanings of the enum values for EMode type are:

! eOverlay: This mode overlays the calling process with new process, destroying the

calling process.

! eWait: This mode suspends the calling thread until execution of a new process is

complete. That is, the called process is called synchronously.

! eNoWait: This is the opposite of eWait. This mode continues to execute the calling

process concurrently with the new called process in an asynchronous fashion.

! eDetach: This mode continues to execute the calling process and new process is

"detached" and run in background with no access to console or keyboard. Calls to Wait

() against new process will fail. This is an asynchronous spawn.

Spawning a Process using SpawnX() Methods

A new process can be spawned by calling any of the class-wide methods named SpawnX()

which have the form:

 static int SpawnX(const EMode mode,

 const char *cmdname,

 const char *argv,

 ...

);

The parameter mode has the meanings discussed in the section Defining Spawned Process

Modes (EMode type). The parameter cmdname is the command-line string to start the process,

and parameter argv is the argument vector containing arguments to the process.

The X in the function name is a one to three letter suffix indicating the type of the spawn

function. Each of the letters in the suffix X, for SpawnX() have the following meanings:

! L: The letter "L" as suffix refers to the fact that command-line arguments are passed

separately as arguments.

Page 54

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! E: The letter "E" as suffix refers to the fact that environment pointer, envp, is passed

as an array of pointers to environment settings to the new process. The NULL

environment pointer indicates that the new process will inherit the parents' process's

environment.

! P: The letter "P" as suffix refers to the fact that the PATH environment variable is used

to find file to execute. Note that on a Unix platform this feature works in functions

without letter "P" in the function name.

! V: The letter "V" as suffix refers to the fact that the number of command-line arguments

is variable.

Using the above letter combinations as suffixes, the following spawn functions are defined:

! SpawnL(): In the SpawnL() version, the command-line arguments are passed

individually. SpawnL() is typically used when number of parameters to the new

process is known in advance.

! SpawnLE(): In the SpawnLE() version, the command-line arguments and environment

pointer are passed individually. SpawnLE() is typically used when number of

parameters to the new process and individual environment parameter settings are

known in advance.

! SpawnLP(): In the SpawnLP() version, the command-line arguments are passed

individually and the PATH environment variable is used to find the file to execute.

SpawnLP() is typically used when number of parameters to the new process is known

in advance but the exact path to the executable is not known.

! SpawnLPE(): In the SpawnLPE() the command-line arguments and environment

pointer are passed individually, and the PATH environment variable is used to find

the file to execute. SpawnLPE() is typically used when the number of parameters to

the new process and individual environment parameter settings are known in advance,

but the exact path to the executable is not known.

! SpawnV(): In the SpawnV() version, the command-line arguments are a variable

number. The array of pointers to arguments must have a length of 1 or more and you

must assign parameters for the new process beginning from 1.

! SpawnVE(): In the SpawnVE() version, the command-line arguments are a variable

number. The array of pointers to arguments must have a length of 1 or more and you

must assign parameters for the new process beginning from 1. The individual

environment parameter settings are known in advance and passed explicitly.

! SpawnVP(): In the SpawnVP() version, the command-line arguments are a variable

number. The array of pointers to arguments must have a length of 1 or more and you

must assign parameters for the new process beginning from 1. The PATH environment

variable is used to find the file to execute.

! SpawnVPE(): In the SpawnVPE() version, the command-line arguments are a variable

number. The array of pointers to arguments must have a length of 1 or more and you

must assign parameters for the new process beginning from 1. The PATH environment

variable is used to find the file to execute, and the environment is passed via an

environment vector pointer.

Refer to the include/corelib/ncbiexec.hpp file to view the exact form of the SpawnX() function

calls.

Some sample code illustrating the use of these methods is shown in src/corelib/test/

test_ncbiexec.cpp

Page 55

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiexec.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiexec.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbiexec.hpp

Waiting for a Process to Terminate using the Wait() method

The CExec class defines a Wait() method that causes a process to wait until the child process

terminates:

 static int Wait(const int pid);

The argument to the Wait() method is the pid (process ID) of the child process on which the

caller is waiting to terminate. Wait() returns immediately if the specified child process has

already terminated and returns an exit code of the child process, if there are no errors; or a -1,

if an error has occurred.

Implementing Parallelism using Threads and Synchronization Mechanisms

This section provides reference information on how to add multithreading to your application

and how to use basic synchronization objects. For an overview of these concepts refer to the

introductory topic on this subject.

Note that all classes are defined in include/corelib/ncbithr.hpp and include/corelib/

ncbimtx.hpp.

The following topics are discussed in this section:

! Using Threads

! CThread class public methods

! CThread class protected methods

! Thread Life Cycle

! Referencing thread objects

! Synchronization

! Thread local storage (CTls<> class [*])

Using Threads

CThread class is defined in include/corelib/ncbithr.hpp. The CThread class provides all basic

thread functionality: thread creation, launching, termination, and cleanup. To create user-

defined thread one needs only to provide the thread's Main() function and, in some cases, create

a new constructor to transfer data to the thread object, and override OnExit() method for thread-

specific data cleanup. To create a custom thread:

1 Derive your class from CThread, override Main() and, if necessary, OnExit() methods.

2 Create thread object in your application. You can do this only with new operator,

since static or in-stack thread objects are prohibited (see below). The best way to

reference thread objects is to use CRef<CThread> class.

3 Call Run() to start the thread execution.

4 Call Detach() to let the thread run independently (it will destroy itself on termination

then), or use Join() to wait for the thread termination.

The code should look like:

#include <corelib/ncbistd.hpp>

#include <corelib/ncbithr.hpp>

Page 56

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimtx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbimtx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbithr.hpp

USING_NCBI_SCOPE;

class CMyThread : public CThread

{

public:

 CMyThread(int index) : m_Index(index) {}

 virtual void* Main(void);

 virtual void OnExit(void);

private:

 int m_Index;

 int* heap_var;

};

void* CMyThread::Main(void)

{

 cout << "Thread " << m_Index << endl;

 heap_var = new int; // to be destroyed by OnExit()

 *heap_var = 12345;

 int* return_value = new int; // return to the main thread

 *return_value = m_Index;

 return return_value;

}

void CMyThread::OnExit(void)

{

 delete heap_var;

}

int main(void)

Page 57

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

{

 CMyThread* thread = new CMyThread(33);

 thread->Run();

 int* result;

 thread->Join(reinterpret_cast<void**>(&result));

 cout << "Returned value: " << *result << endl;

 delete result;

 return 0;

}

The above simple application will start one child thread, passing 33 as the index value. The

thread prints "Thread 33" message, allocates and initializes two integer variables, and

terminates. The thread's Main() function returns a pointer to one of the allocated values. This

pointer is then passed to Join() method and can be used by another thread. The other integer

allocated by Main() is destroyed by OnExit() method.

It is important not to terminate the program until there are running threads. Program termination

will cause all the running threads to terminate also. In the above example Join() function is

used to wait for the child thread termination.

The following subsections discuss the individual classes in more detail.

CThread (*) class public methods

CThread(void) Create the thread object (without running it). bool Run(void) Spawn the new

thread, initialize internal CThread data and launch user-provided Main(). The method

guarantees that the new thread will start before it returns to the calling function. void Detach

(void) Inform the thread that user does not need to wait for its termination. Detached thread

will destroy itself after termination. If Detach() is called for a thread, which has already

terminated, it will be scheduled for destruction immediately. Only one call to Detach() is

allowed for each thread object. void Join(void** exit_data) Wait for the thread termination.

Join() will store the void pointer as returned by the user's Main() method, or passed to the Exit

() function to the exit_data. Then the thread will be scheduled for destruction. Only one call to

Join() is allowed for each thread object. If called more than once, Join() will cause a runtime

error. static void Exit(void* exit_data) This function may be called by a thread object itself to

terminate the thread. The thread will be terminated and, if already detached, scheduled for

destruction. exit_data value is transferred to the Join() function as if it was returned by the

Main(). Exit() will also call virtual method OnExit() to execute user-provided cleanup code (if

any). bool Discard(void) Schedules the thread object for destruction if it has not been run yet.

This function is provided since there is no other way to delete a thread object without running

it. On success, return true. If the thread has already been run, Discard() do nothing and return

false. static CThread::TID GetSelf(void) This method returns a unique thread ID. This ID may

be then used to identify threads, for example, to track the owner of a shared resource. Since

the main thread has no associated CThread object, a special value of 0 (zero) is reserved for

the main thread ID.

Page 58

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThread

CThread (*) class protected methods

virtual void* Main(void)Main() is the thread's main function (just like an application main()

function). This method is not defined in the CThread class. It must be provided by derived

user-defined class. The return value is passed to the Join() function (and thus may be used by

another thread for some sort of inter-thread communication). virtual void OnExit(void) This

method is called (in the context of the thread) just before the thread termination to cleanup

thread-specific resources. OnExit() is NOT called by Discard(), since the thread has not been

run in this case and there are no thread-specific data to destroy. virtual ~CThread(void) The

destructor is protected to avoid thread object premature destruction. For this reason, no thread

object can be static or stack-allocated. It is important to declare any CThread derived class

destructor as protected.

Thread Life Cycle

Figure 2 shows a typical thread life cycle. The figure demonstrates that thread constructors are

called from the parent thread. The child thread is spawned by the Run() function only. Then,

the user-provided Main() method (containing code created by user) gets executed. The thread's

destructor may be called in the context of either parent or child thread depending on the state

of the thread at the moment when Join() or Detach() is called.

There are two possible ways to terminate a thread. By default, after user-provided Main()

function return, the Exit() is called implicitly to terminate the thread. User functions can call

CThread::Exit() directly. Since Exit() is a static method, the calling function does not need to

be a thread class member or have a reference to the thread object. Exit() will terminate the

thread in which context it is called.

The CThread destructor is protected. The same must be true for any user-defined thread class

in order to prohibit creation of static or automatic thread objects. For the same reason, a thread

object can not be destroyed by explicit delete. All threads destroy themselves on termination,

detaching, or joining.

On thread termination, Exit() checks if the thread has been detached and, if this is true, destroys

the thread object. If the thread has not been detached, the thread object will remain "zombie"

unless detached or joined. Either Detach() or Join() will destroy the object if the thread has

been terminated. One should keep in mind, that it is not safe to use the thread object after a

call to Join() or Detach() since the object may happen to be destroyed. To avoid this situation,

the CRef<CThread> can be used. The thread object will not be destroyed until there is at least

one CRef to the object (although it may be terminated and scheduled for destruction).

In other words, a thread object will be destroyed when all of the following conditions are

satisfied:

! the thread has been run and terminated by an implicit or explicit call to Exit()

! the thread has been detached or joined

! no CRef references the thread object

Which thread will actually destroy a thread object depends on several conditions. If the thread

has been detached before termination, the Exit() method will destroy it, provided there are no

CRef references to the object. When joined, the thread will be destroyed in the context of a

joining thread. If Detach() is called after thread termination, it will destroy the thread in the

context of detaching thread. And, finally, if there are several CRef objects referencing the same

thread, it will be destroyed after the last CRef release.

Page 59

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThread

This means that cleaning up thread-specific data can not be done from the thread destructor.

One should override OnExit() method instead. OnExit() is guaranteed to be called in the context

of the thread before the thread termination. The destructor can be used to cleanup non-thread-

local data only.

There is one more possibility to destroy a thread. If a thread has been created, but does not

need to be run, one can use Discard() method to destroy the thread object without running it.

Again, the object will not be destroyed until there are CRefs referencing it.

Referencing Thread Objects

It should be emphasized that regular (C) pointer to a thread object is not reliable. The thread

may terminate at unpredictable moment, destroying itself. There is no possibility to safely

access thread object after Join() using C pointers. The only solution to this problem is to use

CRef class. CThread class provides a mechanism to prevent premature destruction if there are

CRef references to the thread object.

Thread local storage (CTls<> class [*])

The library provides a template class to store thread specific data: CTls<>. This means that

each thread can keep its own data in the same TLS object. To perform any kind of cleanup one

can provide cleanup function and additional cleanup data when storing a value in the TLS

object. The following example demonstrates the usage of TLS:

CRef< CTls<int> > tls(new CTls<int>);

void TlsCleanup(int* p_value, void* /* data */)

{

 delete p_value;

}

...

void* CMyThread::Main()

{

 int* p_value = new int;

 *p_value = 1;

 tls->SetValue(p_value, TlsCleanup);

 ...

 p_value = new int;

 *p_value = 2;

 tls->SetValue(p_value, TlsCleanup);

Page 60

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTls

 ...

 if (*tls->GetValue() == 2) {

 ...

 }

 ...

}

In the above example the second call to SetValue() will cause the TlsCleanup() to deallocate

the first integer variable. To cleanup the last value stored in each TLS, the CThread::Exit()

function will automatically call CTls<>::Reset() for each TLS used by the thread.

By default, all TLS objects are destroyed on program termination, since in most cases it is not

guaranteed that a TLS object is not (or will not be) used by a thread. For the same reason the

CTls<> destructor is protected, so that no TLS can be created in the stack memory. The best

way of keeping TLS objects is to use CRef.

Calling Discard() will schedule the TLS to be destroyed as soon as there are no CRef references

to the object left. The method should be used with care.

Mutexes

The ncbimtx.hpp defines platform-independent mutex classes, CMutex, CFastMutex,

CMutexGuard, and CFastMutexGuard. These mutex classes are in turn built on the platform-

dependent mutex classes SSystemMutex and SSystemFastMutex.

In addition to the mutex classes, there are a number of classes that can be used for explicit

locks such as the CRWLock, CAutoRW, CReadLockGuard, CWriteLockGuard and the

platform-dependent read/write lock, CInternalRWLock.

Finally, there is the CSemaphore class which is an application-wide semaphore.

These classes are discussed in the subsections that follow:

! CMutex

! CFastMutex

! SSystemMutex and SSystemFastMutex

! CMutexGuard and CFastMutexGuard

! Lock Classes

CMutex— The CMutex class provides the API for acquiring a mutex. This mutex allows

nesting with runtime checks so recursive locks by the same thread is possible. This mutex

checks the mutex owner before unlocking. CMutex is slower than CFastMutex and should be

used when performance is less important than data protection. If performance is more important

than data protection, use CFastMutex, instead.

The main methods for CMutex operation are Lock(), TryLock() and Unlock():

Page 61

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 void Lock(void);

 bool TryLock(void);

 void Unlock(void);

The Lock() mutex method is used by a thread to acquire a lock. The lock can be acquired only

if the mutex is unlocked; that is, not in use. If a thread has acquired a lock before, the lock

counter is incremented. This is called nesting. The lock counter is only decremented when the

same thread issues an Unlock(). In other words, each call to Lock() must have a corresponding

Unlock() by the same thread. If the mutex has been locked by another thread, then the thread

must wait until it is unlocked. When the mutex is unlocked, the waiting thread can acquire the

lock. This, then, is like a lock on an unlocked mutex.

The TryLock() mutex can be used to probe the mutex to see if a lock is possible, and if it is,

acquire a lock on the mutex. If the mutex has already been locked, TryLock() returns FALSE.

If the mutex is unlocked, than TryLock() acquires a lock on the mutex just as Lock() does, and

returns TRUE.

The Unlock() method is used to decrease the lock counter if the mutex has been acquired by

this thread. When the lock counter becomes zero, then the mutex is completely released

(unlocked). If the mutex is not locked or locked by another thread, then the exception

CMutexException (eOwner) is thrown.

The CMutex uses the functionality of CFastMutex. Because CMutex allows nested locks and

performs checks of mutex owner it is somewhat slower than CFastMutex, but capable of

protecting complicated code, and safer to use. To guarantee for a mutex release, CMutexGuard

can be used. The mutex is locked by the CMutexGuard constructor and unlocked by its

destructor. Macro DEFINE_STATIC_MUTEX(id) will define static mutex variable with name

id. Macro DECLARE_CLASS_STATIC_MUTEX(id) will declare static class member of

mutex type name id. Macro DEFINE_CLASS_STATIC_MUTEX(class, id) will define class

static mutex variable class::id. The following example demonstrates usage of CMutex,

including lock nesting:

static int Count = 0;

DEFINE_STATIC_MUTEX(CountMutex);

void Add2(void)

{

 CMutexGuard guard(CountMutex);

 Count += 2;

 if (Count < 20) {

Page 62

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 Add3();

 }

}

void Add3(void)

{

 CMutexGuard guard(CountMutex);

 Count += 3;

 if (Count < 20) {

 Add2();

 }

}

This example will result in several nested locks of the same mutex with the guaranteed release

of each lock.

It is important not to unlock the mutex protected by a mutex guard. CFastMutexGuard and

CMutexGuard both unlock the associated mutex on destruction. It the mutex is already

unlocked this will cause a runtime error. Instead of unlocking the mutex directly one can use

CFastMutexGuard::Release() or CMutexGuard::Release() method. These methods unlock the

mutex and unlink it from the guard.

In addition to usual Lock() and Unlock() methods, the CMutex class implements a method to

test the mutex state before locking it. TryLock() method attempts to acquire the mutex for the

calling thread and returns true on success (this includes nested locks by the same thread) or

false if the mutex has been acquired by another thread. After a successful TryLock() the mutex

should be unlocked like after regular Lock().

CFastMutex— The CFastMutex class provides the API for acquiring a mutex. Unlike

CMutex, this mutex does not permit nesting and does not check the mutex owner before

unlocking. CFastMutex is, however, faster than CMutex and should be used when performance

is more important than data protection. If performance is less important than data protection,

use CMutex, instead.

The main methods for CFastMutex operation are Lock(), TryLock() and Unlock():

 void Lock(void);

 bool TryLock(void);

Page 63

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 void Unlock(void);

The Lock() mutex method is used by a thread to acquire a lock without any nesting or ownership

checks.

The TryLock() mutex can be used to probe the mutex to see if a lock is possible, and if it is,

acquire a lock on the mutex. If the mutex has already been locked, TryLock() returns FALSE.

If the mutex is unlocked, than TryLock() acquires a lock on the mutex just as Lock() does, and

returns TRUE. The locking is done without any nesting or ownership checks.

The Unlock() method is used to unlock the mutex without any nesting or ownership checks.

The CFastMutex should be used only to protect small and simple parts of code. To guarantee

for the mutex release the CFastMutexGuard class may be used. The mutex is locked by the

CFastMutexGuard constructor and unlocked by its destructor. To avoid problems with

initialization of static objects on different platforms, special macro definitions are intended to

be used to declare static mutexes. Macro DEFINE_STATIC_FAST_MUTEX(id) will define

static mutex variable with name id. Macro DECLARE_CLASS_STATIC_FAST_MUTEX(id)

will declare static class member of mutex type with name id. Macro

DEFINE_CLASS_STATIC_FAST_MUTEX(class, id) will define static class mutex variable

class::id. The example below demonstrates how to protect an integer variable with the fast

mutex:

void ThreadSafe(void)

{

 static int Count = 0;

 DEFINE_STATIC_FAST_MUTEX(CountMutex);

 ...

 {{

 CFastMutexGuard guard(CountMutex);

 Count++;

 }}

 ...

}

SSystemMutex and SSystemFastMutex—The CMutex class is built on the platform-

dependent mutex class, SSystemMutex. The SSystemMutex is in turn built using the

SSystemFastMutex class with additional provisions for keeping track of the thread ownership

using the CThreadSystemID, and a counter for the number of in the same thread locks (nested

or recursive locks).

Page 64

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Each of the SSystemMutex and SSystemFastMutex classes have the Lock(), TryLock() and

Unlock() methods that are platform specific. These methods are used by the platform

independent classes, CMutex and CFastMutex to provide locking and unlocking services.

CMutexGuard and CFastMutexGuard—The CMutexGuard and the CFastMutexGuard

classes provide platform independent read and write lock guards to the mutexes. These classes

are aliased as typedefs TReadLockGuard and TWriteLockGuard in the CMutexGuard and the

CFastMutexGuard classes.

Lock Classes—This class implements sharing a resource between multiple reading and

writing threads. The following rules are used for locking:

! if unlocked, the RWLock can be acquired for either R-lock or W-lock

! if R-locked, the RWLock can be R-locked by the same thread or other threads

! if W-locked, the RWLock can not be acquired by other threads (a call to ReadLock()

or WriteLock() by another thread will suspend that thread until the RW-lock release).

! R-lock after W-lock by the same thread is allowed but treated as a nested W-lock

! W-lock after R-lock by the same thread results in a runtime error

Like CMutex, CRWLock also provides methods for checking its current state: TryReadLock

() and TryWriteLock(). Both methods try to acquire the RW-lock, returning true on success

(the RW-lock becomes R-locked or W-locked) or false if the RW-lock can not be acquired for

the calling thread.

The following subsections describe these locks in more detail:

! CRWLock

! CAutoRW

! CReadLockGuard

! CWriteLockGuard

! CInternalRWLock

! CSemaphore

CRWLock: The CRWLock class allows read-after-write (R-after-W) locks for multiple

readers or a single writer with recursive locks. The R-after-W lock is considered to be a

recursive Write-lock. The write-after-read (W-after-R) is not permitted and can be caught when

_DEBUG is defined. When _DEBUG is not defined, it does not always detect the W-after-R

correctly, so a deadlock can occur in these circumstances. Therefore, it is important to test your

application in the _DEBUG mode first.

The main methods in the class API are ReadLock(), WriteLock(), TryReadLock(),

TryWriteLock() and Unlock().

 void ReadLock(void);

 void WriteLock(void);

 bool TryReadLock(void);

 bool TryWriteLock(void);

Page 65

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 void Unlock(void);

The ReadLock() is used to acquire a read lock. If a write lock has already been acquired by

another thread, then this thread waits until it is released.

The WriteLock() is used to acquire a write lock. If a read or write lock has already been acquired

by another thread, then this thread waits until it is released.

The TryReadLock() and TryWriteLock() methods are used to try and acquire a read or write

lock, respectively, if at all possible. If a lock cannot be acquired, they immediately return with

a FALSE value and do not wait to acquire a lock like the ReadLock() and WriteLock() methods.

If a lock is successfully acquired, a TRUE value is returned.

As expected from the name, the Unlock() method releases the RW-lock.

CAutoRW: The CAutoRW class is used to provide a Read Write lock that is automatically

released by the CAutoRW class' destructor. The locking mechanism is provided by a

CRWLock object that is initialized when the CAutoRW class constructor is called.

An acquired lock can be released by an explicit call to the class Release() method. The lock

can also be released by the class destructor. When the destructor is called the lock if successfully

acquired and not already released by Release() is released.

CReadLockGuard: The CReadLockGuard class is used to provide a basic read lock guard

that can be used by other classes. This class is derived from the CAutoRW class.

The class constructor can be passed a CRWLock object on which a read lock is acquired, and

which is registered to be released by the class destructor. The class's Guard() method can also

be called with a CRWLock object and if this is not the same as the already registered CRWLock

object, the old registered object is released, and the new CRWLock object is registered and a

read lock acquired on it.

CWriteLockGuard: The CWriteLockGuard class is used to provide a basic write lock guard

that can be used by other classes. The CWriteLockGuard class is similar to the

CReadLockGuard class except that it provides a write lock instead of a read lock. This class

is derived from the CAutoRW class.

The class constructor can be passed a CRWLock object on which a write lock is acquired, and

which is registered to be released by the class destructor. The class's Guard() method can also

be called with a CRWLock object and if this is not the same as the already registered CRWLock

object, the old registered object is released, and the new CRWLock object is registered and a

write lock acquired on it.

CInternalRWLock: The CInternalRWLock class holds platform dependent RW-lock data

such as data on semaphores and mutexes. This class is not meant to be used directly by user

applications. This class is used by other classes such as the CRWLock class.

CSemaphore: The CSemaphore class implements a general purpose counting semaphore. The

constructor is passed an initial count for the semaphore and a maximum semaphore count.

When the Wait() method is executed for the semaphore, the counter is decremented by one. If

the semaphore's count is zero then the thread waits until it is not zero. A variation on the Wait

Page 66

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

() method is the TryWait() method which is used to prevent long waits. The TryWait() can be

passed a timeout value in seconds and nanoseconds:

 bool TryWait(unsigned int timeout_sec = 0, unsigned int timeout_nsec =

0);

The TryWait() method can wait for the specified time for the semaphore's count to exceed zero.

If that happens, the counter is decremented by one and TryWait() returns TRUE; otherwise, it

returns FALSE.

The semaphore count is incremented by the Post() method and an exception is thrown if the

maximum count is exceeded.

Working with File and Directories Using CFile and CDir

An application may need to work with files and directories. The CORELIB provides a number

of portable classes to model a system file and directory. The base class for the files and

directories is CDirEntry. Other classes such as CDir and CFile that deal with directories and

files are derived form this base class.

The following sections discuss the file and directory classes in more detail:

! Executing a System Command using the System() Method

! Defining Spawned Process Modes (EMode type)

! Spawning a Process using SpawnX() Methods

! Waiting for a Process to Terminate using the Wait() method

CDirEntry class

This class models the directory entry structure for the file system and assumes that the path

argument has the following form, where any or all components may be missing:

 <dir><title><ext>

<dir> - file path ("/usr/local/bin/" or "c:\windows\")

<title> - file name without ext ("autoexec")

<ext> - file extension (".bat" -- whatever goes after the last dot)

The supported filename formats are for the MS DOS/Windows, UNIX and MAC file systems.

The CDirEntry class provides the base methods such as the following for dealing with the

components of a path name :

! GetPath(): Get pathname.

! GetDir(): Get the Directory component for this directory entry.

! GetBase(): Get the base entry name without extension.

! GetName(): Get the base entry name with extension.

! GetExt(): Get the extension name.

Page 67

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDirEntry.html

! MakePath(): Given the components of a path, combine them to create a path string.

! SplitPath(): Given a path string, split them into its constituent components.

! GetPathSeparator(): Get path separator symbol specific for the platform such as a '\'

or '/'.

! IsPathSeparator(): Check character "c" as path separator symbol specific for the

platform.

! AddTrailingPathSeparator(): Add a trailing path separator, if needed.

! ConvertToOSPath(): Convert relative "path" on any OS to current OS dependent

relative path.

! IsAbsolutePath(): Note that the "path" must be for current OS.

! ConcatPath(): Concatenate the two parts of the path for the current OS.

! ConcatPathEx(): Concatenate the two parts of the path for any OS.

! MatchesMask(): Match "name" against the filename "mask".

! Rename(): Rename entry to specified "new_path".

! Remove(): Remove the directory entry.

The last method on the list, the Remove() method accepts an enumeration type parameter,

EDirRemoveMode, which specifies the extent of the directory removal operation -- you can

delete only an empty directory, only files in a directory but not any subdirectories, or remove

the entire directory tree:

 /// Directory remove mode.

 enum EDirRemoveMode {

 eOnlyEmpty, ///< Remove only empty directory

 eNonRecursive, ///< Remove all files in directory, but not remove

 ///< subdirectories and files in it

 eRecursive ///< Remove all files and subdirectories

 };

CDirEntry knows about different types of files or directory entries. Most of these file types are

modeled after the Unix file system but can also handle the file system types for the Windows

platform. The different file system types are represented by the enumeration type EType which

is defined as follows :

 /// Which directory entry type.

 enum EType {

 eFile = 0, ///< Regular file

 eDir, ///< Directory

Page 68

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 ePipe, ///< Pipe

 eLink, ///< Symbolic link (UNIX only)

 eSocket, ///< Socket (UNIX only)

 eDoor, ///< Door (UNIX only)

 eBlockSpecial, ///< Block special (UNIX only)

 eCharSpecial, ///< Character special

 //

 eUnknown ///< Unknown type

 };

CDirEntry knows about permission settings for a directory entry. Again, these are modeled

after the Unix file system. The different permissions are represented by the enumeration type

EMode which is defined as follows :

 /// Directory entry's access permissions.

 enum EMode {

 fExecute = 1, ///< Execute permission

 fWrite = 2, ///< Write permission

 fRead = 4, ///< Read permission

 // initial defaults for dirs

 fDefaultDirUser = fRead | fExecute | fWrite,

 ///< Default user permission for dir.

 fDefaultDirGroup = fRead | fExecute,

 ///< Default group permission for dir.

 fDefaultDirOther = fRead | fExecute,

 ///< Default other permission for dir.

 // initial defaults for non-dir entries (files, etc.)

 fDefaultUser = fRead | fWrite,

 ///< Default user permission for file

Page 69

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 fDefaultGroup = fRead,

 ///< Default group permission for file

 fDefaultOther = fRead,

 ///< Default other permission for file

 fDefault = 8 ///< Special flag: ignore all other flags,

 ///< use current default mode

 };

 typedef unsigned int TMode; ///< Binary OR of "EMode"

The directory entry permissions of read(r), write(w), execute(x), are defined for the "user",

"group" and "others" The initial default permission for directories is "rwx" for "user", "rx" for

"group" and "rx" for "others". These defaults allow a user to create directory entries while the

"group" and "others" can only change to the directory and read a listing of the directory

contents. The initial default permission for files is "rw" for "user", "r" for "group" and "r" for

"others". These defaults allow a user to read and write to a file while the "group" and "others"

can only read the file.

These directory permissions handle most situations but don't handle all permission types. For

example, there is currently no provision for handling the Unix "sticky bit" or the "suid" or

"sgid" bits. Moreover, operating systems such as Windows NT/2000/2003 and Solaris use

Access Control Lists (ACL) settings for files. There is no provision in CDirEntry to handle

ACLs

Other methods in CDirEntry deal specifically with checking the attributes of a directory entry

such as the following methods:

! IsFile(): Check if directory entry is a file.

! IsDir(): Check if directory entry is a directory.

! GetType(): Get type of directory entry. This returns an EType value.

! GetTime(): Get time stamp of directory entry.

! GetMode(): Get permission mode for the directory entry.

! SetMode(): Set permission mode for the directory entry.

! static void SetDefaultModeGlobal(): Set default mode globally for all CDirEntry

objects. This is a class-wide static method and applies to all objects of this class.

! SetDefaultMode(): Set mode for this one object only.

These methods are inherited by the derived classes CDir and CFile that are used to access

directories and files, respectively.

Page 70

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

CFile class

The CFile is derived from the base class, CDirEntry. Besides inheriting the methods discussed

in the previous section, the following new methods specific to files are defined in the CFile

class:

! Exists(): Check existence for a file.

! GetLength(): Get size of file.

! GetTmpName(): Get temporary file name.

! GetTmpNameEx(): Get temporary file name in a specific directory and having a

specified prefix value.

! CreateTmpFile(): Create temporary file and return pointer to corresponding stream.

! CreateTmpFileEx(): Create temporary file and return pointer to corresponding stream.

You can additionally specify the directory in which to create the temporary file and

the prefix to use for the temporary file name.

The methods CreateTmpFile() and CreateTmpFileEx() allow the creation of either a text or

binary file. These two types of files are defined by the enumeration type, ETextBinary, and the

methods accept a parameter of this type to indicate the type of file to be created:

 /// What type of temporary file to create.

 enum ETextBinary {

 eText, ///<Create text file

 eBinary ///< Create binary file

 };

Additionally, you can specify the type of operations (read, write) that should be permitted on

the temporary files. These are defined by the enumeration type, EAllowRead, and the

CreateTmpFile() and CreateTmpFileEx() methods accept a parameter of this type to indicate

the type operations that are permitted:

 /// Which operations to allow on temporary file.

 enum EAllowRead {

 eAllowRead, ///< Allow read and write

 eWriteOnly ///< Allow write only

 };

CDir class

The CDir is derived from the base class, CDirEntry. Besides inheriting the methods discussed

in the CDirEntry section, the following new methods specific to directories are defined in the

CDir class:

! Exists(): Check existence for a directory.

Page 71

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCFile.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDir.html

! GetHome(): Get the user's home directory.

! GetCwd(): Get the current working directory.

! GetEntries(): Get directory entries based on a specified mask parameter. Retuns a

vector of pointers to CDirEntry objects defined by TEntries

! Create(): Create the directory using the directory name passed in the constructor.

! CreatePath(): Create the directory path recursively possibly more than one at a time.

! Remove(): Delete existing directory.

The last method on the list, the Remove() method accepts an enumeration type parameter,

EDirRemoveMode, defined in the CDirEntry class which specifies the extent of the directory

removal operation -- you can delete only an empty directory, only files in a directory but not

any subdirectories, or remove the entire directory tree.

CMemoryFile class

The CMemoryFile is derived from the base class, CDirEntry. This class creates a virtual image

of a disk file in memory that allow normal file operations to be permitted, but the file operations

are actually performed on the image of the file in memory. This can result in considerable

improvements in speed when there are many "disk intensive" file operations being performed

on a file which is mapped to memory.

Besides inheriting the methods discussed in the CDirEntry section, the following new methods

specific to memory mapped are defined in the CMemoryFile class:

! IsSupported(): Check if memory-mapping is supported by the C++ Toolkit on this

platform.

! GetPtr(): Get pointer to beginning of data in the memory mapped file.

! GetSize(): Get size of the mapped area.

! Flush(): Flush by writing all modified copies of memory pages to the underlying file.

! Unmap(): Unmap file if it has already been mapped.

! MemMapAdvise(): Advise on memory map usage.

! MemMapAdviseAddr(): Advise on memory map usage for specified region.

The methods MemMapAdvise() and MemMapAdviseAddr() allow one to advise on the

expected usage pattern for the memory mapped file. The expected usage pattern is defined by

the enumeration type, EMemMapAdvise, and these methods accept a parameter of this type

to indicate the usage pattern:

 /// What type of data access pattern will be used for mapped region.

 ///

 /// Advises the VM system that the a certain region of user mapped

memory

 /// will be accessed following a type of pattern. The VM system uses

this

 /// information to optimize work with mapped memory.

 ///

Page 72

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCMemoryFile.html

 /// NOTE: Now works on UNIX platform only.

 typedef enum {

 eMMA_Normal, ///< No further special treatment

 eMMA_Random, ///< Expect random page references

 eMMA_Sequential, ///< Expect sequential page references

 eMMA_WillNeed, ///< Will need these pages

 eMMA_DontNeed ///< Don't need these pages

 } EMemMapAdvise;

The memory usage advice is implemented on Unix platforms only, and is not supported on

Windows platforms.

String APIs

The ncbistr.hpp file defines a number of useful constants, types and functions for handling

string types. Most of the string functions are defined as class-wides static members of the class

NStr.

The following sections provide additional details on string APIs

! String Constants

! NStr Class

! UTF Strings

! PCase and PNocase

String Constants

For convenience, two types of empty strings are provided. A C-language style string that

terminates with the null character ('\0') and a C++ style empty string.

The C-language style empty string constants are NcbiEmptyCStr which is a macro definition

for the NCBI_NS_NCBI::kEmptyCStr. So the NcbiEmptyStr and kEmptyCStr are, for all

practical purposes, equivalent.

The C++-language style empty string constants are NcbiEmptyString and the kEmptyStr which

are macro definitions for the NCBI_NS_NCBI::CNcbiEmptyString::Get() method that returns

an empty string. So the NcbiEmptyString and kEmptyStr are, for all practical purposes,

equivalent.

The SIZE_TYPE is an alias for the string::size_type, and the NPOS defines a constant that is

returned when a substring search fails, or to indicate an unspecified string position.

Page 73

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

NStr Class

The NStr class encapsulates a number of class-wide static methods. These include string

concatenation, string conversion, string comparison, string search functions. Most of these

string operations should be familiar to developers by name. Table 8 presents at a glance, a

summary of these functions.

UTF Strings

The CStringUTF8 class extends the C++ string class and provides support for Unicode

Transformation Format-8 (UTF-8) strings.

This class supports constructors where the input argument is a string reference, char* pointer,

and wide string, and wide character pointers. Wide string support exists if the macro

HAVE_WSTRING is defined:

 CStringUTF8(const string& src);

 CStringUTF8(const char* src);

 CStringUTF8(const wstring& src);

 CStringUTF8(const wchar_t* src)

 ;

The CStringUTF8 class defines assignment(=) and append-to string (+=) operators where the

string assigned or appended can be a CStringUTF8 reference, string reference, char* pointer,

wstring reference, wchar_t* pointer.

Conversion to ASCII from CStringUTF8 is defined by the AsAscii() method. This method can

throw a StringException with error codes 'eFormat' or 'eConvert' if the string has a wrong

UTF-8 format or cannot be converted to ASCII.

 string AsAscii(void) const;

 wstring AsUnicode(void) const;

PCase and PNocase

The PCase and PNocase structures define case-sensitive and case-insensitive comparison

functions, respectively. These comparison functions are the Compare(), Less(), Equals(),

operator(). The Compare() returns an integer (-1 for less than, 0 for equal to, 1 for greater than).

The Less() and Equals() return a TRUE if the first string is less than or equal to the second

string. The operator() returns TRUE if the first string is less than the second.

A convenience template function AStrEquiv is defined that accepts the two classes to be

compared as template parameters and a third template parameter that can be the comparison

class such as the PCase and PNocase defined above.

Page 74

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Portable Time Class

The ncbitime.hpp defines CTime, the standard Date/Time class that also can be used to

represent elapsed time. Please note that the CTime class works for dates after 1/1/1900 and

should not be used for elapsed time prior to this date. Also, since Mac OS 9 does not support

the daylight savings flag, CTime does not support daylight savings on this platform.

The subsections that follow discuss the following topics:

! CTime Class Constructors

! Other CTime Methods

CTime Class Constructors

The CTime class defines three basic constructors that accept commonly used time description

arguments and some explicit conversion and copy constructors. The basic constructors are the

following:

! Constructor 1:

CTime(EInitMode mode = eEmpty, ETimeZone tz = eLocal, ETimeZonePrecision

tzp = eTZPrecisionDefault);

! Constructor 2:

CTime(int year, int month, int day, int hour = 0, int minute = 0, int second = 0, long

nanosecond = 0, ETimeZone tz = Local, ETimeZonePrecision tzp =

eTZPrecisionDefault);

! Constructor 3:

CTime(int year, int yearDayNumber, ETimeZone tz = eLocal, ETimeZonePrecision

tzp = eTZPrecisionDefault);

In Constructor 1, the EInitMode is an enumeration type defined in the CTime class that can be

used to specify whether to build the time object with empty time value (eEmpty) or current

time (eCurrent). The ETimeZone is an enumeration type also defined in the CTime class that

is used to specify the local time zone (eLocal) or GMT (eGmt. The ETimeZonePrecision is an

enumeration type also defined in the CTime class that can be used to specify the time zone

precision to be used for adjusting the daylight savings time. The default value is eNone, which

means that daylight savings do not affect time calculations.

Constructor 2 differs from Constructor 1 with respect to how the timestamp is specified. Here

the time stamp is explictly specified as the year, month, day, hour, minute, second, and

nanosecond values. The other parameters of type ETimeZone and ETimeZonePrecision have

the meanings discussed in the previous paragraph.

Constructor 3 allows the timestamp to be constructed as the Nth day (yearDayNumber) of a

year(year). The other parameters of type EtimeZone and ETimeZonePrecision have the

meanings discussed in the previous paragraph.

The explicit conversion constructor allows the conversion to be made from a string

representation of time. The default value of the format string is kEmptyStr, which implies that

the format string has the format "M/D/Y h:m:s". As one would expect, the format specifiers

M, D, Y, h, m, and s have the meanings month, day, year, hour, minute, and second,

respectively:

Page 75

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

explicit CTime(

 const string& str,

 const string& fmt = kEmptyStr,

 ETimeZone tz = eLocal,

 ETimeZonePrecision tzp = eTZPrecisionDefault);

There is also a copy constructor defined that permits copy operations for CTime objects.

Other CTime Methods

Once the CTime object is constructed, it can be accessed using the SetTimeT() and GetTimeT

() methods. The SetTimeT() method is used to set the CTime with the timestamp passed by

the time_t parameter. The GetTimeT() method returns the time stored in the CTime object as

a time_t value. The time_t value measures seconds since January 1, 1900; therefore, do not use

these methods if the timestamp is less than 1900. Also, time formats are in GMT time format.

A series of methods that set the time using the database formats TDBTimeI and TDBTimeU

are also defined. These database time formats contain local time only and are defined as

typedefs in ncbitime.hpp. The mutator methods are SetTimeDBI() and SetTimeDBU(), and

the accessor methods are GetTimeDBI() and GetTimeDBU().

You can set the time to the current time using the SetCurrent() method, or set it to "empty"

using the Clear() method. If you want to measure time as days only and strip the hour, minute,

and second information, you can use Truncate() method.

You can get or set the current time format using the GetFormat() and SetFormat() methods.

You can get and set the individual components of time, such as year, day, month, hour, minute,

second, and nanosecond. The accessor methods for these components are named after the

component itself, and their meanings are obvious, e.g., Year() for getting the year component,

Month() for getting the month component, Day() for getting the day component, Hour() for

getting the hour component, Minute() for getting the minute component, Second() for getting

the second component, and NanoSecond() for getting the nanosecond component. The

corresponding mutator methods for setting the individual components are the same as the

accessor, except that they have the prefix "Set" before them. For example, the mutator method

for setting the day is SetDay(). A word of caution on setting the individual components: You

can easily set the timestamp to invalid values, such as changing the number of days in the

month of February to 29 when it is not a leap year, or 30 or 31.

A number of methods are available to get useful information from a CTime object. To get a

day's year number (1 to 366) use YearDayNumber(). To get the week number in a year, use

YearWeekNumber(). To get the week number in a month, use MonthWeekNumber(). You can

get the day of week (Sunday=0) by using DayOfWeek(), or the number of days in the current

month by using DaysInMonth().

There are times when you need to add months, days, hours, minutes, or seconds to an existing

CTime object. You can do this by using the AddXXX() methods, where the "XXX" is the time

Page 76

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

component such as "Year", "Month", "Day", "Hour", "Minute", "Second", "NanoSecond" that

is to be added to. Be aware that because the number of days in a month can vary, adding months

may change the day number in the timestamp. Operator methods for adding to (+=), subtracting

from (-=), incrementing (++), and decrementing (--) days are also available.

If you need to compare two timestamps, you can use the operator methods for equality (==),

in-equality (!=), earlier than (<), later than (>), or a combination test, such as earlier than or

equal to (<=) or later than or equal to (>=).

You can measure the difference between two timestamps in days, hours, minutes, seconds, or

nanoseconds. The timestamp difference methods have the form DiffXXX(), where "XXX" is

the time unit in which you want the difference calculated such as "Day", "Hour", "Minute",

"Second", or "NanoSecond". Thus, DiffHour() can be used to calculate the difference in hours.

There are times when you may need to do a check on the timestamp. You can use IsLeap() to

check if the time is in a leap year, or if it is empty by using IsEmpty(), or if it is valid by using

IsValid(), or if it is local time by using IsLocalTime(), or if it is GMT time by using IsGmtTime

().

If you need to work with time zones explicitly, you can use GetTimeZoneFormat() to get the

current time zone format, and SetTimeZoneFormat() to change it. You can use

GetTimeZonePrecision() to get the current time zone precision and SetTimeZonePrecision()

to change it. To get the time zone difference between local time and GMT, use TimeZoneDiff

(). To get current time as local time use GetLocalTime(), and as GMT time use GetGmtTime

(). To convert current time to a specified time zone, use ToTime(), or to convert to local time

use ToLocalTime().

Also defined for CTime are assignment operators to assign a CTime object to another CTime

and an assignment operator where the right hand side is a time value string.

Template Utilities

The ncbiutil.hpp file defines a number of useful template functions, classes, and struct

definitions that are used in other parts of the library.

The following topics are discussed in this section:

! Function Objects

! Template Functions

Function Objects

The p_equal_to and pair_equal_to are template function classes that are derived from the

standard binary_function base class. The p_equal_to checks for equality of objects pointed to

by a pointer and pair_equal_to checks whether a pair's second element matches a given value.

Another PPtrLess function class allows comparison of objects pointed to by a smart pointer.

The CNameGetter template defines the function GetKey(), which returns the name attribute

for the template parameter.

Template Functions

Defined here are a number of inline template functions that make it easier to perform common

operations on map objects.

Page 77

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

NotNull() checks for a null pointer value and throws a CCoreException, if a null value is

detected. If the pointer value is not null, it is simply returned.

GetMapElement() searches a map object for an element and returns the element, if found. If

the element is not found, it returns a default value, which is usually set to 0 (null).

SetMapElement() sets the map element. If the element to be set is null, its existing key is erased.

InsertMapElement() inserts a new map element.

GetMapString() and SetMapString() are similar to the more general GetMapElement() and

SetMapElement(), except that they search a map object for a string. In the case of GetMapString

(), it returns a string, if found, and an empty string ("") if not found.

There are three overloads for the DeleteElements() template function. One overload accepts a

container (list, vector, set, multiset) of pointers and deletes all elements in the container and

clears the container afterwards. The other overloads work with map and multimap objects. In

each case, they delete the pointers in the map object and clear the map container afterwards.

The AutoMap() template function works with a cache pointed to auto_ptr. It retrieves the result

from the cache, and if the cache is empty, it inserts a value into the cache from a specified

source.

A FindBestChoice() template function is defined that returns the best choice (lowest score)

value in the container. The container and scoring functions are specified as template

parameters. The FindBestChoice() in turn uses the CBestChoiceTracker template class, which

uses the standard unary_function as its base class. The CBestChoiceTracker contains the logic

to record the scoring function and keep track of the current value and the best score.

Miscellaneous Types and Macros

The ncbimisc.hpp file defines a number of useful enumeration types and macros that are used

in other parts of the library.

The following topics are discussed in this section:

! Miscellaneous Enumeration Types

! AutoPtr Class

! ITERATE Macros

! Sequence Position Types

Miscellaneous Enumeration Types

The enum type EOwnership defines the constants eNoOwnership and eTakeOwnership. These

are used to specify relationships between objects.

The enum type ENullable defines the constants eNullable and eNotNullable. These are used

to specify if a data element can hold a null or not-null value.

AutoPtr Class

The ncbimisc.hpp file defines an auto_ptr class if the HAVE_NO_AUTO_PTR macro is

undefined. This is useful in replacing the std::auto_ptr of STL for compilers with poor

"auto_ptr" implementation. Section STL auto_ptrs discusses details on the use of auto_ptr.

Page 78

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Another class related to the auto_ptr class is the AutoPtr class. The Standard auto_ptr class

from STL does not allow the auto_ptr to be put in STL containers such as list, vector, map etc.

Because of the nature of how ownership works in an auto_ptr class, the copy constructor and

assignment operator of AutoPtr modify the state of the source AutoPtr object as it transfers

ownership to the target AutoPtr object.

A certain amount of flexibility has been provided in terms of how the pointer is to be deleted.

This is done by passing a second argument to the AutoPtr template. This second argument

allows the passing of a functor object that defines the deletion of the object. You can define

"malloc" pointers in AutoPtr, or you can use an ArrayDeleter template class to properly delete

an array of objects using "delete[]". By default, the internal pointer will be deleted using the

"delete" operator.

ITERATE macros

When working with STL container classes, it is common to use a for-statement to set up a loop

to iterate through the elements in a container. For this reason, the ITERATE and

NON_CONST_ITERATE macros have been defined to sequence through the container

elements. These macros are listed here because their code explains more clearly how they work:

#define ITERATE(Type, Var, Cont) \

 for (Type::const_iterator Var = (Cont).begin(), NCBI_NAME2(Var,_end) =

(Cont).end(); Var != NCBI_NAME2(Var,_end); ++Var)

#define NON_CONST_ITERATE(Type, Var, Cont) \

 for (Type::iterator Var = (Cont).begin(); Var != (Cont).end(); ++Var)

The difference between the ITERATE and NON_CONST_ITERATE is that the former uses

a constant iterator and the latter uses a non-constant iterator.

The uppercase versions of these macros are preferred by convention. Lowercase versions of

these macros are also defined, but their use has been deprecated.

Sequence Position Types

The TSeqPos and and TSignedSeqPos are defined to specify sequence locations and length.

TSeqPos is defined as an unsigned int, and TSignedSqPos is a signed int that should be used

only when negative values are a possibility for reporting differences between positions, or for

error reporting, although exceptions are generally better for error reporting.

Containers

The Container classes are template classes that provide many useful container types. The

template parameter refers to the types of objects whose collection is being described. An

overview of some of the container classes is presented in the introductory chapter on the C++

Toolkit.

The following classes are described in this section:

! template<typename Coordinate> class CRange

! template<typename Object, typename Coordinate = int> class CRangeMap

Page 79

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

! template<typename Object, typename Coordinate = int> class CRangeMultiMap

! class CIntervalTree

template<typename Coordinate> class CRange

Class for storing information about some interval (from:to). From and to points are inclusive.

Typedefs

position_type

synonym of Coordinate.

Methods

CRange();

CRange(position_type from, position_type to);

constructors

static position_type GetEmptyFrom();

static position_type GetEmptyTo();

static position_type GetWholeFrom();

static position_type GetWholeTo();

get special coordinate values

static CRange<position_type> GetEmpty();

static CRange<position_type> GetWhole();

get special interval objects

bool HaveEmptyBound() const;

check if any bound have special 'empty' value

bool HaveInfiniteBound() const;

Page 80

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

check if any bound have special 'whole' value

bool Empty() const;

check if interval is empty (any bound have special 'empty' value or left bound greater then right

bound)

bool Regular() const;

check if interval's bounds are not special and length is positive

position_type GetFrom() const;

position_type GetTo() const;

position_type GetLength() const;

get parameters of interval

CRange<position_type>& SetFrom();

CRange<position_type>& SetTo();

set bounds of interval

CRange<position_type>& SetLength();

set length of interval leaving left bound (from) unchanged

CRange<position_type>& SetLengthDown();

set length of interval leaving right bound (to) unchanged

bool IntersectingWith(CRange<position_type> range) const;

check if non empty intervals intersect

Page 81

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

bool IntersectingWithPossiblyEmpty(CRange<position_type> range) const;

check if intervals intersect

template<typename Object, typename Coordinate = int> class CRangeMap

Class for storing and retrieving data using interval as key. Also allows efficient iteration over

intervals intersecting with specified interval. Time of iteration is proportional to amount of

intervals produced by iterator. In some cases, algorithm is not so efficient and may slowdown.

template<typename Object, typename Coordinate = int> class CRangeMultiMap

Almost the same as CRangeMap but allows several values have the same key interval.

class CIntervalTree

Class with the same functionality as CRangeMap although with different algorithm. It is faster

and its speed is not affected by type of data but it uses more memory (triple as CRangeMap)

and, as a result, less efficient when amount of interval in set is quite big. It uses about 140 bytes

per interval for 64 bit program so you can calculate if CIntervalTree is acceptable. For example,

it becomes less efficient than CRangeMap when total memory becomes greater than processor

cache.

Thread Pools

CThreadPool is the main class that implements a pool of threads. It executes any tasks derived

from the CThreadPool_Task class. The number of threads in pool is controlled by special holder

of this policy: object derived from CThreadPool_Controller (default implementation is

CThreadPool_Controller_PID based on Proportional-Integral-Derivative algorithm). All

threads executing by CThreadPool are the instances of CThreadPool_Thread class or its

derivatives.

The following classes are discussed in this section:

! CThreadPool

! CThreadPool_Task

! CThreadPool_Thread

! CThreadPool_Controller

! CThreadPool_Controller_PID

Class CThreadPool

Main class implementing functionality of pool of threads. CThreadPool can be created in 2

ways:

! with minimum and maximum limits on count of simultaneously working threads and

default object controlling the number of threads in pool during CThreadPool lifecycle

(instance of CThreadPool_Controller_PID);

! with custom object controlling the number of threads (instance of class derived from

CThreadPool_Controller). This object will control among all other the minimum and

maximum limits on count of simultaneously working threads.

Page 82

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Both constructors take additional parameter - maximum number of tasks waiting in the inner

CThreadPool’s queue for their execution. When this limit will be reached next call to AddTask

() will block until some task from queue is executed and there is free room for new task.

CThreadPool has the ability to execute among ordinary tasks some exclusive ones. After call

to RequestExclusiveExecution() all threads in pool will suspend their work (finishing currently

executing tasks) and exclusive task will be executed in the special exclusive thread.

If there’s necessity to implement some special per-thread logic in CThreadPool then class can

be derived to override virtual method CreateThread() in which some custom object derived

from CThreadPool_Thread can be created.

Class CThreadPool_Task

Abstract class derived from CObject, encapsulating task for execution in a CThreadPool. The

pure virtual method EStatus Execute(void) is called when some thread in pool becomes free

and ready to execute this task. The lifetime of the task is controlled inside pool by CRef<>

classes.

Class CThreadPool_Thread

Base class for a thread running inside CThreadPool and executing its tasks. Class can be derived

to implement some per-thread functionality in CThreadPool. For this purpose there are

protected virtual methods Initialize() and Finalize() which are called at the start and finish of

the thread correspondingly. And there are methods GetPool() and GetCurrentTask() for

application needs.

Class CThreadPool_Controller

Abstract base class for implementations of policies of threads creation and deletion inside pool.

Class CThreadPool_Controller_PID

Default object controlling number of threads working in the pool. Implementation is based on

Proportional-Integral-Derivative algorithm for keeping in memory just threads that are

necessary for efficient work.

Miscellaneous Classes

The following classes are discussed in this section. For an overview of these classes see the

Lightweight Strings and the Checksum sections in the introductory chapter on the C++ Toolkit.

! class CTempString

! class CChecksum

class CTempString

Class CTempString implements a light-weight string on top of a storage buffer whose lifetime

management is known and controlled.

CTempString is designed to avoid memory allocation but provide a string interaction interface

congruent with std::basic_string<char>.

As such, CTempString provides a const-only access interface to its underlying storage. Care

has been taken to avoid allocations and other expensive operations wherever possible.

Page 83

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObject&d=C

CTempString has constructors from std::string and C-style string, which do not copy the string

data but keep char pointer and string length.This way the construction and destruction are very

efficient.

Take into account, that the character string array kept by CTempString object must remain

valid and unchanged during whole lifetime of the CTempString object.

It's convenient to use the class CTempString as an argument of API functions so that no

allocation or deallocation will take place on of the function call.

class CChecksum

Class for CRC32 checksum calculation. It also has methods for adding and checking checkum

line in text files.

Input/Output Utility Classes

This section provides reference information on a number of Input/Output Utility classes. For

an overview of these classes see the Stream Support section in the introductory chapter on the

C++ Toolkit.

! class CIStreamBuffer

! class COStreamBuffer

! class CByteSource

! class CStreamByteSource

! class CFStreamByteSource

! class CFileByteSource

! class CMemoryByteSource

! class CByteSourceReader

! class CSubSourceCollector

class CIStreamBuffer

Class for additional buffering of standard C++ input streams (sometimes standard C++

iostreams performance quite bad). Uses CByteSource as a data source.

class COStreamBuffer

Class for additional buffering of standard C++ output streams (sometimes standard C++

iostreams performance quite bad).

class CByteSource

Abstract class for abstract source of byte data (file, stream, memory etc).

class CStreamByteSource

CByteSource subclass for reading from C++ istream.

class CFStreamByteSource

CByteSource subclass for reading from C++ ifstream.

class CFileByteSource

CByteSource subclass for reading from named file.

Page 84

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

class CMemoryByteSource

CByteSource subclass for reading from memory buffer.

class CByteSourceReader

Abstract class for reading data from CByteSource.

class CSubSourceCollector

Abstract class for obtaining piece of CByteSource as separate source.

Page 85

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 1. Argument processing class relations.

Page 86

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 2. Thread Life Cycle

Page 87

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 1. Example of Command-line Arguments

Command-Line Parameters File Content

-gi "Integer" (GI id of the Seq-Entry to examine) OPTIONAL ARGUMENTS: -h (Print this
USAGE message; ignore other arguments) -reconstruct (Reconstruct title) -accession (Prepend
accession) -organism (Append organism name)

-gi 10200 -reconstruct -accession -organism

Please note:

File must contain Macintosh-style line breaks.

No extra spaces are allowed after argument ("-accession" and not "-accession ").

Arguments must be followed by an empty terminating line.

Page 88

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 2. Location of configuration files

conf Where to Look for the config File

empty [default] Compose the config file name from the base application name plus .ini. Also try to strip file extensions, e.g., for the application
named my_app.cgi.exe try subsequently: my_app.cgi.exe.ini, my_app.cgi.ini, my_app.ini. Using these names, search in
directories as described in the "Otherwise" case for non-empty conf (see below).

NULL Do not even try to load the registry at all

non-empty If conf contains a path, then try to load from the config file named conf (only and exactly!). If the path is not fully qualified and
it starts from ../ or ./, then look for the config file starting from the current working dir. Otherwise (only a basename, without
path), the config file will be searched for in the following places (in the order of preference): 1. current work directory; 2.
directory defined by environment variable NCBI; 3. user home directory; 4. program directory.

Page 89

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 3. Standard command line options for the default instance of CArgDescriptions

Flag Description Example

-h Print description of the application's command-line parameters. theapp -h

-logfile Redirect program's log into the specified file. theapp -logfile theapp_log

-conffile Read the program's configuration data from the specified file. theapp -conffile theapp_cfg

Page 90

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 4. Filter String Samples

Filter Description Matches Non Matches

/corelib Log message
from source
file located in
src/corelib or
include/corelib
or
subdirectories

! src/corelib/ncbidiag.cpp

! src/corelib/test/test_ncbiexec.cpp

! include/corelib/ncbidiag.hpp

! src/cgi/cgiapp.cpp

/corelib/test Log message
from source
file located in
src/corelib/test
or include/
corelib/test or
subdirectories

! src/corelib/test/test_ncbiexec.cpp ! src/corelib/ncbidiag.cpp

! include/corelib/ncbidiag.hpp

! src/cgi/cgiapp.cpp

/corelib/ Log message
from source
file located in
src/corelib or
include/corelib

! src/corelib/ncbidiag.cpp

! include/corelib/ncbidiag.hpp

! src/corelib/test/test_ncbiexec.cpp

! src/cgi/cgiapp.cpp

corelib Log message
with module
name set to
"corelib" and
any class or
function name

! corelib

! corelib::CNcbiDiag

! corelib::CNcbiDiag::GetModule()

! CNcbiDiag

! CNcbiDiag::GetModule()

! GetModule()

corelib::CNcbiDiag Log message
with module
name set to
"corelib", class
name set to
"CNcbiDiag"
and any
function name

! corelib::CNcbiDiag

! corelib::CNcbiDiag::GetModule()

! corelib

! CNcbiDiag

! CNcbiDiag::GetModule()

! GetModule()

::CNcbiDiag Log message
with class
name set to
"CNcbiDiag"
and any
module or
function name

! corelib::CNcbiDiag

! corelib::CNcbiDiag::GetModule()

! CNcbiDiag

! CNcbiDiag::GetModule()

! corelib

! GetModule()

? Log message
with module
name not set
and any class or
function name

! CNcbiDiag

! CNcbiDiag::GetModule()

! GetModule()

! corelib

! corelib::CNcbiDiag

! corelib::CNcbiDiag::GetModule()

! corelib::CNcbiDiag::GetModule()

corelib::? Log message
with module
name set to
"corelib", class
name not set
and any
function name

! corelib

! corelib::GetModule()

! corelib::CNcbiDiag

! corelib::CNcbiDiag::GetModule()

! CNcbiDiag::GetModule()

! GetModule()

GetModule() Log message
with function
name set to
"GetModule"
and any class or
module name

! corelib::GetModule()

! CNcbiDiag::GetModule()

! GetModule()

! Corelib

! corelib::CNcbiDiag

! CNcbiDiag

(20.11) Log messages
with error code
20 and subcode
11

! ErrCode(20,11) ! ErrCode(20,10)

! ErrCode(123,11)

Page 91

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Filter Description Matches Non Matches

(20-80.) Log messages
with error code
from 20 to 80
and any
subcode

! ErrCode(20,11)

! ErrCode(20,10)

! ErrCode(51,1)

! ErrCode(123,11)

(20-80,120,311-400.1-50,60) Log messages
with error code
from 20 to 80,
120, from 311
to 400 and
subcode from 1
to 50 and 60

! ErrCode(20,11)

! ErrCode(321,60)

! ErrCode(20,51)

! ErrCode(321,61)

Page 92

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 5. Standard C/C++ Types

Name Size(bytes) Min Max Note

char 1 kMin_Char (0 or -128) kMax_Char (256 or 127) It can be either signed or
unsigned! Use it wherever you
don't care of +/- (e.g. in character
strings).

signed char 1 kMin_SChar (-128) kMax_SChar (127)

unsigned char 1 kMin_UChar (0) kMax_UChar (255)

short, signed short 2 or more kMin_Short (-32768 or less) kMax_Short (32767 or greater) Use "int" if size isn't critical

usigned short 2 or more kMin_UShort (0) kMax_UShort (65535 or greater) Use "unsigned int" if size isn't
critical

int, signed int 4 or more kMin_Int (-2147483648 or less) kMax_Int (2147483647 or greater)

unsigned int 4 or more kMin_UInt (0) kMax_UInt (4294967295 or greater)

double 4 or more kMin_Double kMax_Double

Types "long" and "float" are discouraged to use in the portable code.

Type "long long" is prohibited to use in the portable code.

Page 93

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 6. Fixed-integer Types

Name Size(bytes) Min Max

Char, Int1 1 kMin_I1 kMax_I1

Uchar, Uint1 1 0 kMax_UI1

Int2 2 kMin_I2 kMax_I2

Uint2 2 0 kMax_UI2

Int4 4 kMin_I4 kMax_I4

Uint4 4 0 kMax_UI4

Int8 8 kMin_I8 kMax_I8

Uint8 8 0 kMax_UI8

Page 94

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 7. Correspondence between the kM*_* constants and the old style INT*_M* constants

Constant(NCBI C++) Value Define(NCBI C)

kMin_I1 -128 INT1_MIN

kMax_I1 +127 INT1_MAX

kMax_UI1 +255 UINT1_MAX

kMin_I2 -32768 INT2_MIN

kMax_I2 +32767 INT2_MAX

kMax_UI2 +65535 UINT2_MAX

kMin_I4 -2147483648 INT4_MIN

kMax_I4 +2147483647 INT4_MAX

kMax_UI4 +4294967295 UINT4_MAX

kMin_I8 -9223372036854775808 INT8_MIN

kMax_I8 +9223372036854775807 INT8_MAX

kMax_UI8 +18446744073709551615 UINT8_MAX

Page 95

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Table 8. NStr string functions

Function name Parameters Description

StringToNumeric const string& str Convert "str" to a (non-negative) integer value and return
this value. Or return -1 if "str" contains any symbols other
than [0-9], or if it represents a number that does not fit into
an "int".

StringToInt const string& str, int base = 10, ECheckEndPtr check =
eCheck_Need

Convert specified string to int for the specified base. The
check parameter determines whether trailing symbols (other
than '\0') are permitted. The default is eCheck_Needed
which means that if there are trailing symbols after the
number, an exception will be thrown. If the value is
eCheck_Skip, the string can have trailing symbols after the
number.

StringToUInt const string& str, int base = 10, ECheckEndPtr check =
eCheck_Need

Similar to the StringToInt, except that the conversion is to
an unsigned int. Convert specified string to unsigned int for
the specified base. The check parameter determines whether
trailing symbols (other than '\0') are permitted. The default
is eCheck_Needed which means that if there are trailing
symbols after the number, an exception will be thrown. If
the value is eCheck_Skip, the string can have trailing
symbols after the number.

StringToLong const string& str, int base = 10, ECheckEndPtr check =
eCheck_Need

Similar to the StringToInt, except that the conversion is to
an long. Convert specified string to a long for the specified
base. The check parameter determines whether trailing
symbols (other than '\0') are permitted. The default is
eCheck_Needed which means that if there are trailing
symbols after the number, an exception will be thrown. If
the value is eCheck_Skip, the string can have trailing
symbols after the number.

StringToULong const string& str, int base = 10, ECheckEndPtr check =
eCheck_Need

Similar to the StringToLong, except that the conversion is
to an unsigned long. Convert specified string to an unsigned
long for the specified base. The check parameter determines
whether trailing symbols (other than '\0') are permitted. The
default is eCheck_Needed which means that if there are
trailing symbols after the number, an exception will be
thrown. If the value is eCheck_Skip, the string can have
trailing symbols after the number.

StringToDouble const string& str, ECheckEndPtr check = eCheck_Need Convert specified string to a double. The check parameter
determines whether trailing symbols (other than '\0') are
permitted. The default is eCheck_Needed which means that
if there are trailing symbols after the number, an exception
will be thrown. If the value is eCheck_Skip, the string can
have trailing symbols after the number.

StringToInt8 const string& str Convert specified string to a an Int8 value.

StringToUInt8 const string& str Similar to the StringToInt8, except that the conversion is to
an unsigned eight byte integer. Convert specified string to
a an UInt8 value.

StringToPtr const string& str Convert specified string to a void* pointer value.

IntToString long value, bool sign = false Convert specified long integer value to its string
representation. The sign parameter is used to determine
whether the converted value should be preceded by the sign
(+-) character.

UIntToString unsigned long value Convert specified unsigned long integer value to its string
representation.

Int8ToString Int8 value, bool sign = false Convert specified eight byte integer value to its string
representation. The sign parameter is used to determine
whether the converted value should be preceded by the sign
(+-) character.

UInt8ToString Uint8 value Convert specified eight byte unsigned integer value to its
string representation.

DoubleToString double value Convert specified double value to its string representation.

Page 96

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Function name Parameters Description

DoubleToString double value, unsigned int precision Convert specified double value to its string representation.
The precision parameter specifies the precision value for
conversion. If precision is more that maximum for current
platform, then it will be truncated to this maximum.

DoubleToString double value, unsigned int precision, char* buf, SIZE_TYPE
buf_size

Convert specified double value to its string representation
and return the result of the conversion into the buf
parameter. The precision parameter specifies the precision
value for conversion. If precision is more that maximum for
current platform, then it will be truncated to this maximum.
The function returns the number of bytes stored in "buf",
not counting the terminating '\0'.

PtrToString const void* ptr Convert specified void* pointer to its string represenation.

BoolToString bool value Convert the specified boolean to its string representation.
Returns 'true' or 'false' string.

StringToBool const string& str Convert the specified string value to Boolean. Can
recognize case-insensitive version as one of: 'true, 't', 'yes',
'y' for TRUE; and 'false', 'f', 'no', 'n' for FALSE. Returns
TRUE or FALSE.

CompareCase const string& str, SIZE_TYPE pos, SIZE_TYPE n, const char*
pattern

Case-sensitive compare of a substring with a pattern. The
substring to be compared is defined as starting from the 'pos'
parameter and is 'n' characters long. The pattern to be
matched is specified in the 'pattern' parameter.

CompareNocase const string& str, SIZE_TYPE pos, SIZE_TYPE n, const char*
pattern

Similar to CompareCase except that the comparison is case-
insensitive. Case-insensitive compare of a substring with a
pattern. The substring to be compared is defined as starting
from the 'pos' parameter and is 'n' characters long. The
pattern to be matched is specified in the 'pattern' parameter.

CompareNocase const string& str, SIZE_TYPE pos, SIZE_TYPE n, const
string& pattern

Similar to preceding CompareNocase except that the pattern
is a string reference instead of a char*. Case-insensitive
compare of a substring with a pattern. The substring to be
compared is defined as starting from the 'pos' parameter and
is 'n' characters long. The pattern to be matched is specified
in the 'pattern' parameter.

CompareCase const char* s1, const char* s2 Case-sensitive compare of two strings given the strings as
char* values.

CompareNocase const char* s1, const char* s2 Similar to CompareCase except that the comparison is case-
insensitive. Case-insensitive compare of two strings given
the strings as char* values.

CompareCase const string& s1, const string& s2 Case-sensitive compare of two strings given the strings as
string references.

CompareNocase const string& s1, const string& s2 Similar to CompareCase except that the comparison is case-
insensitive. Case-insensitive compare of two strings given
the strings as string references.

Compare const string& str, SIZE_TYPE pos, SIZE_TYPE n, const char*
pattern, ECase use_case = eCase

Comparison of substring. The substring to be compared is
defined as starting from the 'pos' parameter and is 'n'
characters long. Whether to do a case sensitive compare
(eCase -- default), or a case-insensitive compare (eNocase)
is specified by the 'use_case' parameter.

Compare const string& str, SIZE_TYPE pos, SIZE_TYPE n, const
string& pattern, ECase use_case = eCase

Similar to preceding Compare except that the pattern is a
string reference instead of a char*. Comparison of substring.
The substring to be compared is defined as starting from the
'pos' parameter and is 'n' characters long. Whether to do a
case sensitive compare(eCase -- default), or a case-
insensitive compare (eNocase) is specified by the 'use_case'
parameter.

Compare const char* s1, const char* s2, ECase use_case = eCase Compare of two strings given the strings as char* values.
Whether to do a case sensitive compare(eCase -- default),
or a case-insensitive compare (eNocase) is specified by the
'use_case' parameter.

Page 97

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Function name Parameters Description

Compare const string& s1, const char* s2, ECase use_case = eCase Similar to preceding Compare except that the first string is
a string reference instead of a char*. Compare the two
strings. Whether to do a case sensitive compare(eCase --
default), or a case-insensitive compare (eNocase) is
specified by the 'use_case' parameter.

Compare const char* s1, const string& s2, ECase use_case = eCase Similar to preceding Compare except that the second string
is a string reference instead of a char*. Compare the two
strings. Whether to do a case sensitive compare(eCase --
default), or a case-insensitive compare (eNocase) is
specified by the 'use_case' parameter.

Compare const string& s1, const string& s2, ECase use_case = eCase Similar to preceding Compare except that both strings are a
string reference instead of a char*. Compare the two strings.
Whether to do a case sensitive compare(eCase -- default),
or a case-insensitive compare (eNocase) is specified by the
'use_case' parameter.

strcmp const char* s1, const char* s2 Case sensitive compare of the two strings.

strcasecmp const char* s1, const char* s2 Similar to preceding strcmp except that this is a case-
insensitive compare. Case insensitive compare of the two
strings.

strcmp const char* s1, const char* s2, size_t n Case sensitive compare of the two strings up to specified 'n'
characters.

strncasecmp const char* s1, const char* s2, size_t n Similar to preceding strcmp except that this is a case-
insensitive compare. Case insensitive compare of the two
strings up to specified 'n' characters.

strftime char* s, size_t maxsize, const char* format, const struct tm*
timeptr

Formats specified time as string. This is a wrapper for the
function strftime() that corrects handling %D and %T time
formats on MS Windows.

ToLower string& str Convert string to lower case.

ToLower char* str Similar to preceding ToLower except that this uses a char*
instead of a string reference. Convert string to lower case.

ToUpper string& str Convert string to uppercase.

ToUpper char* str Similar to preceding ToLower except that this uses a char*
instead of a string reference. Convert string to uppercase.

StartsWith const string& str, const string& start, ECase use_case = eCase Check if a string starts with a specified prefix value. The
'start' parameter is the prefix value to check for. The
'use_case' parameter determines whether to do a case
sensitive compare(default is eCase), or a case-insensitive
compare (eNocase) while checking.

EndsWith const string& str, const string& end, ECase use_case = eCase Check if a string ends with a specified suffix value. The 'end'
parameter is the suffix value to check for. The 'use_case'
parameter determines whether to do a case sensitive
compare(default is eCase), or a case-insensitive compare
(eNocase) while checking.

Find const string& str, const string& pattern, SIZE_TYPE start = 0,
SIZE_TYPE end = NPOS, EOccurrence which = eFirst, ECase
use_case = eCase

Finds the 'pattern' in the specified range of a string defined
as starting from 'start' and ending with 'end'. The parameter
'which' when set to eFirst, means to find the first occurrence
of the pattern and when set to eLast, this means to find the
last occurrence. The parameter 'use_case' determines
whether to do a case sensitive compare(default is eCase), or
a case-insensitive compare (eNocase) while searching for
the pattern.

FindCase const string& str, const string& pattern, SIZE_TYPE start = 0,
SIZE_TYPE end = NPOS, EOccurrence which = eFirst

Finds the 'pattern' in the specified range of a string defined
as starting from 'start' and ending with 'end' doing a case
sensitive search. The parameter 'which' when set to eFirst,
means to find the first occurrence of the pattern and when
set to eLast, this means to find the last occurrence.

Page 98

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Function name Parameters Description

FindNocase const string& str, const string& pattern, SIZE_TYPE start = 0,
SIZE_TYPE end = NPOS, EOccurrence which = eFirst

Finds the 'pattern' in the specified range of a string defined
as starting from 'start' and ending with 'end' doing a case
insensitive search. The parameter 'which' when set to eFirst,
means to find the first occurrence of the pattern and when
set to eLast, this means to find the last occurrence.

TruncateSpaces const string& str, ETrunc where=eTrunc_Both Truncate spaces in a string. The parameter 'which' controls
which end of the string to truncate space from. Default is to
truncate space from both ends (eTrunc_Both).

Replace const string& src, const string& search, const string& replace,
string& dst, SIZE_TYPE start_pos = 0, size_t max_replace =
0

Replace occurrences of a 'search' substring within the
'replace' string starting from 'start_pos' and return the result
in 'dst'. The parameter 'max_replace' determines whether to
replace no more than 'max_replace' occurrences of the
substring. If 'max_replace' is zero(default), then replace all
occurrences with 'replace'.

Replace const string& src, const string& search, const string& replace,
SIZE_TYPE start_pos = 0, size_t max_replace = 0

Replace occurrences of a 'search' substring within the
'replace' string starting from 'start_pos' and return the result
in a new string. The parameter 'max_replace' determines
whether to replace no more than 'max_replace' occurrences
of the substring. If 'max_replace' is zero(default), then
replace all occurrences with 'replace'.

Split const string& str, const string& delim, list<string>& arr,
EMergeDelims merge = eMergeDelims

Split a string using specified 'delim' delimiters and add the
split tokens to 'arr' (a list of strings) and also return this array.
The parameter 'merge' determines whether to merge the
delimiters or not. The default setting of eMergeDelims
means that delimiters that immediately follow each other
are treated as one delimiter.

Tokenize const string& str, const string& delim, list<string>& arr,
EMergeDelims merge = eNoMergeDelims

Tokenize a string using specified 'delim' delimiters and add
the tokens to 'arr' (a list of strings) and also return this array.
The parameter 'merge' determines whether to merge the
delimiters or not. The default setting of eNoMergeDelims
means that delimiters that immediately follow each other
are treated as separate delimiters.

SplitInTwo const string& str, const string& delim, string& str1, string&
str2

Split a string into two pieces 'str1' and 'str2' using the
specified delimiters

Join const list<string>& arr, const string& delim Join strings in 'arr' using the specified delimiter.

PrintableString const string& str, ENewLineMode nl_mode =
eNewLine_Quote

Get a printable version of the specified string.

Wrap const string& str, SIZE_TYPE width, list<string>& arr,
TWrapFlags flags = 0, const string* prefix = 0, const string*
prefix1 = 0

Wrap the specified string into lines of a specified 'width' and
place these wrapped lines in 'arr' a list of strings. The 'flags'
control how to wrap the words to a new line. The 'prefix'
string is added to each wrapped line, except the first line,
unless 'prefix1' is set. If 'prefix' is set to 0(default), do not
add a prefix string to the wrapped lines. The 'prefix1' string
is used for the first line. Use this for the first line instead of
'prefix'. If 'prefix1' is set to 0(default), do not add a prefix
string to the first line.

Wrap const string& str, SIZE_TYPE width, list<string>& arr,
TWrapFlags flags = 0, const string* prefix , const string*
prefix1 = 0

Similar to preceding Wrap except that only prefix1 is set to
the default value (0). Wrap the specified string into lines of
a specified 'width' and place these wrapped lines in 'arr' a
list of strings. The 'flags' control how to wrap the words to
a new line. The 'prefix' string is added to each wrapped line,
except the first line, unless 'prefix1' is set. If 'prefix' is set to
0(default), do not add a prefix string to the wrapped lines.
The 'prefix1' string is used for the first line. Use this for the
first line instead of 'prefix'. If 'prefix1' is set to 0(default),
do not add a prefix string to the first line.

Page 99

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Function name Parameters Description

Wrap const string& str, SIZE_TYPE width, list<string>& arr,
TWrapFlags flags = 0, const string* prefix , const string*
prefix1 = 0

Similar to preceding Wrap except that neither prefix or
prefix1 is set to the default value. Wrap the specified string
into lines of a specified 'width' and place these wrapped lines
in 'arr' a list of strings. The 'flags' control how to wrap the
words to a new line. The 'prefix' string is added to each
wrapped line, except the first line, unless 'prefix1' is set. If
'prefix' is set to 0(default), do not add a prefix string to the
wrapped lines. The 'prefix1' string is used for the first line.
Use this for the first line instead of 'prefix'. If 'prefix1' is set
to 0(default), do not add a prefix string to the first line.

WrapList const list<string>& l, SIZE_TYPE width, const string& delim,
list<string>& arr, TWrapFlags flags = 0, const string* prefix
= 0, const string* prefix1 = 0

Wrap the specified list into lines of a specified 'width' and
place these wrapped lines in 'arr' a list of strings. The 'flags'
control how to wrap the words to a new line. The 'prefix'
string is added to each wrapped line, except the first line,
unless 'prefix1' is set. If 'prefix' is set to 0(default), do not
add a prefix string to the wrapped lines. The 'prefix1' string
is used for the first line. Use this for the first line instead of
'prefix'. If 'prefix1' is set to 0(default), do not add a prefix
string to the first line.

WrapList const list<string>& l, SIZE_TYPE width, const string& delim,
list<string>& arr, TWrapFlags flags = 0, const string& prefix,
const string* prefix1 = 0

Similar to preceding WrapList except that prefix1 is set to
the default value and prefix is a reference to a string. Wrap
the specified list into lines of a specified 'width' and place
these wrapped lines in 'arr' a list of strings. The 'flags' control
how to wrap the words to a new line. The 'prefix' string is
added to each wrapped line, except the first line, unless
'prefix1' is set. If 'prefix' is set to 0(default), do not add a
prefix string to the wrapped lines. The 'prefix1' string is used
for the first line. Use this for the first line instead of 'prefix'.
If 'prefix1' is set to 0(default), do not add a prefix string to
the first line.

WrapList const list<string>& l, SIZE_TYPE width, const string& delim,
list<string>& arr, TWrapFlags flags = 0, const string& prefix,
const string& prefix1

Similar to preceding WrapList except that neither prefix or
prefix1 is set to the default value and both prefix and prefix1
are references to a string. Wrap the specified list into lines
of a specified 'width' and place these wrapped lines in 'arr'
a list of strings. The 'flags' control how to wrap the words
to a new line. The 'prefix' string is added to each wrapped
line, except the first line, unless 'prefix1' is set. If 'prefix' is
set to 0(default), do not add a prefix string to the wrapped
lines. The 'prefix1' string is used for the first line. Use this
for the first line instead of 'prefix'. If 'prefix1' is set to 0
(default), do not add a prefix string to the first line.

Page 100

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Networking and IPC

[9]

Connection Library [Library xconnect: include | src]

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

Includes a generic socket interface (SOCK), connection object (CONN), and specialized

connector constructors (for sockets, files, HTTP, and services) to be used as engines for

connections. It also provides access to the load-balancing daemon and NCBI named service

dispatching facilities.

Although the core of the Connection Library is written in C and has an underlying C interface,

the analogous C++ interfaces have been built to provide objects that work smoothly with the rest

of the Toolkit.

Note: Because of security issues, not all links in the public version of this file are accessible by

outside NCBI users.

! Overview

! Connections: notion of connection; different types of connections that the library

provides; programming API.

" Socket Connector

" File Connector

" HTTP Connector

" Service Connector

! Debugging Tools and Troubleshooting

! C++ Connection Streams built on top of connection objects.

! Service mapping API: description of service name resolution API.

! Threaded Server Support

Chapter Outline

The following is an outline of the topics presented in this chapter:

i Debugging Tools and Troubleshooting Documentation

ii C++ Interfaces to the Library

! CONN-Based C++ Streams and Stream Buffers ncbi_conn_stream[.hpp | .cpp],

ncbi_conn_streambuf[.hpp | .cpp]

! Diagnostic Handler for E-Mailing Logs email_diag_handler[.hpp | .cpp]

! Using the CONNECT Library with the C++ Toolkit ncbi_core_cxx[.hpp

| .cpp]

! Multithreaded Network Server Framework threaded_server[.hpp | .cpp]

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/threaded_server.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/threaded_server.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_conn_stream.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_conn_stream.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_conn_streambuf.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_conn_streambuf.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/email_diag_handler.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/email_diag_handler.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_core_cxx.cpp

iii Basic Types and Functionality (for Registry, Logging and MT Locks) ncbi_core[.h

| .c], ncbi_types[.h]

iv Portable TCP/IP Socket Interface ncbi_socket[.h | .c]

v Connections and CONNECTORs

! Open and Manage Connections to an Abstract I/O ncbi_connection[.h | .c]

! Implement CONNECTOR for a ...

" Abstract I/O ncbi_connector[.h | .c]

" Network Socket ncbi_socket_connector[.h | .c]

" FILE Stream ncbi_file_connector[.h | .c]

" HTTP-based Network Connection ncbi_http_connector[.h | .c]

" Named NCBI Service ncbi_service_connector[.h | .c]

" In-memory CONNECTOR ncbi_memory_connector[.h | .c]

vi Servers and Services

! NCBI Server Meta-Address Info ncbi_server_info[.h | p.h | .c]

! Resolve NCBI Service Name to the Server Meta-Address ncbi_service[.h | p.h

| .c]

! Resolve NCBI Service Name to the Server Meta-Address using NCBI Network

Dispatcher (DISPD) ncbi_service[p_dispd.h | _dispd.c]

! Resolve NCBI Service Name to the Server Meta-Address using NCBI Load-

Balancing Service Mapper (LBSM) ncbi_service[p_lbsmd.h | _lbsmd.c |

_lbsmd_stub.c]

! NCBI LBSM client-server data exchange API ncbi_lbsm[.h | .c]

! Implementation of LBSM Using SYSV IPC (shared memory and semaphores)

ncbi_lbsm_ipc[.h | .c]

vii Memory Management

! Memory-Resident FIFO Storage Area ncbi_buffer[.h | .c]

! Simple Heap Manager With Primitive Garbage Collection ncbi_heapmgr[.h

| .c]

viii Connection Library Utilities

! Connection Utilities ncbi_connutil[.h | .c]

! Send Mail (in accordance with RFC821 [protocol] and RFC822 [headers])

ncbi_sendmail[.h | .c]

! Auxiliary (optional) Code for ncbi_core.[ch] ncbi_util[.h | .c]

! Non-ANSI, Widely Used Functions ncbi_ansi_ext[.h | .c]

daemons [src/connect/daemons]

! LBSMD

! DISPD

! Firewall Daemon

Test Cases [src/connect/test]

Page 2

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/daemons
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_core.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_types.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_socket.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_connection.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_socket_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_file_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_file_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_http_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_http_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_service_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_memory_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_memory_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_server_infop.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_server_info.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_servicep.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_service.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_dispd.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_dispd.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_lbsmd.h
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/ncbi_lbsmd.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_lbsmd_stub.c
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/ncbi_lbsm.h
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/ncbi_lbsm.c
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/ncbi_lbsm_ipc.h
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/ncbi_lbsm_ipc.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_buffer.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_buffer.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_heapmgr.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_heapmgr.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connutil.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_connutil.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_sendmail.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_sendmail.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_util.c
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/ncbi_ansi_ext.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/ncbi_ansi_ext.c

Overview

The NCBI C++ platform-independent connection library (src/connect and include/connect)

consists of two parts:

1 Lower-level library written in C (also used as a replacement of the existing connection

library in the NCBI C Toolkit)

2 Upper-level library written in C++ and using C++ streams

Functionality of the library includes:

! SOCK interface (sockets), which works interchangeably on most UNIX varieties, MS

Windows, and Mac

! SERV interface, which provides mapping of symbolic service names into server

addresses

! CONN interface, which allows the creation of a connection, the special object capable

to do read, write, etc. I/O operations

! C++ streams built on top of the CONN interface

Note: The most lower-level SOCK interface is not covered in this document. Well-commented

API can be found in connect/ncbi_socket.h.

Connections

There are three simple types of connections: socket, file and http; and one hybrid type, service

connection.

A connection is created with a call to CONN_Create(), declared in connect/

ncbi_connection.h, and returned by a pointer to CONN passed as a second argument:

CONN conn; /* connection handle */

EIO_Status status = CONN_Create(connector, &conn);

The first argument of this function is a handle of a connector, a special object implementing

functionality of the connection being built. Above, for each type of connection there is a special

connector in the library. For each connector, one or more "constructors" are defined, each

returning the connector's handle. Connectors' constructors are defined in individual header

files, such as connect/ncbi_socket_connector.h, connect/ncbi_http_connector.h, connect/

ncbi_service_connector.h, etc. CONN_Create() resets all timeouts to the default value

CONN_DEFAULT_TIMEOUT.

After successful creation with CONN_Create(), the following calls from CONN API connect/

ncbi_connection.h become available. All calls (except CONN_GetTimeout() and

CONN_GetType()) return an I/O completion status of type EIO_Status. Normal completion

has code eIO_Success .

! CONN_Read(CONN conn, void* buf, size_t bufsize, size_t* n_read,

EIO_ReadMethod how)

Read or peek data, depending on read method how, up to bufsize bytes from connection to

specified buffer buf, return (via pointer argument n_read) the number of bytes actually read.

The last argument how can be one of the following:

! eIO_ReadPlain - to read data in a regular way, that is, extracting data from the

connection;

Page 3

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Read
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EIO_ReadMethod
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Create
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_http_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_DEFAULT_TIMEOUT
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connection.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EIO_Status

! eIO_ReadPeek - to peek data from the connection, i.e., the next read operation will see

the data again;

! eIO_ReadPersist - to read exactly (not less than) bufsize bytes or until an error

condition occurs.

A return value other than eIO_Success means trouble. Specifically, the return value

eIO_Timeout indicates that the operation could not be completed within the allotted amount

of time; but some data may, however, be available in the buffer (e.g., in case of persistent

reading, as with eIO_ReadPersist), and this is actually the case for any return code.

! CONN_Write(CONNconn, const void* buf, size_t bufsize, size_t* n_written)

Write the specified number of bytes bufsize from the buffer buf to the connection. Return (via

n_written) the amount of data actually written, and completion code as a return value.

! CONN_Flush(CONNconn)

Flush internal output queue, if this is supported by the current connection type (otherwise, do

nothing).

! CONN_SetTimeout(CONNconn, EIO_Event action, const STimeout* timeout)

Set the timeout on the specified I/O action, eIO_Read, eIO_Write, eIO_ReadWrite, eIO_Open,

and eIO_Close. The latter two actions are used in a phase of opening and closing the link,

respectively. If the connection cannot be read (written, established, closed) within the specified

period, eIO_Timeout would result from connection I/O calls. A timeout can be passed as the

NULL-pointer. This special case denotes an infinite value for that timeout. Also, a special value

CONN_DEFAULT_TIMEOUT may be used for any timeout. This value specifies the timeout

set by default for the current connection type.

! CONN_GetTimeout(CONNconn, EIO_Event action)

Obtain (via the return value of type const STimeout*) timeouts set by the CONN_SetTimeout

() routine, or active by default (i.e., special value CONN_DEFAULT_TIMEOUT).

Caution: The returned pointer is valid only for the time that the connection handle is valid, i.e.,

up to a call to CONN_Close().

! CONN_ReInit(CONNconn, CONNECTOR replacement)

This function clears the current contents of a connection and places ("immerse") a new

connector into it. The previous connector (if any) is closed first (if open), then gets destroyed,

and thus must not be referenced again in the program. As a special case, the new connector

can be the same connector, which is currently active within the connection. It this case, the

connector is not destroyed; instead, it will be effectively re-opened. If the connector passed as

NULL, then the conn handle is kept existing but unusable (the old connector closed and

destroyed) and can be CONN_ReInit()ed later. None of the timeouts are touched by this call.

! CONN_Wait(CONNconn, EIO_Event event, const STimeout* timeout)

Suspend the program until the connection is ready to perform reading (event =eIO_Read) or

writing (event = eIO_Write), or until the timeout (if non-NULL) expires. If the timeout is

passed as NULL, then the wait time is indefinite.

! CONN_Status(CONNconn, EIO_Event direction)

Provide the information about recent low-level data exchange in the link. The operation

direction has to be specified as either eIO_Read or eIO_Write. The necessity of this call arises

from the fact that sometimes the return value of a CONN API function does not really tell that

the problem has been detected: suppose, the user peeks data into a 100-byte buffer and gets 10

bytes. The return status eIO_Success signals that those 10 bytes were found in the connection

okay. But how do you know whether the end-of-file condition occurred during the last

Page 4

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Wait
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Status
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Write
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Flush
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_SetTimeout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EIO_Event
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_GetTimeout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=STimeout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_ReInit

operation? This is where CONN_Status() comes in handy. When inquired about the read

operation, return value eIO_Closed denotes that EOF was actually hit while making the peek,

and those 10 bytes are in fact the only data left untaken, no more are expected to come.

! CONN_Close(CONNconn)

Close the connection by closing the link (if open), deleting underlying connector(s) (if any)

and the connection itself. Regardless of the return status (which may indicate certain problems),

the connection handle becomes invalid and cannot be reused.

! CONN_GetType(CONN conn)

Return character string (null-terminated), verbally representing the current connection type,

such as "HTTP", "SOCKET", "SERVICE/HTTP", etc. The unknown connection type gets

returned as NULL.

! CONN_SetCallback(CONNconn, ECONN_Callback type, const SCONN_Callback*

new_cb, SCONN_Callback* old_cb)

Set user callback function to be invoked upon an event specified by callback type. The old

callback (if any) gets returned via the passed pointer old_cb (if not NULL). Callback structure

SCONN_Callback has the following fields: callback function func and void* data. Callback

function func should have the following prototype:

typedef void (*FConnCallback)(CONN conn, ECONN_Callback type, void* data)

When called, both type of callback and data pointer are supplied. The only callback type defined

at the time of this writing is eCONN_OnClose. The callback function is always called prior to

the event happening, e.g., a close callback is called when the connection is about to close.

Note: There is no means to "open" a connection: it is done automatically when actually needed,

and in most cases at the first I/O operation. But the forming of an actual link between source

and destination can be postponed even longer. These details are hidden and made transparent

to the connection's user. The connection is seen as a two-way communication channel, which

is clear for use immediately after a call to CONN_Create().

Note: If for some reason CONN_Create() failed to create a connection (return code differs

from eIO_Success), then the connector passed to this function is left intact, that is, its handle

can be used again. Otherwise, if the connection is created successfully, the passed connector

handle becomes invalid and cannot be referenced anywhere else throughout the program (with

one exception, however: it may be used as a replacing connector in a call to CONN_ReInit()

for the same connection).

Note: There are no "destructors" on public connectors. A connector successfully put into

connection is deleted automatically, along with that connection by CONN_Close(), or

explicitly with a call to CONN_ReInit(), provided that the replacing connector is NULL or

different from the original.

Socket Connector

Constructors are defined in:

#include <connect/ncbi_socket_connector.h>

A socket connection, based on the socket connector, brings almost direct access to the

SOCK API. It allows the user to create a peer-to-peer data channel between two programs,

which can be located anywhere on the Internet.

Page 5

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Close
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_GetType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_SetCallback
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SCONN_Callback
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ECONN_Callback

To create a socket connection, user has to create a socket connector first, then pass it to

CONN_Create(), as in the following example:

#include <connect/ncbi_socket_connector.h>

#include <connect/ncbi_connection.h>

#define MAX_TRY 3 /* Try to connect this many times before giving up */

unsigned short port = 1234;

CONNECTOR socket_connector = SOCK_CreateConnector("host.foo.com", port,

MAX_TRY);

if (!socket_connector)

 fprintf(stderr, "Cannot create SOCKET connector");

else {

 CONN conn;

 if (CONN_Create(socket_connector, &conn) != eIO_Success)

 fprintf(stderr, "CONN_Create failed");

 else {

 /* Connection created ok, use CONN_... function */

 /* to access the network */

 ...

 CONN_Close(conn);

 }

}

A variant form of this connector's constructor, SOCK_CreateConnectorEx(), takes three more

arguments: a pointer to data (of type void*), data size (bytes) to specify the data to be sent as

soon as the link has been established, and flags.

The CONN library defines two more constructors, which build SOCKET connectors on top of

existing SOCK objects: SOCK_CreateConnectorOnTop() and

SOCK_CreateConnectorOnTopEx(), the description of which is intentionally omitted here

because SOCK is not discussed either. Please refer to the description in the Toolkit code.

File Connector

Constructors defined in:

#include <connect/ncbi_file_connector.h>

CONNECTOR file_connector = FILE_CreateConnector("InFile", "OutFile");

This connector could be used for both reading and writing files, when input goes from one file

and output goes to another file. (This differs from normal file I/O, when a single handle is used

to access only one file, but rather resembles data exchange via socket.)

Extended variant of this connector's constructor, FILE_CreateConnectorEx(), takes an

additional argument, a pointer to a structure of type SFileConnAttr describing file connector

attributes, such as the initial read position to start from in the input file, an open mode for the

output file (append eFCM_Append, truncate eFCM_Truncate, or seek eFCM_Seek to start

writing at a specified file position), and the position in the output file, where to begin output.

The attribute pointer passed as NULL is equivalent to a call to FILE_CreateConnector(), which

reads from the very beginning of the input file and entirely overwrites the output file (if any),

implicitly using eFCM_Truncate.

Page 6

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SFileConnAttr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EFileConnMode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=TSOCK_Flags
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorOnTop
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorOnTopEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_file_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FILE_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=FILE_CreateConnectorEx

Connection-related parameters for higher-level connection protocols

The network information structure (from connect/ncbi_connutil.h) defines parameters of the

connection point, where a server is running.

Note: Not all parameters of the structure shown below apply to every network connector.

/* Network connection-related configurable info struct

 */

typedef struct {

/* effective client hostname */

char client_host[64];

/* host to connect to */

char host[64];

/* port to connect to, host byte order */

unsigned short port;

/* service: path (e.g., to a CGI script) */

char path[1024];

/* service: args (e.g., for a CGI script) */

char args[1024];

/* method to use in the request */

EReqMethodreq_method;

/* I/O timeout */

STimeouttimeout;

/* max. # of attempts to establish conn */

unsignedint max_try;

/* hostname of HTTP proxy server */

char http_proxy_host[64];

/* port # of HTTP proxy server */

unsigned short http_proxy_port;

/* host of CERN-like firewall proxy srv */

char proxy_host[64];

/* printout some debug info */

EDebugPrintoutdebug_printout;

/* to connect in HTTP-like fashion only */

int/*bool*/ stateless;

/* to use firewall/relay in connects */

int/*bool*/ firewall;

/* to disable local load-balancing */

int/*bool*/ lb_disable;

/* user header to add to HTTP request */

const char* http_user_header;

/* the following field(s) are for the internal use only! */

int/*bool*/ http_proxy_adjusted;

} SConnNetInfo;

Caution: Unlike other "static fields" of this structure, http_user_header (if non-NULL) is

assumed to be dynamically allocated on the heap (via a call to malloc, calloc, or a related

function, such as strdup).

Page 7

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?%20i=EDebugPrintout
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?%20i=SConnNetInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connutil.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?%20i=EReqMethod
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?%20i=STimeout

ConnNetInfo convenience API—Although users can create and fill out this structure via

field-by-field assignments, there is, however, a better, easier, much safer, and configurable

way (the interface is defined in connect/ncbi_connutil.h) to deal with this structure:

! ConnNetInfo_Create(const char* service)

Create and return a pointer to new SConnNetInfo structure, filled with parameters specific

either for a named service or by default (if the service is specified as NULL - most likely the

case for ordinary HTTP connections). Parameters for the structure are taken from (in the order

of precedence):

! Environment variables of the form <service>_CONN_<name>, where name is the

name of the field;

! Service-specific registry section (see below the note about the registry) named

[service] using the key CONN_<name>;

! environment variable of the form CONN_<name>

! registry section named [CONN] using name as a key

! default value applied, if none of the above resulted in a successful match

Search for the keys in both environment and registry is not case-sensitive, but the values of the

keys are case sensitive (except for enumerated types and boolean values, which can be of any,

even mixed, case). Boolean fields accept 1, "ON", "YES", and "TRUE" as true values; all other

values are treated as false. In addition to a floating point number treated as a number of seconds,

timeout can accept (case-insensitively) keyword "INFINITE".

Note: The first two steps in the above sequence are skipped if the service name is passed as

NULL.

Caution: The library can not provide reasonable default values for path and args when the

structure is used for HTTP connectors.

! ConnNetInfo_Destroy(SConnNetInfo* info)

Delete and free the info structure via a passed pointer (note that the HTTP user header

http_user_header is freed as well).

! ConnNetInfo_SetUserHeader(SConnNetInfo* info, const char* new_user_header)

Set the new HTTP user header (freeing the previous one, if any) by cloning the passed string

argument and storing it in the http_user_header field. New_user_header passed as NULL resets

the field.

! ConnNetInfo_Clone(SConnNetInfo* info)

Create and return a pointer to a new SConnNetInfo structure, which is an exact copy of the

passed structure. This function is recognizes the dynamic nature of the HTTP user header field.

Note about the registry. The registry used by the connect library is separate from the

CNcbiRegistry class. To learn more about the difference and how to use both objects together

in a single program, please see Using NCBI C and C++ Toolkits Together.

HTTP Connector

Constructors defined in:

#include <connect/ncbi_http_connector.h>

The simplest form of this connector's constructor takes three parameters:

Page 8

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_Clone
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_http_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_connutil.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_Create
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_Destroy
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConnNetInfo_SetUserHeader

extern CONNECTOR HTTP_CreateConnector(const SConnNetInfo* net_info,

 const char*

user_header,THCC_Flagsflags);

a pointer to the network information structure (can be NULL), a pointer to a custom HTTP

tag-value(s) called a user-header, and a bitmask of various flags. The user-header has to be in

the form "HTTP-Tag: Tag-value\r\n", or even multiple tag-values delimited and terminated by

"\r\n". If specified, the user_header parameter overrides the corresponding field in the passed

net_info.

The following fields of SConnNetInfo pertain to the HTTP connector: client_host, host, port,

path, args, req_method (can be one of "GET", "POST", and "ANY"), timeout, max_try (analog

of maximal try parameter for the socket connector), http_proxy_host, http_proxy_port, and

debug_printout (values are "NONE" to disable any trace printout of the connection data,

"SOME" to enable printing of SConnNetInfo structure before each connection attempt, and

"DATA" to print both headers and data of the HTTP packets in addition to dumps of

SConnNetInfo structures). Values of other fields are ignored.

HTTP connector's flags—Argument flags in the HTTP connector's constructor is a bitwise

OR of the following values:

! fHCC_AutoReconnect Allow multiple request/reply HTTP transactions. (Otherwise,

by default, only one request/reply is allowed.)

! fHCC_SureFlush Always flush a request (may consist solely of HTTP header with no

body at all) down to the HTTP server before preforming any read or close operations.

! fHCC_KeepHeader By default, the HTTP connection sorts out the HTTP header and

parses HTTP errors (if any). Thus, reading normally from the connection returns data

from the HTTP body only. The flag disables this feature, and the HTTP header is not

parsed but instead is passed "as is" to the application on a call to CONN_Read().

! fHCC_UrlDecodeInput Decode input data passed in HTTP body from the HTTP

server.

! fHCC_UrlEncodeOutput Encode output data passed in the HTTP body to the HTTP

server.

! fHCC_UrlCodec Perform both encoding and encoding (fHCC_UrlDecodeInput |

fHCC_UrlEncodeOutput).

! fHCC_UrlEncodeArgs Encode URL if it contains special characters such as "+". By

default, the arguments are passed "as is" (exactly as taken from SConnNetInfo).

! fHCC_DropUnread Drop unread data, which might exist in connection, before making

another request/reply HTTP shot. Normally, the connection first tries to read out the

data from the HTTP server entirely, until EOF, and store them in the internal buffer,

even if either application did not request the data for reading, or the data were read

only partially, so that the next read operation will see the data.

! fHCC_NoUpread Do not attempt to empty incoming data channel into a temporary

intermediate buffer while writing to the outgoing data channel. By default, writing

always makes checks that incoming data are available for reading, and those data are

extracted and stored in the buffer. This approach avoids I/O deadlock, when writing

creates a backward stream of data, which, if unread, blocks the connection entirely.

The HTTP connection will be established using the following URL: http://host:port/path?args

Page 9

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=TSOCK_Flags
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONN_Create
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HTTP_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SConnNetInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=THCC_Flags

Note that path has to have a leading slash "/" as the first character, that is, only "http://" and

"?" are added by the connector; all other characters appear exactly as specified (but maybe

encoded with fHCC_UrlEncodeArgs). The question mark does not appear if the URL has no

arguments.

A more elaborate form of the HTTP connector's constructor has the following prototype:

typedef int/*bool*/ (*FHttpParseHTTPHeader)

(const char* http_header,

 void* adjust_ data,

 int/*bool*/ server_error);

typedef int/*bool*/ (*FHttpAdjustInfo)

(SConnNetInfo* info,

 void* adjust_data,

 unsigned int n_failed);

typedef void (*FHttpAdjustCleanup)

(void* adjust_data

);

extern CONNECTOR HTTP_CreateConnectorEx(const SConnNetInfo* net_info,

 THCC_Flags flags,

 FHttpParseHTTPHeader parse_http_hdr, /* may be NULL, then no addtl.parsing

*/

 FHttpAdjustInfo adjust_info, /* may be NULL, then no adjustments */

 void* adjust_data, /* for "adjust_info"&

"adjust_cleanup"*/

 FHttpAdjustCleanup adjust_cleanup /* may be NULL */);

This form is assumed to be used rarely by the users directly, but it provides rich access to the

internal management of HTTP connections.

The first two arguments are identical to their counterparts in the arguments number one and

three of HTTP_CreateConnector(). The HTTP user header field (if any) is taken directly from

the http_user_header field of SConnNetInfo, a pointer to which is passed as net_info (which

in turn can be passed as NULL, meaning to use the environment, registry, and defaults as

described above).

The third parameter specifies a callback to be activated to parse the HTTP reply header (passed

as a single string, with CR-LF (carriage return/line feed) characters incorporated to divide

header lines). This callback also gets some custom data adjust_data as supplied in the fifth

argument of the connector's constructor and a boolean value of true if the parsed response code

from the server was not okay. The callback can return false (zero), which is considered the

same way as having an error from the HTTP server. However, the pre-parsed error condition

(passed in server_error) is retained, even if the return value of the callback is true, i.e. the

callback is unable to "fix" the error code from the server. This callback is not called if

fHCC_KeepHeader is set in flags.

The forth argument is a callback, which is in control when an attempt to connect to the HTTP

server has failed. On entry, this callback has current SConnNetInfo, which is requested for an

adjusted in an attempt that the connection to the HTTP server will finally succeed. That is, the

Page 10

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HTTP_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HTTP_CreateConnector

callback can change anything in the info structure, and the modified structure will be kept for

all further connection attempts, until changed by this callback again. The number (starting from

1) of successive failed attempts is given in the argument of the last callback. The callback return

value true (non-zero) means a successful adjustment. The return value false (zero) stops

connection attempts and returns an error to the application.

When the connector is being destroyed, the custom object adjust_data can be destroyed in the

callback, specified as the last argument of the extended constructor.

Note: Any callback may be specified as NULL, which means that no action is foreseen by the

application, and default behavior occurs.

Service Connector

Constructors defined in:

#include <connect/ncbi_service_connector.h>

This is the most complex connector in the library. It can initiate data exchange between an

application and a named NCBI service, and the data link can be either wrapped in HTTP or be

just a byte-stream (similar to a socket). In fact, this connector sits on top of either HTTP or

SOCKET connectors.

The library provides two forms of the connector's constructor:

SERVICE_CreateConnector(const char* service_name);

SERVICE_CreateConnectorEx(

/* The registered name of an NCBI service */

const char* service_name,

/* Accepted server types, bitmask */

TSERV_Typetypes,

/* Connection parameters */

const SConnNetInfo* net_info,

/*Addtl set of parameters, may be NULL */

const SSERVICE_Extra* params);

The first form is equivalent to SERVICE_CreateConnectorEx(service_name, fSERV_Any, 0,

0). A named NCBI service is a CGI program or a stand-alone server (can be one of two

supported types), which runs at the NCBI site and is accessible by the outside world. A special

dispatcher (which runs on the NCBI Web servers) performs automatic switching to the

appropriate server without having the client to know, a priori, the connection point, i.e. the

client just uses the main entry gate of the NCBI Web (usually, www.ncbi.nlm.nih.gov) with a

request to have a service "service_name", then, depending on the service availability, the

request will be either honored (by switching and routing the client to the machine actually

running the server: clicking on the previous link should bring you to a page containing

"name=value" message, obtained from the special bouncing service as a result of the form

submission), rejected, or declined. To the client, the entire process of dispatching is completely

transparent (for example, try clicking several times on either of the latter two links and see that

the error replies are actually sent from different hosts, and the successful processing of the first

link is done by one of several hosts running the bouncing service).

Flags to control the HTTP connector's behavior— The Dispatching Protocol per se is

implemented on top of HTTP protocol and is parsed by a CGI program dispd.cgi (or another

Page 11

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/Service/dispd.cgi?service=PubMedXml
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/daemons//dispd_cgi.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service_connector.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERVICE_CreateConnector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERVICE_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?%20i=TSERV_Type
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?%20i=SConnNetInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?%20i=SSERVICE_Extra
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov
http://www.ncbi.nlm.nih.gov/Service/dispd.cgi?service=bounce
http://www.ncbi.nlm.nih.gov/Service/dispd.cgi?service=blahblah

dispatching CGI), which is available on the NCBI Web. On every server running the named

services, another program, called the load-balancing daemon (lbsmd), is executing. This

daemon supports having the same service running on different machines and provides a choice

of the one machine that is less loaded. When dispd.cgi receives a request for a named service,

it first consults the load-balancing table, which is broadcasted by each load-balancing daemon

and populated in a network-wide form on each server. When the corresponding server is found,

the client request can be passed, or a dedicated connection to the server can be established. The

dispatching is made in such a way that it can be also used directly from most Internet browsers.

The named service facility uses the following distinction of server types:

! HTTP servers, which are usually CGI programs:

" HTTP_GETservers are those accepting requests only using the HTTP GET

method.

" HTTP_POSTservers are those accepting requests only using the HTTP POST

method.

" HTTPservers are those accepting both of either GET or POST methods.

! NCBID servers are those run by a special CGI engine, called ncbid.cgi, a configurable

program (now integrated within dispd.cgi itself) that can convert byte-stream output

from another program (server) started by the request from a dispatcher, to an HTTP-

compliant reply (that is, a packet having both HTTP header and body, and suitable,

for example, for Web browsers).

! STANDALONE servers, similar to mailing daemons, are those listening to the

network, on their own, for incoming connections.

! FIREWALL servers are the special pseudo-servers, not existing in reality, but that are

created and used internally by the dispatcher software to indicate that only a firewall

connection mode can be used to access the requested service.

! DNS servers are beyond the scope of this document because they are used to declare

domain names, which are used internally at the NCBI site to help load-balancing based

on DNS lookup (see here).

A formal description of these types is given in connect/ncbi_server_info.h:

/* Server types

 */

typedef enum {

 fSERV_Ncbid = 0x01,

 fSERV_Standalone = 0x02,

 fSERV_HttpGet = 0x04,

 fSERV_HttpPost = 0x08,

 fSERV_Http = fSERV_HttpGet | fSERV_HttpPost,

 fSERV_Firewall = 0x10,

 fSERV_Dns = 0x20

} ESERV_Type;

#define fSERV_Any 0

#define fSERV_StatelessOnly 0x80

typedef unsigned TSERV_Type; /* bit-wise OR of "ESERV_Type" flags */

The bitwise OR of the ESERV_Type flags can be used to restrict the search for the servers,

matching the requested service name. These flags passed as argument types are used by the

Page 12

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESERV_Type
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/daemons//lbsmd.c
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/daemons//dispd_cgi.c
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/connect/daemons//mghbn.c

dispatcher when figuring out which server is acceptable for the client. A special value 0 (or,

better fSERV_Any) states no such preference whatsoever. A special bit-value

fSERV_StatelessOnly set, together with other bits or just alone, specifies that the servers should

be of stateless (HTTP-like) type only, and it is the client who is responsible for keeping track

of the logical sequence of the transactions.

The following code fragment establishes a service connection to the named service

"io_bounce", using only stateless servers:

CONNECTOR c;

CONN conn;

if(!(c = SERVICE_CreateConnectorEx("io_bounce", fSERV_StatelessOnly, 0, 0)))

{

 fprintf(stderr, "No such service available");

} else if (CONN_Create(c, &conn) != eIO_Success) {

 fprintf(stderr, "Failed to create connection");

} else {

 static const char buffer[] = "Data to pass to the server";

 size_t n_written;

 CONN_Write(conn, buffer, sizeof(buffer) - 1, &n_written);

 ...

}

The real type of the data channel can be obtained via a call to CONN_GetType().

Note: In the above example, the client has no assumption of how the data actually passed to

the server. The server could be of any type in principle, even a stand-alone server, which was

used in the request/reply mode of one-shot transactions. If necessary, such wrapping would

have been made by the dispatching facility as well.

The next-to-last parameter of the extended constructor is the network info, described in the

section devoted to the HTTP connector. The service connector uses all fields of this structure,

except for http_user_header, and the following assumptions apply:

! path specifies the dispatcher program (defaulted to dispd.cgi)

! args specifies parameters for the requested service (this is service specific, no defaults)

! stateless is used to set the fSERV_StatelessOnly flag in the server type bitmask, if it

was not set there already (which is convenient for modifying the dispatch by using

environment and/or registry, if the flag is not set, yet allows hardcoding of the flag at

compile time by setting it in the constructor's types argument explicitly)

! lb_disable set to true (non-zero) means to always use the remote dispatcher (via

network connection), even if locally running load-balancing daemon is available (by

default, the local load-balancing deamon is consulted first to resolve the name of the

service)

! firewall set to true (non-zero) disables the direct connection to the service; instead,

" a connection to a proxy firewall daemon (fwdaemon), running at the NCBI

site, is initiated to pass the data in stream mode;

" or data get relayed via the dispatcher, if the stateless server is used

! http_user_header merged not to conflict with special dispatcher parameter.

Page 13

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/fwdaemon.c

As with the HTTP connector, if the network information structure is specified as NULL, the

default values are obtained as described above, as with the call to ConnNetInfo_Create

(service_name).

Normally, the last parameter of SERVICE_CreateConnectorEx() is left NULL, which sets all

additional parameters to their default values. Among others, this includes the default procedure

of choosing an appropriate server when the connector is looking for a mapping of the service

name into a server address. To see how this parameter can be used to change the mapping

procedure, please refer to a later section.

The library provides an additional interface to the named service mapper, which can be found

in connect/ncbi_service.h.

Note: Requesting fSERV_Firewall in the types parameter effectively selects the firewall mode

regardless of the network parameters, loaded via the SConnNetInfo structure.

Debugging Tools and Troubleshooting

Each connector (except for the FILE connector) provides a means to view data flow in the

connection. In case of the SOCKET connector, debugging information can be turned on by the

last argument in SOCK_CreateConnectorEx() or by using the global routine

SOCK_SetDataLoggingAPI() (declared in connect/ncbi_socket.h)

Note: In the latter case, every socket (including sockets implicitly used by other connectors

such as HTTP or SERVICE) will generate debug printouts.

In case of HTTP or SERVICE connectors, which use SConnNetInfo, debugging can be

activated directly from the environment by setting CONN_DEBUG_PRINTOUT to TRUE or

SOME. Similarly, a registry key DEBUG_PRINTOUT with a value of either TRUE or SOME

found in the section [CONN] will have the same effect: it turns on logging of the connection

parameters each time the link is established. When set to ALL, this variable (or key) also turns

on debugging output on all underlying sockets ever created during the life of the connection.

The value FALSE (default) turns debugging printouts off. Moreover, for the SERVICE

connector, the debugging output option can be set on a per-service basis using

<service>_CONN_DEBUG_PRINTOUT environment variables or individual registry

sections [<service>] and the key CONN_DEBUG_PRINTOUT in them.

Note: Debugging printouts can only be controlled in a described way via environment or

registry if and only if SConnNetInfo is always created with the use of convenience routines.

Debugging output is always sent to the same destination, the CORE log file, which is a C object

shared between both C and C++ Toolkits. As said previously, the logger is an abstract object,

i.e. it is empty and cannot produce any output if not populated accordingly. The library defines

a few calls gathered in connect/ncbi_util.h, which allow the logger to output via the FILE file

pointer, such as stderr: CORE_SetLOGFILE() for example, as shown in

test_ncbi_service_connector.c, or to be a regular file on disk. Moreover, both Toolkits define

interfaces to deal with registries, loggers, and locks that use native objects of each toolkit and

use them as replacements for the objects of the corresponding abstract layers.

There is a common problem that has been reported several times and actually concerns network

configuration rather than representing a malfunction in the library. If a test program, which

connects to a named NCBI service, is not getting anything back from the NCBI site, one first

has to check whether there is a transparent proxying/caching between the host and NCBI.

Because the service dispatching is implemented on top of the ordinary HTTP protocol, the

Page 14

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_ncbi_service_connector.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_CreateConnectorEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SOCK_SetDataLoggingAPI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_socket.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SConnNetInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE

transparent proxying may latch unsuccessful service searches (which can happen and may not

indicate a real problem) as error responses from the NCBI server. Afterwards, instead of

actually connecting to NCBI, the proxy returns those cached errors (or sometimes just an empty

document), which breaks the service dispatcher code. In most cases, there are configurable

ways to exclude certain URLs from proxying and caching, and they are subject for discussion

with a local network administrator.

Here is another tip: Make sure that all custom HTTP header tags (as passed, for example, in

the SConnNetInfo::user_header field) have "\r\n" as tag separators (including the last tag).

Many proxy servers (including transparent proxies, of which the user may not even be aware)

are known to be sensitive to whether each and every HTTP tag is closed by "\r\n" (and not by

a single "\n" character). Otherwise, the HTTP packet may be treated as a defective one and can

be discarded.

Additional discussion on parameters of the service dispatcher as well as the trouble shooting

tips can be found here.

C++ Connection Streams

Using connections and connectors (via the entirely procedural approach) in C++ programs

overkills the power of the language. Therefore, we provide C++ users with the stream classes,

all derived from a standard iostream class, and as a result, these can be used with all common

stream I/O operators, manipulators, etc.

The declarations of the stream's constructors can be found in connect/ncbi_conn_stream.hpp.

We tried to keep the same number and order of the constructor's parameters, as they appear in

the corresponding connector's constructors in C.

The code below is a C++ style example from the previous section devoted to the service

connector:

#include <connect/ncbi_conn_stream.hpp>

try {

 CConn_HttpStream

 ios("io_bounce", fSERV_StatelessOnly, 0);

 ios << "Data to be passed to the server";

} STD_CATCH_ALL ("Connection problem");

...

Note: The stream constructor may show an exception if, for instance, the requested service is

not found, or some other kind of problem arose. To see the actual reason, we used a standard

toolkit macro STD_CATCH_ALL(), which prints the message and problem description into

the log file (cerr, by default).

Service mapping API

The API defined in connect/ncbi_service.h is designed to map the required service name into

the server address. Internally, the mapping is done either directly or indirectly by means of the

load-balancing daemon, running at the NCBI site. For the client, the mapping is seen as reading

from an iterator created by a call to SERV_Open(), similar to the following fragment (for more

examples, please refer to the test program test_ncbi_disp.c):

#include <connect/ncbi_service.h>

Page 15

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_ncbi_disp.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/NETWORK/dispatcher.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_conn_stream.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=STD_CATCH_ALL

SERV_ITER iter = SERV_Open("my_service", fSERV_Any, SERV_ANYHOST, 0);

int n = 0;

if (iter != 0) {

 SSERV_Info * info = SERV_GetNextInfo(iter);

 while (info != 0) {

 char* str = SERV_WriteInfo(info);

 printf("Server = `%s'\n", str);

 free(str);

 n++;

 }

 SERV_Close(iter);

}

if (!iter || !n)

 printf("Service not found\n");

Note: A non-NULL iterator returned from SERV_Open()does not yet guarantee that the

service is available, whereas the NULL iterator definitely means that the service does not exist.

As shown in the above example, a loop over reading from the iterator results in the sequence

of successive structures (none of which is to be freed by the program!) that along with the

conversion functions SERV_ReadInfo(), SERV_WriteInfo() and others are defined in connect/

ncbi_server_info.h. Structure SSERV_Info describes a server that implements the requested

service. NULL gets returned when no more servers (if any) could be found. The iterator returns

servers in the order that the load-balancing algorithm arranges them. Each server has a rating,

and the larger the rating the better the chance for the server to be coming out first (but not

necessarily in the order of the rates).

Note: Servers returned from the iterator are all of the requested type, with only one exception:

they can include servers of type fSERV_Firewall, even if this type has not been explicitly

requested. Therefore, the application must sort these servers out. But if fSERV_Firewall is set

in the types, then the search is done for whichever else types are requested, and with the

assumption that the client has chosen a firewall connection mode, regardless of the network

parameters supplied in SConnNetInfo or read out from either the registry or environment.

Note: A search for servers of type fSERV_Dns is not inclusive with fSERV_Any specified as

a server type. That is, servers of type DNS are only returned if specifically requested in the

server mask at the time the iterator was opened.

There is a simplified version of SERV_Open(), called SERV_OpenSimple(), as well as an

advanced version, called SERV_OpenEx(). The former takes only one argument, the service

name. The latter takes two more arguments, which describe the set of servers not to be returned

from the iterator (server descriptors that to be excluded).

There is also an advanced version of SERV_GetNextInfo(), called SERV_GetNextInfoEx(),

that, via its second argument, provides the ability to get many host parameters, among which

is so-called host environment; a "\0"-terminated string, consisting of a set of lines separated

by "\n" characters and specified in the configuration file of the load-balancing daemon of the

host, where the returned server has been found. The typical line within the set has a form

"name=value" and resembles very much the shell environment, where its name comes after.

The host environment could be very handy for passing additional information to applications

if the host has some limitations or requires special handling, should the server be selected and

used on this host. The example below shall give an idea. At the time of writing, getting the

host information is only implemented when the service is obtained via direct access to the load-

Page 16

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_OpenEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_GetNextInfoEx
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_ReadInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_WriteInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SSERV_Info
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_OpenSimple

balancing daemon. Unlike returned server descriptors, the returned host information handle is

not a constant object and must be explicitly freed by the application when no longer needed.

All operations (getter methods) that are defined on the host information handle are declared in

connect/ncbi_host_info.h. If the server descriptor was obtained using dispatching CGI (indirect

dispatching, see below), then the host information handle is always returned as NULL (no host

information available).

The back end of the service mapping API is split into two independent parts: direct access to

LBSMD, if the one is both available on the current host and is not disabled by parameter

lb_disable at the iterator opening. If LBSMD is either unavailable or disabled, the second

(indirect) part of the back-end API is used, which involves a connection to the dispatching

CGI, which in turn connects to LBSMD to carry out the request. An attempt to use the CGI is

done only if the net_info argument is provided as non-NULL in the calls to SERV_Open() or

SERV_OpenEx().

Note: In a call to SERV_OpenSimple(), net_info gets created internally before an upcall to

SERV_Open() and thus CGI dispatching is likely to happen, unless either net_info could not

be constructed from the environment, or the environment variable CONN_LB_DISABLE (or

a service-specific one, or either of the corresponding registry keys) is set to TRUE.

Note: In the above conditions, the network service name resolution is also undertaken if the

service name could not be resolved (because the service could not be found or because of some

other error) with the use of locally running LBSMD.

The following code example uses both a service connector and the service mapping API to

access certain services using an alternate way (other than the connector's default) of choosing

appropriate servers. By default, the service connector opens an internal service iterator and

then tries to connect to the next server, which SERV_GetNextInfo() returns when given the

iterator. That is, the server with a higher rate is tried first. If user provides a pointer to structure

SSERVICE_Extra as the last parameter of the connector's constructor, then the user-supplied

routine (if any) can be called instead to obtain the next server. The routine is also given a

supplemental custom argument data taken from SSERVICE_Extra. The (intentionally

simplified) example below tries to create a connector to an imaginary service "my_service"

with the restriction that the server has to additionally have a certain (user-specified) database

present. The database name is taken from the LBSMD host environment keyed by

"my_service_env", the first word of which is assumed to be the required database name.

#include <connect/ncbi_service_connector.h>

#include <ctype.h>

#include <stdlib.h>

#include <string.h>

#define ENV_DB_KEY "my_service_env="

/* This routine gets called when connector is about to be destructed.

 */

static void s_CleanupData(void* data)

{

 free(data); /* we kept database name there */

}

/* This routine gets called on each internal close of the connector

 * (which may be followed by a subsequent internal open).

 */

static void s_Reset(void* data)

Page 17

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_host_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_OpenEx

{

/* just see that reset happens by printing DB name */

 printf("Connection reset, DB: %s\n", (char*) data);

}

/* 'Iter' is an internal service iterator used by service connector;

 * it must remain open.

 * 'Data' is what we supplied among extra-parameters in connector's

 * constructor.

 */

static const SSERV_Info* s_GetNextInfo(SERV_ITER iter, void* data)

{

 const char* db_name = (const char*) data;

 size_t len = strlen(db_name);

 SSERV_Info* info;

 HOST_INFO hinfo;

 int reset = 0;

 for (;;) {

 while ((info = SERV_GetNextInfoEx(iter, &hinfo)) != 0) {

 const char* env = HINFO_Environment(hinfo);

 const char* c;

 for (c = env; c; c = strchr(c, '\n')) {

 if (strncmp(c == env ? c : ++c, ENV_DB_KEY,

 sizeof(ENV_DB_KEY)-1) == 0) {

 /* Our keyword has been detected in environment */

 /* for this host */

 c += sizeof(ENV_DB_KEY) - 1;

 while (*c && isspace(*c))

 c++;

 if (strncmp(c, db_name, len) == 0 && !isalnum(c + len))

{

 /* Database name match */

 free(hinfo); /* must be freed explicitly */

 return info;

 }

 }

 }

 if (hinfo)

 free(hinfo); /* must be freed explicitly */

 }

 if (reset)

 break; /* coming to reset 2 times in a row means no server fit */

 SERV_Reset(iter);

 reset = 1;

 }

 return 0; /* no match found */

}

int main(int argc, char* argv[])

{

 char* db_name = strdup(argv[1]);

 SSERVICE_Extra params;

 CONNECTOR c;

Page 18

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 CONN conn;

 memset(¶ms, 0, sizeof(params));

 params.data = db_name; /* custom data, anything */

 params.reset = s_Reset; /* reset routine, may be NULL */

 params.cleanup = s_CleanupData; /* cleanup routine, may be NULL*/

 params.get_next_info = s_GetNextInfo; /* custom iterator routine */

 if (!(c = SERVICE_CreateConnectorEx("my_service",

 fSERV_Any, NULL, ¶ms))) {

 fprintf(stderr, "Cannot create connector");

 exit(1);

 }

 if (CONN_Create(c, &conn) != eIO_Success) {

 fprintf(stderr, "Cannot create connection");

 exit(1);

 }

 /* Now we can use CONN_Read(),CONN_Write() etc to deal with

 * connection, and we are assured that the connection is made

 * only to the server on such a host which has "db_name"

 * specified in configuration file of LBSMD.

 */

 ...

 CONN_Close(conn);

 /* this also calls cleanup of user data provided in params */

 return 0;

}

Note: No network (indirect) mapping occurs in the above example because net_info is passed

as NULL to the connector's constructor.

Local specification of the LBSM table

The LBSM table can also be specified locally, in config file and/or environment variables.

Service lookup process now involves looking up through the following sources, in this order:

1 Local environment/registry settings;

2 LBSM table (only in-house; this step does not exist in the outside builds);

3 Network dispatcher.

Only one source containing the information about the service is used; the next source is only

tried if the previous one did not yield in any servers (for the service).

Step 1 is disabled by default, to enable it set CONN_LOCAL_ENABLE environment variable

to "1" (or "ON, or "YES", or "TRUE") or add LOCAL_ENABLE=1 to [CONN] section in .ini

file. Steps 2 and 3 are enabled by default. To disable them use CONN_LBSMD_DISABLE

and/or CONN_DISPD_DISABLE set to "1" in the environment or LBSMD_DISABLE=1 and/

or DISPD_DISABLE=1 under the section "[CONN]" in the registry, respectively.

Note: Alternatively, and for the sake of backward compatibility with older application, the use

of local LBSM table can be controlled by CONN_LB_DISABLE={0,1} in the environment

or LB_DISABLE={0,1} in the "[CONN]" section of the registry, or individually on a per

service basis:

For a service "ANAME", ANAME_CONN_LB_DISABLE={0,1} in the environment, or

Page 19

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

CONN_LB_DISABLE={0,1} in the section "[ANAME]" in the registry (to affect setting of

this particular service, and no others).

The local environment / registry settings for service "ANAME" are screened in the following

order:

1 A value of environment variable "ANAME_CONN_LOCAL_SERVER_n";

2 A value of registry key "CONN_LOCAL_SERVER_n" in the registry section

"[ANAME]"

Note that service names are not case sensitive, yet the environment variables are looked up all

capitalized.

An entry found in the environment takes precedence over an entry (for the same "n") found in

the registry. "n" counts from 0 to 100, and need not to be sequential.

All service entries can be (optionally) grouped together in a list as a value of either:

1 Environment variable "CONN_LOCAL_SERVICES", or

2 Registry key "LOCAL_SERVICES" under the registry section "[CONN]".

The list of local services is only used in cases of wildcard searches, or in cases of reverse

lookups, and is never consulted in regular cases of forward searches by a complete service

name.

Examples:

1. In .ini file

[CONN]

LOCAL_ENABLE=yes

LOCAL_SERVICES="MSSQL10 MSSQL14 MSSQL15 MSSQL16 MSSQL17"

[MSSQL10]

CONN_LOCAL_SERVER_6="DNS mssql10:1433 L=yes"

[MSSQL15]

CONN_LOCAL_SERVER_9="DNS mssql15:1433 L=yes"

Note that entries for MSSQL14, 16, and 17 are not shown, and they are not required (inexistent

definitions for declared services are simply ignored).

2. In environment set the following variables (equivalent to the .ini fragment above but having

a higher precedence):

CONN_LOCAL_ENABLE=yes

CONN_LOCAL_SERVICES="MSSQL10 MSSQL14 MSSQL15 MSSQL16 MSSQL17"

MSSQL10_CONN_LOCAL_SERVER_6="DNS mssql10:1433 L=yes"

MSSQL15_CONN_LOCAL_SERVER_9="DNS mssql15:1433 L=yes"

You can also look at the detailed description of LBSMD and a sample configuration file.

Page 20

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Threaded Server Support

This library also provides CThreadedServer, an abstract base class for multithreaded network

servers. Here is a demonstration of its use. Note that this class does not support multiplexing

traffic over a single TCP connection; rather, each thread has an individual TCP connection

created when a client connects to the server's listening port.

Page 21

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CThreadedServer&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_threaded_server.cpp

Database Access - SQL, Berkley DB

[10]

Overview

The overview for this chapter consists of the following topics:

! Introduction

! Chapter Outline

Introduction

Database Access [Library dbapi: include | src]

The DBAPI library provides the underlying user-layer and driver API for the NCBI database

connectivity project. The project's goal is to provide a access to various relational database

management systems (RDBMS) with a single uniform user interface. Consult the detailed

documentation for details of the supported DBAPI drivers.

The BDB library is part of the NCBI C++ Toolkit and serves as a high-level interface to the

Berkeley DB. The primary purpose of the library is to provide tools for work with flatfile, federated

databases. The BDB library incorporates a number of Berkeley DB services; for a detailed

understanding of how it works, study the original Berkeley DB documentation form http://

www.sleepycat.com. The BDB library is compatible with Berkeley DB v. 4.1 and higher. The

BDB library, as it is right now, is architecturally different from the dbapi library and does not

follow its design. The BDB is intended for use by software developers who need small-footprint,

high-performance database capabilities with zero administration. The database in this case

becomes tightly integrated with the application code.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! DBAPI Overview

! NCBI DBAPI User-Layer Reference

" Object Hierarchy

" Includes

" Objects

" Object Life Cycle

" CVariant Type

" Choosing the Driver

" Data Source and Connections

" Main Loop

" Input and Output Parameters

" Stored Procedures

" Cursors

" Working with BLOBs

" Updating BLOBs Using Cursors

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.sleepycat.com
http://www.sleepycat.com
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi

! Using Bulk Insert

! Diagnostic Messages

! Trace Output

" NCBI DBAPI Driver Reference

! Overview

! The driver architecture

! Sample program

! Topics

Error handling

Driver context and connections

Database load-balancing (DBLB)

Driver Manager

Text and Image Data Handling

Results loop

! Supported DBAPI drivers

Sybase CTLIB

Sybase DBLIB

FreeTDS 0.60 (TDS ver. 8.0)

FreeTDS 0.64 (TDS ver. 7.0/8.0)

Sqlite3

ODBC

MySQL Driver

dbapi [include/dbapi | src/dbapi]

driver [include/dbapi/driver | src/dbapi/driver]

" Major Features of the BDB Library

DBAPI Overview

DBAPI is a consistent, object-oriented programming interface to multiple back-end databases.

It encapsulates leading relational database vendors' APIs and is universal for all applications

regardless of which database is used. It frees developers from dealing with the low-level details

of a particular database vendor's API, allowing them to concentrate on domain-specific issues

and build appropriate data models. It allows developers to write programs that are reusable

with many different types of relational databases and to drill down to the native database APIs

for added control when needed.

DBAPI has open SQL interface. It takes advantage of database-specific features to maximize

performance.Gains tight control over statements and their binding and execution semantics.

DBAPI has "Native" Access Modules for Sybase, Microsoft SQL Server, SQLITE, and ODBC.

It provides native, high-performance implementations for supported vendor databases. It

allows porting to other databases with minimal code changes.

DBAPI is split into low-layer and user-layer.

Page 2

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi/driver
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi

NCBI DBAPI User-Layer Reference

Object hierarchy

See Figure 1.

Includes

For most purposes it is sufficient to include one file in the user source file: dbapi.hpp.

 #include <dbapi/dbapi.hpp>

For static linkage the following include file is also necessary:

 #include <dbapi/driver/drivers.hpp>

Objects

All objects are returned by pointers to their respective interfaces. The null (0) value is valid,

meaning that no object was returned.

Object Life Cycle

In general, any child object is valid only in the scope of its parent object. This is because most

of the objects share the same internal structures. There is no need to delete every object

explicitly, as all created objects will be deleted upon program exit. Specifically, all objects are

derived from the static CDriverManager object, and will be destroyed when CDriverManager

is destroyed. It is possible to delete any object from the framework and it is deleted along with

all derived objects. For example, when a IConnection object is deleted, all derived

IStatement, ICallableStatement and IResultSet objects will be deleted too. If the number of the

objects (for instance IResultSet) is very high, it is recommended to delete them explicitly or

enclose in the auto_ptr<...> template. For each object a Close() method is provided. It disposes

of internal resources, required for the proper library cleanup, but leaves the framework intact.

After calling Close() the object becomes invalid. This method may be necessary when the

database cleanup and framework cleanup are performed in different places of the code.

CVariant Type

The CVariant type is used to represent any database data type (except BLOBs). It is an object,

not a pointer, so it behaves like a primitive C++ type. Basic comparison operators are supported

(==, !=, <) for identical internal types. If types are not identical, CVariantException is thrown.

CVariant has a set of getters to extract a value of a particular type, e.g. GetInt4(), GetByte(),

GetString(), etc. If GetString() is called for a different type, like DateTime or integer it tries to

convert it to a string. It it doesn't succeed, CVariantException is thrown. There is a set of factory

methods (static functions) for creating CVariant objects of a particular type, such as

CVariant::BigInt(), CVariant::SmallDateTime(), CVariant::VarBinary() etc. For more details

please see the comments in variant.hpp file.

More examples; http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_object.cpp

Choosing the Driver

There are several drivers for working with different SQL servers on different platforms. The

ones presently implemented are "ctlib" (Sybase), "dblib"(MS SQL, Sybase), "ftds" (MS SQL

cross platform). For static linkage these drivers should be registered manually; for dynamic

linkage this is not necessary. The CDriverManager object maintains all registered drivers.

Page 3

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_object.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDriverManager.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariantException.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariantException.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/variant.hpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_object.cpp

DBAPI_RegisterDriver_CTLIB();

DBAPI_RegisterDriver_DBLIB();

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_context.cpp

Data Source and Connections

The IDataSource interface defines the database platform. To create an object implementing

this interface, use the method CreateDs(const string& driver). An IDataSource can create

objects represented by an IConnection interface, which is responsible for the connection to the

database. It is highly recommended to specify the database name as an argument to the

CreateConnction() method, or use the SetDatabase() method of a CConneciton object instead

of using a regular SQL statement. In the later case, the library won't be able to track the current

database.

 IDataSource *ds = dm.CreateDs("ctlib");

IConnection *conn = ds->CreateConnection();

conn->Connect("user", "password", "server", "database");

IStatement *stmt = conn->CreateStatement();

Every additional call to IConnection::CreateStatement() results in cloning the connection for

each statement. These connections inherit the same default database, which was specified in

the Connect() or SetDatabase() method. Thus if the default database was changed by calling

SetDatabase(), all subsequent cloned connections created by CreateStatement() will inherit this

particular default database.

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_connection.cpp

Main Loop

The library simulates the main result-retrieving loop of the Sybase client library by using the

IStatement::HasMoreResults() method:

 stmt->Execute("select à");

while(stmt->HasMoreResults()) {

 if(stmt->HasRows()) {

 IResultSet *rs = stmt->GetResultset();

 // Retrieve results, if any

 while(rs->Next()) {

 int col1 = rs->GetVariant(1).GetInt4();

 ...

 }

 }

}

This method should be called until it returns false, which means that no more results is available.

It returns as soon as a result is ready. The type of the result can be obtained by calling the

IResultSet::GetResultType() method. Supported result types are eDB_RowResult,

eDB_ParamResult, eDB_ComputeResult, eDB_StatusResult, eDB_CursorResult. The

method IStatement::GetRowCount() returns the number of updated or deleted rows.

Page 4

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIStatement.html
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_context.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_context.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIDataSource.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIDataSource.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIConnection.html
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_connection.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_connection.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIStatement.html

The IStatement::ExecuteUpdate() method is used for SQL statements that do not return rows:

 stmt->ExecuteUpdate("update...");

int rows = stmt->GetRowCount();

The method IStatement::GetResultSet() returns an IResultSet object. The method

IResultSet::Next() actually does fetch, so it should be always called first. It returns false when

no more fetch data is available. All column data, except Image and Text is represented by a

single CVariant object. The method IResultSet::GetVariant() takes one parameter û column

number. Column numbers start with 1.

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_stmt.cpp

Input and Output Parameters

The method ICallableStatement::SetParam(const CVariant& v, const string& name) is used to

pass parameters to stored procedures and dynamic SQL statements. To ensure the correct

parameter type it is recommended to use CVariant type factories (static methods) to create a

CVariant of the required internal type. There is no internal representation for the BIT parameter

type, please use TinyInt of Int types with 0 for false and 1 for true respectively. Here are a few

examples: CVariant::Int4(Int4 *p), CVariant::TinyInt(UInt1 *p), CVariant::VarChar(const

char *p, size_t len) etc.

There are also corresponding constructors, like CVariant::CVariant(Int4 v),

CVariant::CVariant(const string& s), ..., but the user must ensure the proper type conversion

in the arguments, and not all internal types can be created using constructors.

Output parameters are set by the ICallableStatement::SetOutputParam(const CVariant& v,

const string& name) method, where the first argument is a null CVariant of a particular type,

e.g. SetOutputParam(CVariant(eDB_SmallInt),"@arg").

Stored Procedures

The ICallableStatement object is used for calling stored procedures. Fist get the object itself

by calling IConnection::PrepareCall(). Then set any parameters. If the parameter name is

empty, the calls to SetParam() should be in the exact order of the actual parameters. Retrieve

all results in the main loop. Get the status of the stored procedure using the

ICallableStatement::GetReturnStatus() method.

 ICallableStatement *cstmt = conn->PrepareCall("ProcName");

Uint1 byte = 1;

cstmt->SetParam(CVariant("test"), "@test_input");

cstmt->SetParam(CVariant::TinyInt(&byte), "@byte");

cstmt->SetOutputParam(CVariant(eDB_Int), "@result");

cstmt->Execute();

while(cstmt->HasMoreResults()) {

 if(cstmt->HasRows()) {

 IResultSet *rs = cstmt->GetResultSet();

 switch(rs->GetResultType()) {

 case eDB_RowResult:

 while(rs->Next()) {

 // retrieve row results

Page 5

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIConnection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_stmt.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_stmt.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classICallableStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classICallableStatement.html

 }

 break;

 case eDB_ParamResult:

 while(rs->Next()) {

 // Retrieve parameter row

 }

 break;

 }

 }

}

// Get status

int status = cstmt->GetReturnStatus();

It is also possible to use IStatement interface to call stored procedures using standard SQL

language call. The difference from ICallableStatement is that there is no -SetOutputParam()-

call. The output parameter is passed as regular -SetParam()- call with non null CVariant

argument. There is no GetReturnStatus() call in IStatement , so use the result type filter to get

it.

 sql = "exec SampleProc @id, @f, @o output";

stmt->SetParam(CVariant(5), "@id");

stmt->SetParam(CVariant::Float(&f), "@f");

stmt->SetParam(CVariant(5), "@o");

stmt->Execute(sql);

while(stmt->HasMoreResults()) {

 IResultSet *rs = stmt->GetResultSet();

 if(rs == 0)

 continue;

 switch(rs->GetResultType()) {

 case eDB_ParamResult:

 while(rs->Next()) {

 NcbiCout << "Output param: "

 << rs->GetVariant(1).GetInt4()

 << endl;

 }

 break;

 case eDB_StatusResult:

 while(rs->Next()) {

 NcbiCout << "Return status: "

 << rs->GetVariant(1).GetInt4()

 << endl;

 }

 break;

 case eDB_RowResult:

 while(rs->Next()) {

 if(rs->GetVariant(1).GetInt4() == 2121) {

Page 6

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIStatement.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classICallableStatement.html

 NcbiCout << rs->GetVariant(2).GetString() << "|"

 << rs->GetVariant(3).GetString() << "|"

 << rs->GetVariant(4).GetString() << "|"

 << rs->GetVariant(5).GetString() << "|"

 << rs->GetVariant(6).GetString() << "|"

 << rs->GetVariant(7).GetString() << "|"

 << endl;

 } else {

 NcbiCout << rs->GetVariant(1).GetInt4() << "|"

 << rs->GetVariant(2).GetFloat() << "|"

 << rs->GetVariant("date_val").GetString() << "|"

 << endl;

 }

 }

 break;

 }

}

stmt->ClearParamList();

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_proc.cpp

Cursors

The library currently supports basic cursor features such as setting parameters and cursor

update and delete operations.

 ICursor *cur = conn->CreateCursor("table_cur",

 "select ... for update of ...");

IResultSet *rs = cur->Open();

while(rs->Next()) {

 cur->Update(table, sql_statement_for_update);

}

cur->Close();

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_cursor.cpp

Working with BLOBs

Due to the possibly very large size, reading and writing BLOBs requires special treatment.

During the fetch the contents of the whole column must be read before advancing to the next

one. That's why the columns of type IMAGE and TEXT are not bound to the corresponding

variables in the resultset and all subsequent columns are not bound either. So it is recommended

to put the BLOB columns at the end of the column list. There are several ways to read BLOBs,

using IResultSet::Read(), IResultSet::GetBlobIStream(), and IResultSet::GetBlobReader()

methods. The first is the most efficient; it reads data into a supplied buffer until it returns 0

bytes read. The next call will read from the next column. The second method implements the

STL istream interface. After each successful column read you should get another istream for

the next column. The third implements the NCBI Toolkit IReader interface. If the data size is

small and double buffering is not a performance issue, the BLOB columns can be bound to

CVariant variables by calling IResultSet::BindBlobToVariant(true). In this case the data

should be read using CVariant::Read() and CVariant::GetBlobSize(). To write BLOBs there

Page 7

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_proc.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_proc.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_cursor.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_cursor.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html

is also several options. To pass a BLOB as an SQL parameter you should store it in a

CVariant using CVariant::Append() and CVariant::Truncate() methods. To store a BLOB in

the database you should initialize this column first by writing for instance 0x0 for IMAGE type

or ' ' (space) for TEXT type. After that you can open a regular IResultSet or ICursor and for

each required row update the BLOB using IResultSet::GetBlobOStream(). NOTE: this call

opens an additional connection to the database.

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_lob.cpp

Updating BLOBs Using Cursors

It is recommended to update BLOBs using cursors, because this is the only way to work with

ODBC driver and no additional connection is open.

 ICursor *blobCur = conn->CreateCursor("test",

 "select id, blob from BlobSample for update of blob");

IResultSet *blobRs = blobCur->Open();

while(blobRs->Next()) {

 ostream& out = blobCur->GetBlobOStream(2, blob.size());

 out.write(buf, blob.size());

 out.flush();

}

Note that GetBlobOStream() takes the column number as the first argument and this call is

invalid until the cursor is open.

Using Bulk Insert

Bulk insert is useful when it is necessary to insert big amounts of data. The

IConnection::CreateBulkInsert() takes two parameters, the table name and number of columns.

The CVariant::Truncate(size_t len) method truncates the internal buffer of CDB_Text and

CDB_Image object from the end of the buffer. If no parameter specified, it erases the whole

buffer.

 NcbiCout << "Initializing BlobSample table..." << endl;

string im =;

IBulkInsert *bi = conn->CreateBulkInsert("BlobSample", 2);

CVariant col1 = CVariant(eDB_Int);

CVariant col2 = CVariant(eDB_Text);

bi->Bind(1, &col1);

bi->Bind(2, &col2);

for(int i = 0; i < ROWCOUNT; ++i) {

 string im = "BLOB data " + NStr::IntToString(i);

 col1 = i;

 col2.Truncate();

 col2.Append(im.c_str(), im.size());

 bi->AddRow();

}

bi->Complete();

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_bcp.cpp

Page 8

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_bcp.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_bcp.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCVariant.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classICursor.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classIResultSet.html
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_lob.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_lob.cpp

Diagnostic Messages

The DBAPI library is integrated with the C++ Toolkit diagnostic and tracing facility. By default

all client and server messages are handled by the standard toolkit message handler. However

it is possible to redirect the DBAPI-specific messages to a single CDB_MultiEx object and

retrieve them later at any time. There are two types of redirection, per data source and per

connection. The redirection from a data source is enabled by calling

IDataSource::SetLogStream(0). After the call all client- and context-specific messages will be

stored in the IDataSource object. The IDataSource::GetErrorInfo() method will return the

string representation of all accumulated messages and clean up the storage. The

IDataSource::GetErrorAsEx() will return a pointer to the underlying CDB_MultiEx object.

Retrieving information and cleaning up is left to the developer. Do NOT delete this object. The

connection specific redirection is controlled by calling IConnection::MsgToEx(boolean

enable) method. This redirection is useful; for instance, to temporarily disable default messages

from the database server. The IConnection::GetErrorInfo() and IConnection::GetErrorAsEx()

methods work in the same manner as for the IDataSource

More examples: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/

dbapi/test/dbapi_unit_test_msg.cpp

Trace Output

The DBAPI library uses the toolkit-wide DIAG_TRACE environment variable to do the debug

output. To enable it set it to any value. If you have any problems with the DBAPI please include

the trace output into your email.

NCBI DBAPI Driver Reference

(Low-level access to the various RDBMSs.)

! Overview

! The driver architecture

! Sample program

! Topics

" Error handling

" Driver context and connections

" Database Load-Balancing (DBLB)

" Driver Manager

" Text and Image Data Handling

" Results loop

! Supported DBAPI drivers

" Sybase CTLIB

" Sybase DBLIB

" FreeTDS 0.60 (TDS ver. 8.0)

" FreeTDS 0.64 (TDS ver. 7.0/8.0)

" Sqlite3

" ODBC

" MySQL Driver

Page 9

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_msg.cpp
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/test/dbapi_unit_test_msg.cpp

Overview

The NCBI DBAPI driver library describes and implements a set of objects needed to provide

a uniform low-level access to the various relational database management systems (RDBMS).

The basic driver functionality is the same as in most other RDBMS client APIs. It allows

opening a connection to a server, executing a command (query) on this connection and getting

the results back. The main advantage of using the driver is that you don't have to change your

own upper-level code if you need to move from one RDBMS client API to another.

The driver can use two different methods to access the particular RDBMS. If RDBMS provides

a client library for a given computer system (i.e. Sun/Solaris), then driver utilizes this library.

If there is no client library, then driver connects to RDBMS through a special gateway server

which is running on a computer system where such library does exist.

The driver architecture

There are two major groups of the driver's objects: the RDBMS independent objects, and the

objects which are specific to a particular RDBMS. The only RDBMS specific object which

user should be aware of is a "Driver Context". The "Driver Context" is effectively a

"Connection" factory. The only way to make a connection to the server is to call the Connect

() method of a "Driver Context" object. So, before doing anything with RDBMS, you need to

create at least one driver context object. All driver contexts implement the same interface

defined in I_DriverContext class. If you are working on a library which could be used with

various RDBMS it is a good idea do not create the driver context inside the library, but take a

pointer to I_DriverContext instead.

There is no "real" factory for the driver contexts. The reason for that is it's not always possible

to statically link in the same binary the RDBMS libraries from different vendors. Most of them

are written in C and the name collisions do exist. The Driver Manager helps to overcome this

problem. It allows creating a mixture of statically linked and dynamically loaded drivers and

using them together in one executable.

The driver context creates the connection which is RDBMS specific, but before returning it to

the caller it puts it into an "envelope" of RDBMS independent object CDB_Connection. The

same is true for the commands and for the results - user gets the pointer to RDBMS independent

"envelope object" instead of the real one. This is a caller responsibility to delete those objects.

The life spans of the real object and the envelope one are not necessarily the same.

Once you have got the connection object, you could use it as a factory for the different types

of commands. The command object in it's turn serves as a factory for the results. The connection

is always single threaded, that means that you have to execute the commands and process their

results sequentially one by one. If you need to execute the several commands in parallel, you

can do it using multiple connections.

Another important part of the driver is an error and message handling. There are two different

mechanisms implemented. The first one is exceptions. All exceptions which could be thrown

by the driver are inherited from the single base class CDB_Exception. Driver uses the exception

mechanism whenever it's possible, but in many cases the underlying client library uses the

callbacks or handlers to report the error messages and prevents from throwing the exceptions.

The driver supplies a handler's stack mechanism to manage these cases.

To send and to receive the data through the driver you have to use the driver provided datatypes.

The collection of the datatypes includes: one, two, four and eight byte integers; float and

double; numeric; char, varchar, binary, varbinary; datetime and smalldatetime; text and

image. All datatypes are derived from a single base class CDB_Object.

Page 10

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Image.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Object.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classI__DriverContext.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=I_DriverContext&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=C_DriverMgr&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Connection.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Exception.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__TinyInt.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__SmallInt.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Int.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__BigInt.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Float.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Double.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Numeric.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Char.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__VarChar.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Binary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__VarBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__DateTime.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__SmallDateTime.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Text.html

Sample program

This program opens one connection to the server and selects the database names and the date

when each database was created (assuming that table "sysdatabases" does exist). In this

example the string "XXX" should be replaced with the real driver name.

#include <iostream>

#include <dbapi/driver/public.hpp>

#include <dbapi/driver/exception.hpp>

/* Here, XXXlib has to be replaced with the real name, e.g. "ctlib" */

#include <dbapi/driver/XXXlib/interfaces.hpp>

USING_NCBI_SCOPE;

int main()

{

 try { // to be sure that we are catching all driver related exceptions

 // We need to create a driver context first

 // In real program we have to replace CXXXContext with something real

 CXXXContext my_context;

 // connecting to server "MyServer"

 // with user name "my_user_name" and password "my_password"

 CDB_Connection* con = my_context.Connect("MyServer", "my_user_name",

 "my_password", 0);

 // Preparing a SQL query

 CDB_LangCmd* lcmd =

 con->LangCmd("select name, crdate from sysdatabases");

 // Sending this query to a server

 lcmd->Send();

 CDB_Char dbname(64);

 CDB_DateTime crdate;

 // the result loop

 while(lcmd->HasMoreResults()) {

 CDB_Result* r= lcmd->Result();

 // skip all but row result

 if (r == 0 || r->ResultType() != eDB_RowResult) {

 delete r;

 continue;

 }

 // printing the names of selected columns

 cout << r->ItemName(0) << " \t\t\t"

 << r->ItemName(1) << endl;

 // fetching the rows

 while (r->Fetch()) {

 r->GetItem(&dbname); // get the database name

 r->GetItem(&crdate); // get the creation date

 cout << dbname.Value() << ' '

 << crdate.Value().AsString("M/D/Y h:m")

 << endl;

 }

 delete r; // we don't need this result anymore

 }

 delete lcmd; // delete the command

 delete con; // delete the connection

Page 11

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 }

 catch (CDB_Exception& e) { // printing the error messages

 CDB_UserHandler_Stream myExHandler(&cerr);

 myExHandler.HandleIt(&e);

 }

}

Topics

Error handling—The error handling is almost always a pain when you are working with

RDBMS. The different systems implement the different approaches. You could get the error

messages through the return codes, callbacks, handlers and/or exceptions. These messages

could have different formats. It could be just an integer (error code) or some structure or a set

of callback's arguments. The NCBI DBAPI driver intercepts all those error messages in all

different formats and converts them into the objects of CDB_Exception derived types. The

following types are used: CDB_SQLEx This type is used if error message has come from a

SQL server and indicates an error in SQL query. It could be a wrong table or column name or

just a wrong syntax of SQL query. The message details could be obtained using the following

methods:

! OriginatedFrom() - returns a SQL server name

! BatchLine() - returns a line number in SQL batch which did generate an error

! Message() - returns the error message itself

! Severity() - returns the severity of this message (assigned by SQL server)

! ErrCode() - returns the integer code for this message (assigned by SQL server)

! SqlState() - returns a byte string describing an error (it's not useful most of the time)

CDB_RPCEx An error message has come while RPC or stored procedure was executed on a

server. The methods to use:

! OriginatedFrom() - returns a server name

! ProcName() - returns a procedure name

! ProcLine() - returns a line number inside the procedure

! Message() - returns the error message itself

! Severity() - returns the severity of this message (assigned by a server)

! ErrCode() - returns the integer code for this message (assigned by a server)

CDB_DeadlockEx To report about deadlock. The methods to use:

! OriginatedFrom() - returns a SQL server name

! Message() - returns the error message itself

CDB_DSEx Any error which has come from a RDBMS and is not a SQL query or RPC related.

The methods to use:

! OriginatedFrom() - returns a server name

! Message() - returns the error message itself

! Severity() - returns the severity of this message (assigned by a server)

! ErrCode() - returns the integer code for this message (assigned by a server)

CDB_TimeoutEx To report about timeout. The methods to use:

! OriginatedFrom() - returns a server name

! Message() - returns the error message itself

Page 12

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__DSEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__TimeoutEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Exception.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__SQLEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__RPCEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__DeadlockEx.html

CDB_ClientEx Any client side error. The methods to use:

! OriginatedFrom() - returns the name of method or function which reports the error

! Message() - returns the error message itself

! Severity() - returns the severity of this message

! ErrCode() - returns the integer code for this message

Driver uses two ways to deliver the error message object to an application. If it is possible to

throw an exception, then driver throws the error message object. If not, then driver calls the

user's error handler with a pointer to this object as an argument. It's not always convenient to

process all types of error messages in one error handler. Some users may want to use a special

error message handler inside some function or block and a default error handler outside. To

accommodate these cases the driver provides a handler stack mechanism. The top handler in

the stack gets the error message object first. If it knows how to deal with this message, then it

processes the message and returns true. If handler wants to pass this message to the other

handlers, then it returns false. So, driver pushing the error message object through the stack

until it gets true from the handler. The default driver's error handler which just printout the

error message to stderr is always on a bottom of the stack. Another tool which user may want

to use for error handling is the CDB_MultiEx objects. This tool allows collecting the multiple

CDB_Exception objects into one container and than throw this container as one object.

Driver context and connections—Every program which is going to work with NCBI

DBAPI driver should create at least one Driver Context object first. The main purpose of this

object is to be a Connection factory, but it's a good idea to customize this object a little bit prior

to open any connection. The first step is to setup two message handler stacks. The first one is

for error messages which are not bound to some particular connection or could occur inside

the Connect() method. Use PushCntxMsgHandler() to populate it. The other stack serves as a

initial message handler stack for all connections which will be derived from this context. Use

PushDefConnMsgHandler() method to populate this stack. The second step of customization

is a time-outs setting. The SetLoginTimeout() and SetTimeout() methods do the job. If you are

going to work with text or image objects in your program, you need to call

SetMaxTextImageSize() to define the maximal size for such objects. Objects which exceed

this limit could be truncated.

class CMyHandlerForConnectionBoundErrors : public CDB_UserHandler

{

 virtual bool HandleIt(CDB_Exception* ex);

 ...

};

class CMyHandlerForOtherErrors : public CDB_UserHandler

{

 virtual bool HandleIt(CDB_Exception* ex);

 ...

};

...

int main()

{

 CMyHandlerForConnectionBoundErrors conn_handler;

 CMyHandlerForOtherErrors other_handler;

 ...

 try { // to be sure that we are catching all driver related exceptions

 // We need to create a driver context first

Page 13

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__MultiEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__Exception.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__ClientEx.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__UserHandler.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDBHandlerStack&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__UserHandler__Stream.html

 // In real program we have to replace CXXXContext with something real

 CXXXContext my_context;

 my_context.PushCntxMsgHandler(&other_handler);

 my_context.PushDefConnMsgHandler(&conn_handler);

 // set timeouts (in seconds) and size limits (in bytes):

 my_context.SetLoginTimeout(10); // for logins

 my_context.SetTimeout(15); // for client/server communications

 my_context.SetMaxTextImageSize(0x7FFFFFFF); // text/image size limit

 ...

 CDB_Connection* my_con =

 my_context.Connect("MyServer", "my_user_name", "my_password",

 I_DriverContext::fBcpIn);

 ...

 }

 catch (CDB_Exception& e) {

 other_handler.HandleIt(&e);

 }

}

The only way to get a connection to a server in NCBI DBAPI driver is through a Connect()

method in driver context. The first three arguments: server name, user name and password are

obvious. Values for mode are constructed by a bitwise-inclusive-OR of flags defined in

EConnectionMode. If reusable is false, then driver creates a new connection which will be

destroyed as soon as user delete the correspondent CDB_Connection (the pool_name is ignored

in this case).

Opening a connection to a server is an expensive operation. If program opens and closes

connections to the same server multiple times it worth to call the Connect() method with

reusable set to true. In this case driver does not close the connection when the correspondent

CDB_Connection is deleted, but keeps it around in a "recycle bin". Every time an application

calls the Connect() method with reusable set to true, driver tries to satisfy the request from a

"recycle bin" first and opens a new connection only if it is necessary.

The pool_name argument is just an arbitrary string. Application could use this argument to

assign a name to one or more connections (to create a connection pool) or to invoke a connection

by name from this pool.

...

// Create a pool of four connections (two to one server and two to another)

// with the default database "DatabaseA"

CDB_Connection* con[4];

int i;

for (i = 4; i--;) {

 con[i]= my_context.Connect((i%2 == 0) ? "MyServer1" : "MyServer2",

 "my_user_name", "my_password", 0, true,

 "ConnectionPoolA");

 CDB_LangCmd* lcmd= con[i]->LangCmd("use DatabaseA");

 lcmd->Send();

 while(lcmd->HasMoreResults()) {

 CDB_Result* r = lcmd->Result();

 delete r;

Page 14

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classI__DriverContext.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_Connection&d=C

 }

 delete lcmd;

}

// return all connections to a "recycle bin"

for(i= 0; i < 4; delete con_array[i++]);

...

// in some other part of the program

// we want to get a connection from "ConnectionPoolA"

// but we don't want driver to open a new connection if pool is empty

try {

 CDB_Connection* my_con= my_context.Connect("", "", "", 0, true,

 "ConnectionPoolA");

 // Note that server name, user name and password are empty

 ...

}

catch (CDB_Exception& e) {

 // the pool is empty

 ...

}

Application could combine in one pool the connections to the different servers. This mechanism

could also be used to group together the connections with some particular settings (default

database, transaction isolation level, etc.).

Database load-balancing (DBLB)—A database-level verification mechanism has been

added to the recently implemented database server load-balancing.

Advantages of using DBLB: *) Connecting to the database servers by server name and/or

"interface" file based aliases still works as it were.

1 Automatic avoidance of unresponsive database servers. This prevents your

application from hanging for up to 30 seconds on the network timeout.

2 Latch onto the same database server for the life of your process. It's often useful to

avoid possible inter-server data discrepancy. The "latch-on" mechanism can be

relaxed or turned off if needed.

3 Automatic connection retries. If connection to the selected cannot be established, the

API will try again, with other servers (unless it is against the chosen "latch-on"

strategy), internally.

4 Independence from the database "interfaces" file. Centrally maintained service

directory is used instead, which is accessible locally and/or via network. It also

dynamically checks database servers' availability and excludes unresponsive servers.

5 Setup the connection strategy in one place in your code. The earlier version of the

DBLB API required taking care of each code fragment that establishes database

connection individually.

6 The default connection strategy is *configurable*. You can change its parameters

using configuration file, environment variables, and/or programmatically. You can

also configure locally for your application ad-hoc mappings to the database servers

(this is usually not recommended but can come handy in case of emergency or for

debugging).

Page 15

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

7 If needed, you can easily implement your own customized mapper. Components of

the default connection strategy can be used separately, or in combination with each

other and with the user-created strategies, if necessary.

HOW IT WORKS (by default): The requests to establish database connections will first go

through this new DBLB mechanism that tries to match the requested service name against the

services known to the NCBI load balancer and/or those described in the application's

configuration file.

If the requested service name is unknown to the load balancer then this name will be used "as

is".

If however this service name is known to the DBLB, then DBLB will try to establish a

connection to the database server that it deems the most suitable to use. If the service is handled

by the NCBI load-balancer, then the unresponsive servers will be a priory weeded out, and a

load on the machines that run the servers may be taken into account too.

If the connection cannot be established, then DBLB will automatically retry the connection,

now using another suitable database server.

This procedure may be repeated several times, during which there will be only one attempt to

connect to each database.

Once a database connection is successfully established it will be "latched-on". This means that

when you will try to connect to the same service or alias within the same application again then

you will be connected to the same database server (this can be relaxed or turned off completely).

For example, you can connect to the "PMC" service which is currently mapped to servers

MSSQL19 and MSSQL25. These server names are provided dynamically by the NCBI load-

balancer, so you do not have to ever change your configuration or to recompile your application

in case if either a service configuration or an "interfaces" file get changed.

If ConnectValidated() is used to connect to a database, then requests to establish database

connections will first go through the server-level load-balancing mechanism (see the earlier

announcement attached below for details).

On successful login to server, the database connection will be validated against the validator.

If the validator does not "approve" the connection, then DBAPI will automatically close this

connection and repeat this login/validate attempt with the next server, and so on, until a

"good" (successful login + successful validation) connection is found.

1 Before the very first DBAPI connection attempt, call:

#include <dbapi/driver/dbapi_svc_mapper.hpp>

DBLB_INSTALL_DEFAULT();

2 Link '$(XCONNEXT)' and 'xconnect' libraries to your application.

3 Create a connection validator. You can use already developed CTrivialConnValidator

which takes a database name as a parameter and runs simple validation procedures.

4 Call method I_DriverContext::ConnectValidated() instead of

I_DriverContext::Connect(), and pass validator as a parameter.

5 (Optional)

Page 16

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

If you want to validate a connection against more than one validator/database, then you can

combine validators. Class CConnValidatorCoR was developed to allow combining of other

validators into a chain.

EXAMPLE: #include <dbapi/driver/dbapi_svc_mapper.hpp>

DBLB_INSTALL_DEFAULT();

I_DriverContext* db_context = ...;

CTrivialConnValidator validator("DBAPI_Sample");

CDB_Connection* conn = db_context->ConnectValidated("SCHUMANN", "anyone",

"allowed", validator);

CODE SAMPLE: Working example of the DBLB can be found at

src/dbapi/driver/samples/dbapi_conn_policy/dbapi_conn_policy.cpp

Driver Manager—It's not always known upfront which NCBI DBAPI driver will be used in

some particular program. Sometimes you want a driver to be a parameter in your program.

Sometimes you need to use two different drivers in one binary but can not link them statically

because of name collisions. Sometimes you just need the driver contexts factory. The Driver

Manager is intended to solve these problems.

Let's rewrite our Sample program using the Driver Manager. The original text was.

#include <iostream>

#include <dbapi/driver/public.hpp>

#include <dbapi/driver/exception.hpp>

/* Here, XXXlib has to be replaced with the real name, e.g. "ctlib" */

#include <dbapi/driver/XXXlib/interfaces.hpp>

USING_NCBI_SCOPE;

int main()

{

 try { // to be sure that we are catching all driver related exceptions

 // We need to create a driver context first

 // In real program we have to replace CXXXContext with something real

 CXXXContext my_context;

 // connecting to server "MyServer"

 // with user name "my_user_name" and password "my_password"

 CDB_Connection* con = my_context.Connect("MyServer", "my_user_name",

 "my_password", 0);

 ...

If we use the Driver Manager we could allow the driver name to be a program argument.

#include <iostream>

#include <dbapi/driver/public.hpp>

#include <dbapi/driver/exception.hpp>

#include <dbapi/driver/driver_mgr.hpp> // this is a new header

USING_NCBI_SCOPE;

int main(int argc, const char* argv[])

Page 17

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=C_DriverMgr&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=C_DriverMgr&d=C
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/dbapi/driver/samples/dbapi_conn_policy/dbapi_conn_policy.cpp

{

 try { // to be sure that we are catching all driver related exceptions

 C_DriverMgr drv_mgr;

 // We need to create a driver context first

 I_DriverContext* my_context= drv_mgr.GetDriverContext(

 (argc > 1)? argv[1] : "ctlib");

 // connecting to server "MyServer"

 // with user name "my_user_name" and password "my_password"

 CDB_Connection* con = my_context->Connect("MyServer", "my_user_name",

 "my_password", 0);

 ...

This fragment creates an instance of Driver Manager, dynamically loads driver's library,

implicitly register this driver, creates the driver context and makes a connection to a server. If

you don't want to load some drivers dynamically for any reason, but want to use the Driver

Manager as a driver contexts factory, then you need to statically link your program with those

libraries and explicitly registered those using functions from dbapi/driver/drivers.hpp header.

Text and Image Data Handling—The text and image are SQL datatypes which can hold

up to 2Gb of data. Because they could be huge, RDBMS keep these values separately from the

other data in the table. In most cases the table itself keeps just a special pointer to a text/image

value and an actual value occupies a separate disk space. This implicates some difficulties in

text/image data handling.

When you retrieve a large text/image value, you often prefer to "stream" it into your program

and process it chunk by chunk rather than get it as one piece. Some RDBMS clients allow to

stream the text/image values only if a correspondent column is the only column in select

statement.

Let's suppose that you do have a table: table T (i_val int, t_val text) And you need to select all

i_val, t_val where i_val > 0. The simplest way is to use a query:

 select i_val, t_val from T where i_val > 0

But it could be expensive. Because two columns are selected, some clients will put the whole

row in a buffer prior to give the access to it to the user. The better way to do this is to use two

selects:

 select i_val from T where i_val > 0select t_val from T where i_val > 0

Looks ugly, but could save you a lot of memory.

Updating and inserting the text/image data is also not a straightforward process. For small texts

and images it is possible to use just SQL insert and update statements, but it will be inefficient

(if possible at all) for the large ones. The better ways to insert and to update the texts and images

is to use SendData() method of CDB_Connection object or to use the CDB_SendDataCmd

object.

Recommended algorithm for inserting the text/image data:

! Using a SQL insert statement insert a new row into a table. Use "" value for each text

column (0x0 for image column) you are going to populate. Use NULL only if this

value is going to remain NULL.

Page 18

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_Connection&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_SendDataCmd&d=C

! Using a SQL select statement selects all text/image columns from this row.

! Fetch the row result and get a I_ITDescriptor for each column

! Finish the results loop

! Use SendData() method or CDB_SendDataCmd object to populate the columns.

Example

Let's suppose that we want to insert a new row into table T described above.

CDB_Connection* con;

...

// preparing the query

CDB_LangCmd* lcmd= con->LangCmd("insert T (i_val, t_val) values(100, ' ')

\n");

lcmd->More("select t_val from T where i_val = 100");

// Sending this query to a server

lcmd->Send();

I_ITDescriptor* my_descr;

// the result loop

while(lcmd->HasMoreResults()) {

 CDB_Result* r= lcmd->Result();

 // skip all but row result

 if (r == 0 || r->ResultType() != eDB_RowResult) {

 delete r;

 continue;

 }

 // fetching the row

 while(r->Fetch()) {

 // read 0 bytes from the text (some clients need this trick)

 r->ReadItem(0, 0);

 my_deskr = r->GetImageOrTextDescriptor();

 }

 delete r; // we don't need this result anymore

}

delete lcmd; // delete the command

CDB_Text my_text;

my_text.Append("This is a text I want to insert");

//sending the text

con->SendData(my_descr, my_text);

delete my_descr; // we don't need this descriptor anymore

...

Recommended algorithm for updating the text/image data:

! Using a SQL update statement replace the current value with "" for text column (0x0

for image)

! Using a SQL select statement select all text/image columns you want to update in this

row.

! Fetch the row result and get a I_ITDescriptor for each column

! Finish the results loop

! Use SendData() method or CDB_SendDataCmd object to populate the columns.

Page 19

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__SendDataCmd.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDB__SendDataCmd.html

Example

CDB_Connection* con;

...

// preparing the query

CDB_LangCmd* lcmd= con->LangCmd("update T set t_val= ' ' where i_val =

100");

lcmd->More("select t_val from T where i_val = 100");

// Sending this query to a server

lcmd->Send();

I_ITDescriptor* my_descr;

// the result loop

while(lcmd->HasMoreResults()) {

 CDB_Result* r= lcmd->Result();

 // skip all but row result

 if (r == 0 || r->ResultType() != eDB_RowResult) {

 delete r;

 continue;

 }

 // fetching the row

 while(r->Fetch()) {

 // read 0 bytes from the text (some clients need this trick)

 r->ReadItem(0, 0);

 my_deskr = r->GetImageOrTextDescriptor();

 }

 delete r; // we don't need this result anymore

}

delete lcmd; // delete the command

CDB_Text my_text;

my_text.Append("This is a text I want to see as an update");

//sending the text

con->SendData(my_descr, my_text);

delete my_descr; // we don't need this descriptor anymore

...

Results loop—The connection in NCBI DBAPI driver is always single threaded. Application

has to retrieve all results from a current command prior to executing a new one. Not all of the

results are always meaningful for the application (i.e. an RPC always returns a status result

regardless of either a procedure has a "return something" statement or not), but all of them

need to be retrieved. The following results loop is recommended for all types of the commands:

CDB_XXXCmd* cmd; // XXX could be Lang, RPC, etc.

...

while (cmd->HasMoreResults()) {

 // HasMoreResults() method returns true // if the Result()

method needs to be called.

 // It doesn't guarantee that Result() will return not NULL result

 CDB_Result* res = cmd->Result();

 if (res == 0)

 continue; // a NULL res doesn't mean that there is no more results

 switch(res->ResultType()) {

 case eDB_RowResult: // row result

Page 20

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

 while(res->Fetch()) {

 ...

 }

 break;

 case eDB_ParamResult: // Output parameters

 while(res->Fetch()) {

 ...

 }

 break;

 case eDB_ComputeResult: // Compute result

 while(res->Fetch()) {

 ...

 }

 break;

 case eDB_StatusResult: // Status result

 while(res->Fetch()) {

 ...

 }

 break;

 case eDB_CursorResult: // Cursor result

 while(res->Fetch()) {

 ...

 }

 break;

 }

 delete res;

}

If you don't want to process some particular type of result, just skip the while (res->Fetch())

{...} in the corresponding case.

Supported DBAPI drivers

! Sybase CTLIB

! Sybase DBLIB

! FreeTDS 0.60 (TDS ver. 8.0)

! FreeTDS 0.64 (TDS ver. 7.0/8.0)

! Sqlite3

! ODBC

! MySQL Driver

Sybase CTLIB

! Registration function (for the manual, static registration)

DBAPI_RegisterDriver_CTLIB()

! Driver default name (for the run-time loading from a DLL) "ctlib"

! Driver library ncbi_xdbapi_ctlib

! Sybase CTLIB libraries and headers used by the driver (UNIX) $(SYBASE_LIBS)$

(SYBASE_INCLUDE)

Page 21

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_CTLIB&d=f

! Sybase CTLIB libraries and headers used by the driver (MS Windows) You will need

Sybase OpenClient package installed on your PC.Libraries: LIBCT.LIB LIBCS.LIB

LIBBLK.LIB. In MSVC++, go to "Tools" / "Options..." / "Directories" and set up the

path to Sybase OpenClient libraries and headers (for example "C:\Sybase\lib" and "C:

\Sybase\include" respectively). To run the application, you must set environment

variable %SYBASE% to the Sybase OpenClient root directory (e.g. "C:\Sybase"), and

also to have your interface file there, in INI/sql.ini. In NCBI, we have the Sybase

OpenClient libs installed in \\DIZZY\public\Sybase.

! CTLIB-specific header (contains non-portable extensions) dbapi/driver/ctlib/

interfaces.hpp

! CTLIB-specific driver context attributes "reuse_context", default = "true" "version",

default = "125" (also allowed:"100" and “110”)

! Caveats

Cannot communicate with MS SQL server using any TDS version.

Sybase DBLIB

! Registration function (for the manual, static registration)

DBAPI_RegisterDriver_DBLIB()

! Driver default name (for the run-time loading from a DLL) "dblib"

! Driver library dbapi_driver_dblib

! Sybase DBLIB libraries and headers used by the driver (UNIX) $(SYBASE_DBLIBS)

$(SYBASE_INCLUDE)

! Sybase DBLIB libraries and headers used by the driver (MS Windows) Libraries:

LIBSYBDB.LIB See Sybase OpenClient installation and usage instructions in the

Sybase CTLIB section (just above).

! DBLIB-specific header (contains non-portable extensions) dbapi/driver/dblib/

interfaces.hpp

! DBLIB-specific driver context attributes "version", default = "46" (also

allowed:"100")

! Caveats

Text/image operations fail when working with MS SQL server, because MS SQL server sends

text/image length in the reverse byte order, and this cannot be fixed (as it was fixed for

FreeTDS) as we do not have access to the DBLIB source code.

DB Library version level "100" is recommended for communication with Sybase server 12.5,

because the default version level ("46") is not working correctly with this server.

FreeTDS 0.60 (TDS ver. 8.0)

! Registration function (for the manual, static registration)

DBAPI_RegisterDriver_FTDS8()

! Driver default name (for the run-time loading from a DLL) "ftds8".

! Driver library ncbi_xdbapi_ftds8.

! FreeTDS libraries and headers used by the driver $(FTDS8_LIBS)$

(FTDS8_INCLUDE)

! FreeTDS-specific header (contains non-portable extensions) dbapi/driver/ftds/

interfaces.hpp

Page 22

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/ftds/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/ftds/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/ctlib/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/ctlib/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_DBLIB&d=f
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/dblib/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/dblib/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_FTDS&d=f

! FreeTDS-specific driver context attributes "version", default =

<DBVERSION_UNKNOWN> (also allowed: "42", "46", "70", "80", "100")

! FreeTDS works on UNIX and Windows platforms.

! Caveats

Default version of the TDS protocol (<DBVERSION_UNKNOWN>) will work with MS SQL

Server. If you want to work with Sybase server you should use TDS protocol version 4.2. This

can be done either by using a driver parameter "version" equal either to "42" or to "4.2" or by

setting an environment variable TDSVER either to "42" or to "4.2".

Current implementation of FreeTDS will not support bulk copy operations with Sybase server.

Although a slightly modified version of FreeTDS is now part of the public toolkit, it retains

its own license: the GNU Library General Public License.

The "compute results" functionality (like from SELECT ... AVERAGE ...) does not work

because current FreeTDS implementation cannot decipher the "compute results" specific result

set returned by server.

RPC is implemented via a language call, so it will work only if the OpenServer it is

communicating with has language handler installed (and it is not installed on some NCBI

OpenServers!).

The FreeTDS client library (the one using TDS protocol version 8.0) was tweaked to work

with the MS SQL server and significantly optimized. It will work with Sybase server only with

TDS protocol version 4.2 and will not support bulk copy operations.

Another, earlier non-tweaked version of FreeTDS client library theoretically should be able to

work with both MS SQL and SYBASE servers (using TDS protocol version 4.2), however it

was not thoroughly tested and can be pretty slow.

TDS protocol version 4.2 should not be used with MS SQL server.

The FreeTDS library does not distinguish NULL and zero-size objects that correspond to

Oracle behavior, but not to SQL standard. This is a known bug/feature of FreeTDS library.

Only one instance of class CTDSContext can be created.

An attribute reuse_context can be set only to false with this driver.

It is not safe to change properties of CTDSContext from multiple threads because there is only

one instance of this class.

FreeTDS 0.64 (TDS ver. 7.0)

! Registration function (for the manual, static registration)

DBAPI_RegisterDriver_FTDS()

! Driver default name (for the run-time loading from a DLL) "ftds" or "ftds64".

! Driver library ncbi_xdbapi_ftds

! FreeTDS libraries and headers used by the driver $(FTDS_LIBS) $

(FTDS_INCLUDE) or $(FTDS64_LIBS)$(FTDS64_INCLUDE)

! FreeTDS-specific driver context attributes "version", default =

<DBVERSION_UNKNOWN> (also allowed: "42", "46", "70", "100")

Page 23

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi/driver/ftds8/freetds/COPYING.LIB
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_FTDS&d=f

! FreeTDS works on UNIX and Windows platforms.

! This driver supports Windows Domain Authentication using protocol NTLMv2, which

is a default authentication protocol for Windows at NCBI.

! This driver supports TDS protocol version auto-detection. TDS protocol version

cannot be detected when connecting against Sybase Open Server.

! Caveats

Default version of the TDS protocol (<DBVERSION_UNKNOWN>) will work with MS SQL

Server and Sybase SQL Server. If you want to work with Sybase Open server you should use

TDS protocol version 5.0. This can be done either by using a driver parameter "version" equal

either to "50" or to "5.0" or by setting an environment variable TDSVER either to "50" or to

"5.0".

Although a slightly modified version of FreeTDS is now part of the public toolkit, it retains

its own license: the GNU Library General Public License.

TDS protocol version 4.2 should not be used with MS SQL server

Sqlite3

! Registration function (for the manual, static registration)

DBAPI_RegisterDriver_SQLITE3 ().

! Driver default name (for the run-time loading from a DLL) "sqlite3"

! Driver library ncbi_xdbapi_sqlite3

! Sqlite3 libraries and headers used by the driver (MS Windows) $(SQLITE3_LIBS) $

(SQLITE3_INCLUDE).

! Sqlite3 works on UNIX and Windows platforms.

! Sqlite3 stores strings in UTF8 format.

! Caveats

This driver doesn’t support SendDataCmd and CursorCmd.

ODBC

! Registration function (for the manual, static registration)

DBAPI_RegisterDriver_ODBC()

! Driver default name (for the run-time loading from a DLL) "odbc"

! Driver library dbapi_driver_odbc

! ODBC libraries and headers used by the driver (MS Windows) ODBC32.LIB

ODBCCP32.LIB ODBCBCP.LIB

! ODBC libraries and headers used by the driver (UNIX) $(ODBC_LIBS)$

(ODBC_INCLUDE)

! ODBC-specific header (contains non-portable extensions) dbapi/driver/odbc/

interfaces.hpp

! ODBC-specific driver context attributes "version", default = "3" (also

allowed:"2")"use_dsn", default = false (if you have set this attribute to "true", you

need to define your data source using "Control Panel"/"Administrative Tools"/"Data

Sources (ODBC)")

! Caveats

Page 24

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/odbc/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/dbapi/driver/odbc/interfaces.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/dbapi/driver/ftds8/freetds/COPYING.LIB
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DBAPI_RegisterDriver_ODBC&d=f

The CDB_Result::GetImageOrTextDescriptor() does not work for ODBC driver. You need to

use CDB_ITDescriptor instead. The other way to deal with texts/images in ODBC is through

the CDB_CursorCmd methods: UpdateTextImage and SendDataCmd.

On most NCBI PCs, there is an old header odbcss.h (from 4/24/1998) installed. The symptom

is that although everything compiles just fine, however in the linking stage there are dozens of

unresolved symbol errors for ODBC functions. Ask "pc.systems" to fix this for your PC.

On UNIX, it's only known to work with Merant's implementation of ODBC, and it has not

been thoroughly tested or widely used, so surprises are possible.

MySQL Driver—There is a direct (without ODBC) MySQL driver in the NCBIC++ Toolkit

DBAPI. However, the driver realizes a very minimum functionality and does not support the

following:

! Working with images by chunks (images can be accessed as string fieldsthough)

! RPC

! BCP

! SendData functionality

! Connection pools

! Parameter binding

! Canceling results

! ReadItem

! IsAlive

! Refresh functions

! Setting timeouts

Major Features of the BDB Library

The BDB library provides tools for the development of specialized data storages in applications

not having access to centralized RDBMS.

! C++ wrapper on top of Berkeley DB. The BDB library takes care of many of the

ultra low-level details for C programmers using the Berkeley DB. The BDB

implements B-Tree file access (both keyed and sequential), environments, cursors, and

transactions.

! Error checking. All error codes coming from the Berkeley DB are analyzed and

processed in a manner common to all other components of the C++ Toolkit. When an

error situation is detected, the BDB library sends an exception that is reported by the

diagnostic services and can be handled by the calling application, similar to any other

Toolkit exception.

! Support for relational table structure and different data types. The Berkeley DB

itself is “type agnostic” and provides no means to manipulate data types. But for many

cases, clear data type support can save a lot of work. Toolkit implements all major

scalar data types so it can be used like a regular database.

! Cross platform compatibility. The BDB databases can be transferred across

platforms without reconverting the data. The BDB tracks the fact that the database was

created as big-endian or little-endian and does the conversion transparently when the

database migrates.

Page 25

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_ITDescriptor&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDB_CursorCmd&d=C

! Easy BLOBs. The BDB library supports keyed BLOB storages. BLOBs can be

streamed to and from the database. A set of additional interfaces has been written to

simplify the BLOB access in comparison with the original Berkeley DB C library.

! Disk-based cache interface. The BDB library implements a cache disk cache service

used by other Toolkit components to minimize client-server traffic and to store parts

of the data locally. Different cache management and data expiration policies have been

put in place.

! Database maps. The BDB library includes templated classes similar to STL map and

multimap but persistently stores the map content in the Berkeley DB files.

! Simple queries. The BDB library includes implementation of a simple query language

to search records in flat files.

Page 26

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

Figure 1. Object Hierarchy

Page 27

C++ Toolkit Library Reference

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

T
h
e
 N

C
B

I C
+

+
 T

o
o
lk

it B
o
o
k

CGI and Fast-CGI
[11]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

CGI and Fast-CGI [Libraries xcgi and xfcgi: include | src]

These library classes represent an integrated framework with which to write CGI applications and
are designed to help retrieve and parse an HTTP request and then to compose and deliver an HTTP
response. (See also this additional class reference documentation). xfcgi is a FastCGI version of
xcgi.

Hint: Requires the target executable to be linked with a third-party FastCGI library, as in:

LIBS = <tableref rid="ch_config.T3" RBID="ch_config.T3">$(FASTCGI_LIBS)</tableref> $
(ORIG_LIBS).

Hint: On non-FastCGI capable platforms (or if run as a plain CGI on a FastCGI-capable platform),
it works the same as a plain CGI.

CGI Interface
! Basic CGI Application Class (includes CGI Diagnostic Handling) cgiapp[.hpp | .cpp]
! CGI Application Context Classes cgictx[.hpp | .cpp]
! HTTP Request Parser ncbicgi[.hpp | .cpp]
! HTTP Cookies ncbicgi[.hpp | .cpp]
! HTTP Response Generator ncbicgir[.hpp | .cpp]
! Basic CGI Resource Class ncbires[.hpp | .cpp]

FastCGI CGI Interface
! Adapter Between C++ and FastCGI Streams fcgibuf[.hpp | .cpp]
! Fast-CGI Loop Function fcgi_run[.cpp]
! Plain CGI Stub for the Fast-CGI Loop Function cgi_run[.cpp]

Demo Cases [src/cgi/demo | src/app/sample/cgi]

Test Cases [src/cgi/test]

.

Chapter Outline

The following is an outline of the topics presented in this chapter:

Developing CGI applications
! Overview of the CGI classes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/cgi/cgiapp.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/cgiapp.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/cgi/cgictx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/cgictx.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/cgi/ncbicgi.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/ncbicgi.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/cgi/ncbicgi.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/ncbicgi.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/cgi/ncbicgir.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/ncbicgir.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/cgi/ncbires.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/ncbires.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/fcgibuf.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/fcgibuf.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/fcgi_run.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/cgi_run.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/demo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/cgi

! The CCgiApplication class
! The CNcbiResource and CNcbiCommand classes
! The CCgiRequest class
! The CCgiResponse class
! The CCgiCookie class
! The CCgiCookies class
! The CCgiContext class
! Example code using the CGI classes
! CGI Registry configuration

CGI Diagnostic Handling
! diag-destination
! diag-threshold
! diag-format

NCBI C++ CGI Classes
! CCgiRequest
! CCgiResponse
! CCgiCookie
! CCgiCookies

An example web-based CGI application
! Introduction
! Program description
! Program design: Distributing the work

CGI Response Codes

Developing CGI applications
! Overview of the CGI classes
! The CCgiApplication class
! The CNcbiResource and CNcbiCommand classes
! The CCgiRequest class
! The CCgiResponse class
! The CCgiCookie class
! The CCgiCookies class
! The CCgiContext class
! Example code using the CGI classes
! CGI Registry configuration

Although CGI programs are generally run as web applications with HTML interfaces, this
section of the Programming Manual places emphasis on the CGI side of things, omitting HTML
details of the implementation where possible. Similarly, the section on Generating web pages
focuses largely on the usage of HTML components independent of CGI details. The two
branches of the NCBI C++ Toolkit hierarchy are all but independent of one another - with but
one explicit hook between them: the constructors for HTML page components accept a

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CCgiApplication as an optional argument. This CCgiApplication argument provides the
HTML page component with access to all of the CGI objects used in the application.

Further discussion of combining a CGI application with the HTML classes can be found in the
section on An example web-based CGI application. The focus in this chapter is on the CGI
classes only. For additional information about the CGI classes, the reader is also referred to
the discussion of NCBI C++ CGI Classes in the Reference Manual.

The CGI classes
Figure 1 illustrates the layered design of the CGI classes.

This design is best described by starting with a consideration of the capabilities one might need
to implement a CGI program, including:
! A way to retrieve and store the current values of environment variables
! A means of retrieving and interpreting the client's query request string
! Mechanisms to service and respond to the requested query
! Methods and data structures to obtain, store, modify, and send cookies
! A way to set/reset the context of the application (for Fast-CGI)

The CCgiContext class unifies these diverse capabilities under one aggregate structure. As
their names suggest, the CCgiRequest class receives and parses the request, and the
CCgiResponse class outputs the response on an output stream. All incoming CCgiCookies are
also parsed and stored by the CCgiRequest object, and the outgoing cookies are sent along with
the response by the CCgiResponse object. The request is actually processed by the application's
CNcbiResource. The list of CNcbiCommands stored with that resource object are scanned to
find a matching command, which is then executed.

The CCgiContext object, which is a friend to the CCgiApplication class, orchestrates this
sequence of events in coordination with the application object. The same application may be
run in many different contexts, but the resource and defined set of commands are invariant.
What changes with each context is the request and its associated response.

The CCgiApplication class is a specialization of CNcbiApplication. Figure 2 illustrates the
adaptation of the Init() and Run() member functions inherited from the CNcbiApplication class
to the requirements of CGI programming. Although the application is contained in the context,
it is the application which creates and initializes each context in which it participates. The
program arguments and environmental variables are passed along to the context, where they
will be stored, thus freeing the application to be restarted in a new context, as in Fast-CGI.

The application's ProcessRequest member function is an abstract function that must be
implemented for each application project. In most cases, this function will access the query
and the environment variables via the CCgiContext, using ctx.GetRequest() and ctx.GetConfig
(). The application may then service the request using its resource's HandleRequest() method.
The context's response object can then be used to send an appropriate response.

These classes are described in more detail below, along with abbreviated synopses of the class
definitions. These are included here to provide a conceptual framework and are not intended
as reference materials. For example, constructor and destructor declarations that operate on
void arguments, and const methods that duplicate non-const declarations are generally not
included here. Certain virtual functions and data members that have no meaning outside of a
web application are also omitted. For complete definitions, refer to the header files via the
source browsers.

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The CCgiApplication Class (*)
As mentioned, the CCgiApplicationclass implements its own version of Init(), where it
instantiates a CNcbiResource object using LoadResource(). Run() is no longer a pure virtual
function in this subclass, and its implementation now calls CreateContext(), ProcessRequest
(), and CCgiContext::GetResponse(). The CCgiApplication class does not have a CCgiContext
data member, because the application object can participate in multiple CCgiContexts. Instead,
a local variable in each Run() invocation stores a pointer to the context created there. The
LoadServerContext() member function is used in Web applications, such as the query program,
where it is necessary to store more complex run-time data with the context object. The
CCgiServerContext object returned by this function is stored as a data member of a
CCgiContext and is application specific.

class CCgiApplication : public CNcbiApplication
{
 friend class CCgiContext;

public:
 void Init(void);
 void Exit(void);
 int Run(void);

 CNcbiResource& GetResource(void);
 virtual int ProcessRequest(CCgiContext&) = 0;
 CNcbiResource* LoadResource(void);
 virtual CCgiServerContext* LoadServerContext(CCgiContext& context);

 bool RunFastCGI(unsigned def_iter=3);

protected:
 CCgiContext* CreateContext(CNcbiArguments*, CNcbiEnvironment*,
 CNcbiIstream*, CNcbiOstream*);

private: auto_ptr<CNcbiResource> m_resource;
};

If the program was not compiled as a FastCGI application (or the environment does not support
FastCGI), then RunFastCGI() will return false. Otherwise, a "FastCGI loop" will be iterated
over def_iter times, with the initialization methods and ProcessRequest() function being
executed on each iteration. The value returned by RunFastCGI() in this case is true. Run() first
calls RunFastCGI(), and if that returns false, the application is run as a plain CGI program.

The CNcbiResource (*) and CNcbiCommand (*) Classes
The resource class is at the heart of the application, and it is here that the program's functionality
is defined. The single argument to the resource class's constructor is a CNcbiRegistry object,
which defines data paths, resources, and possibly environmental variables for the application.
This information is stored in the resource class's data member, m_config. The only other data
member is a TCmdList (a list of CNcbiCommands) called m_cmd.

class CNcbiResource
{
public:

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=TCmdList
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCgiApplication.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=Init
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=Run
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=RunFastCGI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiResource.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiCommand.html

 CNcbiResource(CNcbiRegistry& config);

 CNcbiRegistry& GetConfig(void);
 const TCmdList& GetCmdList(void) const;
 virtual CNcbiCommand* GetDefaultCommand(void) const = 0;
 virtual const CNcbiResPresentation* GetPresentation(void) const;

 void AddCommand(CNcbiCommand* command);
 virtual void HandleRequest(CCgiContext& ctx);

protected:

 CNcbiRegistry& m_config;
 TCmdList m_cmd;
};CNcbiDbPresentatio

The AddCommand() method is used when a resource is being initialized, to add commands to
the command list. Given a CCgiRequest object defined in a particular context ctx,
HandleRequest(ctx) compares entries in the context's request to commands in m_cmd. The
first command in m_cmd that matches an entry in the request is then executed (see below), and
the request is considered "handled". If desired, a default command can be installed that will
execute when no matching command is found. The default command is defined by
implementing the pure virtual function GetDefaultCommand(). The CNcbiResPresentation
class is an abstract base class, and the member function, GetPresentation(), returns 0. It is
provided as a hook for implementing interfaces between information resources (e.g., databases)
and CGI applications.

class CNcbiCommand
{
public:
 CNcbiCommand(CNcbiResource& resource);

 virtual CNcbiCommand* Clone(void) const = 0;
 virtual string GetName() const = 0;
 virtual void Execute(CCgiContext& ctx) = 0;
 virtual bool IsRequested(const CCgiContext& ctx) const;

protected:
 virtual string GetEntry() const = 0;
 CNcbiResource& GetResource() const { return m_resource; }

private:
 CNcbiResource& m_resource;
};

CNcbiCommand is an abstract base class; its only data member is a reference to the resource
it belongs to, and most of its methods - with the exception of GetResource() and IsRequested
() - are pure virtual functions. IsRequested() examines the key=value entries stored with the
context's request object. When an entry is found where key==GetEntry() and value==GetName
(), IsRequested() returns true.

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCNcbiResPresentation.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=HandleRequest

The resource's HandleRequest() method iterates over its command list, calling
CNcbiCommand::IsRequested() until the first match between a command and a request entry
is found. When IsRequested() returns true, the command is cloned, and the cloned command
is then executed. Both the Execute() and Clone() methods are pure virtual functions that must
be implemented by the user.

The CCgiRequest Class (*)
The CCgiRequest class serves as an interface between the user's query and the CGI program.
Arguments to the constructor include a CNcbiArguments object, a CNcbiEnvironment object,
and a CNcbiIstream object. The class constructors do little other than invoke
CCgiRequest::x_Init(), where the actual initialization takes place.

x_Init() begins by examining the environment argument, and if it is NULL, m_OwnEnv (an
auto_ptr) is reset to a dummy environment. Otherwise, m_OwnEnv is reset to the passed
environment, making the request object the effective owner of that environment. The
environment is then used to cache network information as "gettable" properties. Cached
properties include:
! server properties, such as the server name, gateway interface, and server port
! client properties (the remote host and remote address)
! client data properties (content type and content length of the request)
! request properties, including the request method, query string, and path information
! authentication information, such as the remote user and remote identity
! standard HTTP properties (from the HTTP header)

These properties are keyed to an enumeration named ECgiProp and can be retrieved using the
request object's GetProperty() member function. For example, GetProperty(eCgi_HttpCookie)
is used to access cookies from the HTTP Header, and GetProperty(eCgi_RequestMethod) is
used to determine from where the query string should be read.

NOTE: Setting $QUERY_STRING without also setting $REQUEST_METHOD will result
in a failure by x_init() to read the input query. x_init() first looks for the definition of
$REQUEST_METHOD, and depending on if it is GET or POST, reads the query from the
environment or the input stream, respectively. If the environment does not define
$REQUEST_METHOD, then x_Init() will try to read the query string from the command line
only.

class CCgiRequest {
public:
 CCgiRequest(const CNcbiArguments*, const CNcbiEnvironment*,
 CNcbiIstream*, TFlags);

 static const string& GetPropertyName(ECgiProp prop);
 const string& GetProperty(ECgiProp prop) const;
 size_t GetContentLength(void) const;
 const CCgiCookies& GetCookies(void) const;
 const TCgiEntries& GetEntries(void) const;
 static SIZE_TYPE ParseEntries(const string& str, TCgiEntries& entries);
private:
 void x_Init(const CNcbiArguments*, const CNcbiEnvironment*,
 CNcbiIstream*, TFlags);

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/group__CGIReqRes.html#a8
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCgiRequest.html

 const CNcbiEnvironment* m_Env;
 auto_ptr<CNcbiEnvironment> m_OwnEnv;
 TCgiEntries m_Entries;
 CCgiCookies m_Cookies;
};

This abbreviated definition of the CCgiRequest class highlights its primary functions:

To parse and store the <key=value> pairs contained in the query string (stored in m_Entries).

To parse and store the cookies contained in the HTTP header (stored in m_Cookies).

As implied by the "T" prefix, TCgiEntries is a type definition, and defines m_Entries to be an
STL multimap of <string,string> pairs. The CCgiCookies class (described below) contains an
STL set of CCgiCookie and implements an interface to this set.

The CCgiResponse Class (*)
The CCgiResponse class provides an interface to the program's output stream (usually cout),
which is the sole argument to the constructor for CCgiResponse. The output stream can be
accessed by the program using CCgiResponse::GetOutput(), which returns a pointer to the
output stream, or, by using CCgiResponse::out(), which returns a reference to that stream.

In addition to implementing controlled access to the output stream, the primary function of the
response class is to generate appropriate HTML headers that will precede the rest of the
response. For example, a typical sequence in the implementation of a particular command's
execute function might be:

MyCommand::Execute(CCgiContext& ctx)
{
 // ... generate the output and store it in MyOutput

 ctx.GetResponse().WriteHeader();
 ctx.GetResponse().out() << MyOutput;
 ctx.GetResponse.out() << "</body></html>" << endl;
 ctx.GetResponse.Flush();
}

Any cookies that are to be sent with the response are included in the headers generated by the
response object.

Two member functions are provided for outputting HTML headers: WriteHeader() and
WriteHeader(CNcbiOstream&). The second of these is for writing to a specified stream other
than the default stream stored with the response object. Thus, WriteHeader(out()) is equivalent
to WriteHeader().

The WriteHeader() function begins by invoking IsRawCgi() to see whether the application is
a non-parsed header program. If so, then the first header put on the output stream is an HTTP
status line, taken from the private static data member, sm_HTTPStatusDefault. Next, unless
the content type has been set by the user (using SetContentType()), a default content line is
written, using sm_ContentTypeDefault. Any cookies stored in m_Cookies are then written,
followed by any additional headers stored with the request in m_HeaderValues. Finally, a new
line is written to separate the body from the headers.

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.wdvl.com/Authoring/Scripting/Tutorial/nph.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=TCgiEntries
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCgiResponse.html

class CCgiResponse {
public:
 CCgiResponse(CNcbiOstream* out = 0);

 void SetRawCgi(bool raw);
 bool IsRawCgi(void) const;
 void SetHeaderValue(const string& name, const string& value);
 void SetHeaderValue(const string& name, const tm& value);
 void RemoveHeaderValue(const string& name);
 void SetContentType(const string &type);
 string GetHeaderValue(const string& name) const;
 bool HaveHeaderValue(const string& name) const;
 string GetContentType(void) const;

 CCgiCookies& Cookies(void); // Get cookies set
 CNcbiOstream* SetOutput(CNcbiOstream* out); // Set default output stream
 CNcbiOstream* GetOutput(void) const; // Query output stream
 CNcbiOstream& out(void) const; // Conversion to ostream
 // to enable <<

 void Flush() const;

 CNcbiOstream& WriteHeader(void) const; // Write HTTP response header
 CNcbiOstream& WriteHeader(CNcbiOstream& out) const;
protected:
 typedef map<string, string> TMap;
 static const string sm_ContentTypeName;
 static const string sm_ContentTypeDefault;
 static const string sm_HTTPStatusDefault;
 bool m_RawCgi;
 CCgiCookies m_Cookies;
 TMap m_HeaderValues; // Additional header lines in alphabetical order
 CNcbiOstream* m_Output; // Default output stream };

The CCgiCookie Class (*)
The traditional means of maintaining state information when servicing a multi-step request has
been to include hidden input elements in the query strings passed to subsequent URLs. The
newer, preferred method uses HTTP cookies, which provide the server access to client-side
state information stored with the client. The cookie is a text string consisting of four key=value
pairs:
! name (required)
! expires (optional)
! domain (optional)
! path (optional)

The CCgiCookie class provides a means of creating, modifying, and sending cookies. The
constructor requires at least two arguments, specifying the name and value of the cookie, along
with the optional domain and path arguments. Format errors in the arguments to the constructor
(see Supplementary Information) will cause the invalid argument to be thrown. The
CCgiCookie::Write(CNcbiOstream&) member function creates a Set-Cookie directive using
its private data members and places the resulting string on the specified output stream:

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCgiCookie.html

Set-Cookie:
m_Name=
m_Value; expires=
m_Expires; path=
m_Path;
domain=
m_Domain;
m_Secure

As with the constructor, and in compliance with the proposed standard (RFC 2109), only the
name and value are mandatory in the directive.

class CCgiCookie {
public:
 CCgiCookie(const string& name, const string& value,
 const string& domain = NcbiEmptyString,
 const string& path = NcbiEmptyString);
 const string& GetName(void) const;
 CNcbiOstream& Write(CNcbiOstream& os) const;
 void Reset(void);
 void CopyAttributes(const CCgiCookie& cookie);
 void SetValue (const string& str);
 void SetDomain (const string& str);
 void SetPath (const string& str);
 void SetExpDate(const tm& exp_date);
 void SetSecure (bool secure);
 const string& GetValue (void) const;
 const string& GetDomain (void) const;
 const string& GetPath (void) const;
 string GetExpDate(void) const;
 bool GetExpDate(tm* exp_date) const;
 bool GetSecure(void) const;
 bool operator<(const CCgiCookie& cookie) const;
 typedef const CCgiCookie* TCPtr;
 struct PLessCPtr {
 bool operator() (const TCPtr& c1, const TCPtr& c2) const {
 return (*c1 < *c2);
 }
 };
private:
 string m_Name;
 string m_Value;
 string m_Domain;
 string m_Path;
 tm m_Expires;
 bool m_Secure;
};

With the exception of m_Name, all of the cookie's data members can be reset using the SetXxx
(), Reset(), and CopyAttributes() member functions; m_Name is non-mutable. As with the
constructor, format errors in the arguments to these functions will cause the invalid argument
to be thrown. By default, m_Secure is false. The GetXxx() methods return the stored value for

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.isi.edu/in-notes/rfc2109.txt

that attribute or, if no value has been set, a reference to NcbiEmptyString. GetExpDate(tm*)
returns false if no expiration date was previously set. Otherwise, tm is reset to m_Expire, and
true is returned.

The CCgiCookies Class (*)
The CCgiCookies class provides an interface to an STL set of CCgiCookies (m_Cookies).
Each cookie in the set is uniquely identified by its name, domain, and path values and is stored
in ascending order using the CCgiCookie::PLessCPtr construct. Two constructors are
provided, allowing the user to initialize m_Cookies to either an empty set or to a set of N new
cookies created from the string "name1=value1; name2=value2; ...; nameN=valuenN". Many
of the operations on a CCgiCookies object involve iterating over the set, and the class's type
definitions support these activities by providing built-in iterators and a typedef for the set, TSet.

The Add() methods provide a variety of options for creating and adding new cookies to the
set. As with the constructor, a single string of name-value pairs may be used to create and add
N cookies to the set at once. Previously created cookies can also be added to the set individually
or as sets. Similarly, the Remove() methods allow individual cookies or sets of cookies (in the
specified range) to be removed. All of the remove functions destroy the removed cookies when
destroy=true. CCgiCookies::Write(CNcbiOstream&) iteratively invokes the
CCgiCookie::Write() on each element.

class CCgiCookies {
public:
 typedef set<CCgiCookie*, CCgiCookie::PLessCPtr> TSet;
 typedef TSet::iterator TIter;
 typedef TSet::const_iterator TCIter;
 typedef pair<TIter, TIter> TRange;
 typedef pair<TCIter, TCIter> TCRange;
 CCgiCookies(void); // create empty set of cookies
 CCgiCookies(const string& str);
 // str = "name1=value1; name2=value2; ..."
 bool Empty(void) const;
 CCgiCookie* Add(const string& name, const string& value,
 const string& domain = NcbiEmptyString,
 const string& path = NcbiEmptyString);
 CCgiCookie* Add(const CCgiCookie& cookie);
 void Add(const CCgiCookies& cookies);
 void Add(const string& str);
 // "name1=value1; name2=value2; ..."
 CCgiCookie* Find(const string& name, const string& domain,
 const string& path);
 CCgiCookie* Find(const string& name, TRange* range=0);
 bool Remove(CCgiCookie* cookie, bool destroy=true);
 size_t Remove(TRange& range, bool destroy=true);
 size_t Remove(const string& name, bool destroy=true);
 void Clear(void);
 CNcbiOstream& Write(CNcbiOstream& os) const;
private:
 TSet m_Cookies;
};

Page 10

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCgiCookies.html

The CCgiContext Class (*)
As depicted in Figure 1, a CCgiContext object contains an application object, a request object,
and a response object, corresponding to its data members m_app, m_request, and m_response.
Additional data members include a string encoding the URL for the context (m_selfURL), a
message buffer (m_lmsg), and a CCgiServerContext. These last three data members are used
only in complex Web applications, such as the query program, where it is necessary to store
more complex run-time data with the context object. The message buffer is essentially an STL
list of string objects the class definition of which (CCtxMsgString) includes a Write() output
function. GetServCtx() returns m_srvCtx if it has been defined and, otherwise, calls the
application's CCgiApplication::LoadServerContext() to obtain it.

class CCgiContext
{
public:
 CCgiContext(CCgiApplication& app,
 const CNcbiArguments* args = 0,
 const CNcbiEnvironment* env = 0,
 CNcbiIstream* inp = 0,
 CNcbiOstream* out = 0);
 const CCgiApplication& GetApp(void) const;
 CNcbiRegistry& GetConfig(void);
 CCgiRequest& GetRequest(void);
 CCgiResponse& GetResponse(void);
 const string& GetSelfURL(void) const;
 CNcbiResource& GetResource(void);
 CCgiServerContext& GetServCtx(void);
 // output all msgs in m_lmsg to os
 CNcbiOstream& PrintMsg(CNcbiOstream& os);
 void PutMsg(const string& msg); // add message to m_lmsg
 void PutMsg(CCtxMsg* msg); // add message to m_lmsg
 bool EmptyMsg(void); // true iff m_lmsg is empty
 void ClearMsg(void); // delete all messages in m_lmsg
 string GetRequestValue(const string& name) const;
 void AddRequestValue(const string& name, const string& value);
 void RemoveRequestValues(const string& name);
 void ReplaceRequestValue(const string& name, const string& value);
private:
 CCgiApplication& m_app;
 auto_ptr<CCgiRequest> m_request;
 CCgiResponse m_response;
 mutable string m_selfURL;
 list<CCtxMsg*> m_lmsg; // message buffer
 auto_ptr<CCgiServerContext> m_srvCtx;
 // defined by CCgiApplication::LoadServerContext()
 friend class CCgiApplication;
};

Example Code Using the CGI Classes
The hello program demonstrates a simple application that combines the NCBI C++ Toolkit's
CGI and HTML classes. justcgi.cpp is an adaptation of that program, stripped of all HTML
references and with additional request-processing added (see Box 1 and Box 2).

Page 11

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CCtxMsgString
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCCgiContext.html

The application defines two classes of commands (see Table 1).

Executing

./cgi 'cmd1=init&cmd2=reply'

results in execution of only cmd1, as does executing

./cgi 'cmd2=reply&cmd1=init'

The commands are matched in the order that they are registered with the resource, not according
to the order in which they occur in the request. The assumption is that only the first entry (if
any) in the query actually specifies a command, and that the remaining entries provide optional
arguments to that command. The Makefile (see Box 3) for this example links to both the xncbi
and xcgi libraries. Additional examples using the CGI classes can be found in src/cgi/test. (For
Makefile.fastcgi.app, see Box 4.)

CGI Registry Configuration
The application registry defines CGI-related configuration settings in the [CGI] section (see
Table 2).

FastCGI settings. [FastCGI] section (see Table 3).

CGI load balancing settings. [CGI-LB] section (see Table 4).

Supplementary Information
Restrictions on arguments to the CCgiCookie constructor.

See Table 5.

CGI Diagnostic Handling
By default, CGI applications support three query parameters affecting diagnostic output: diag-
destination, diag-threshold, and diag-format. It is possible to modify this behavior by
overriding the virtual function CCgiApplication::ConfigureDiagnostics. (In particular,
production applications may wish to disable these parameters by defining
ConfigureDiagnostics to be a no-op.)

diag-destination
The parameter diag-destination controls where diagnostics appear. By default, there are two
possible values (see Table 6).

However, an application can make other options available by calling RegisterDiagFactory from
its Init routine. In particular, calling

#include <connect/email_diag_handler.hpp>
...
RegisterDiagFactory("email", new CEmailDiagFactory);

and linking against xconnect and connectenables destinations of the form email:user@host,
which will cause the application to e-mail diagnostics to the specified address when done.

Similarly, calling

Page 12

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=RegisterDiagFactory
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ConfigureDiagnostics

#include <html/commentdiag.hpp>
...
RegisterDiagFactory("comments", new CCommentDiagFactory);

and linking against xhtml will enable the destination comments. With this destination,
diagnostics will take the form of comments in the generated HTML, provided that the
application has also used SetDiagNode to indicate where they should go. (Applications may
call that function repeatedly; each invocation will affect all diagnostics until the next
invocation. Also, SetDiagNode is effectively a no-op for destinations other than comments, so
applications may call it unconditionally.)

Those destinations are not available by default because they introduce additional dependencies;
however, either may become a standard possibility in future versions of the toolkit.

diag-threshold
The parameter diag-threshold sets the minimum severity level of displayed diagnostics; its
value can be either fatal, critical, error, warning, info, or trace. For the most part, setting this
parameter is simply akin to calling SetDiagPostLevel. However, setting diag-threshold to trace
is not equivalent to calling SetDiagPostLevel(eDiag_Trace); the former reports all diagnostics,
whereas the latter reports only traces.

diag-format
Finally, the parameter diag-format controls diagnostics' default appearance; setting it is akin
to calling {Set,Unset}DiagPostFlag. Its value is a list of flags, delimited by spaces (which
appear as "+" signs in URLs); possible flags are file, path, line, prefix, severity, code, subcode,
time, omitinfosev, all, trace, log, and default. Every flag but default corresponds to a value in
EDiagPostFlag, and can be turned off by preceding its name with an exclamation point ("!").
default corresponds to the four flags which are on by default: line, prefix, code, and subcode,
and may not be subtracted.

NCBI C++ CGI Classes
The Common Gateway Interface (CGI) is a method used by web servers to pass information
from forms displayed in a web browser to a program running on the server and then allow the
program to pass a web page back. The NCBI C++ CGI Classes are used by the program running
on the server to decode the CGI input from the server and to send a response. The library also
supports cookies, which is a method for storing information on the user's machine. The library
supports the http methods GET and POST via application/x-www-form-urlencoded, and
supports the POST via multipart/form-data (often used for file upload). In the POST via
multipart/form-data, the data gets read into a TCgiEntries; you also can get the filename out
of it (the name of the entry is as specified by "name=" of the data-part header). For more
information on CGI, see the book HTML Sourcebook by Ian Graham or http://
hoohoo.ncsa.uiuc.edu/cgi/

There are 5 main classes:

CCgiRequest–what the CGI program is getting from the client.

CCgiResponse–what the CGI program is sending to the client.

CCgiEntry–a single field value, optionally accompanied by a filename.

CCookie–a single cookie

Page 13

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDiagPostFlag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagNode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostLevel
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetDiagPostFlag

CCookies–a cookie container

Note: In the following libraries you will see references to the following typedefs:
CNcbiOstream and CNcbiIstream. On Solaris and NT, these are identical to the standard library
output stream (ostream) and input stream (istream) classes. These typedefs are used on older
computers to switch between the old stream library and the new standard library stream classes.
Further details can be found in an accompanying document (to be written).

A demo program, cgidemo.cpp, can be found in internal/c++/src/corelib/demo.

CCgiRequest
CCgiRequest is the class that reads in the input from the web server and makes it accessible
to the CGI program.

CCgiRequest uses the following typedefs to simplify the code:

typedef map<string, string> TCgiProperties
typedef multimap<string, CCgiEntry> TCgiEntries
typedef TCgiEntries::iterator TCgiEntriesI
typedef list<string> TCgiIndexes

All of the basic types come from the C++ Standard library (http://www.sgi.com/Technology/
STL/)

CCgiRequest(int argc, char* argv[], CNcbiIstream* istr=0, bool
indexes_as_entries=true)

A CGI program can receive its input from three sources: the command line, environment
variables, and an input stream. Some of this input is given to the CCgiRequest class by the
following arguments to the constructor:

int argc, char* argv[] : standard command line arguments.

CNcbiIstream* istr=0 : the input stream to read from. If 0, reads from stdin, which is what most
web servers use.

bool indexes_as_entries=true : if query has any ISINDEX like terms (i.e. no "=" sign), treat it
as a form query (i.e. as if it had an "=" sign).

Example:

CCgiRequest * MyRequest = new CCgiRequest(argc, argv);

const TCgiEntries& GetEntries(void) const

Get a set of decoded form entries received from the web browser. So if you sent a cgi query
of the form ?name=value, the multimap referenced by TCgiEntries& includes "name" as a .first
member and <"value", ""> as a .second member.

TCgiEntries& also includes "indexes" if "indexes_as_entries" in the constructor was "true".

const TCgiIndexes& GetIndexes(void) const

Page 14

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

This performs a similar task as GetEntries(), but gets a set of decoded entries received from
the web browser that are ISINDEX like terms (i.e. no "=" sign),. It will always be empty if
"indexes_as_entries" in the constructor was "true"(default).

const string& GetProperty(ECgiProp prop) const

Get the value of a standard property (empty string if not specified). See the "Standard
properties" list below.

static const string& GetPropertyName(ECgiProp prop)

The web server sends the CGI program properties of the web server and the http headers
received from the web browser (headers are simply additional lines of information sent in a
http request and response). This API gets the name(not value!) of standard properties. See the
"Standard properties" list below.

Standard properties:

eCgi_ServerSoftware ,
eCgi_ServerName,
eCgi_GatewayInterface,
eCgi_ServerProtocol,
eCgi_ServerPort, // see also "GetServerPort()"
// client properties
eCgi_RemoteHost,
eCgi_RemoteAddr, // see also "GetRemoteAddr()"
// client data properties
eCgi_ContentType,
eCgi_ContentLength, // see also "GetContentLength()"
// request properties
eCgi_RequestMethod,
eCgi_PathInfo,
eCgi_PathTranslated,
eCgi_ScriptName,
eCgi_QueryString,
// authentication info
eCgi_AuthType,
eCgi_RemoteUser,
eCgi_RemoteIdent,
// semi-standard properties(from HTTP header)
eCgi_HttpAccept,
eCgi_HttpCookie,
eCgi_HttpIfModifiedSince,
eCgi_HttpReferer,
eCgi_HttpUserAgent

const string& GetRandomProperty(const string& key) const

Gets value of any http header that is passed to the CGI program using environment variables
of the form "$HTTP_<key>". In general, these are special purpose http headers not included
in the list above.

Uint2 GetServerPort(void) const

Page 15

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Gets the server port used by web browser to access the server.

size_t GetContentLength(void) const

Returns the length of the http request.

const CCgiCookies& GetCookies(void) const

Retrieve the cookies that were sent with the request. Cookies are text buffers that are stored in
the user's web browsers and can be set and read via http headers. See the CCookie and CCookies
classes defined below.

static SIZE_TYPE ParseEntries(const string& str, TCgiEntries& entries)

This is a helper function that isn't normally used by CGI programs. It allows you to decode the
URL-encoded string "str" into a set of entries <"name", "value"> and add them to the "entries"
multimap. The new entries are added without overriding the original ones, even if they have
the same names. If the "str" is in ISINDEX format then the entry "value" will be empty. On
success, return zero; otherwise return location(1-base) of error.

static SIZE_TYPE ParseIndexes(const string& str, TCgiIndexes& indexes)

This is also a helper function not usually used by CGI programs. This function decodes the
URL-encoded string "str" into a set of ISINDEX-like entries (i.e. no "=" signs in the query)
and adds them to the "indexes" set. On success, return zero, otherwise return location(1-base)
of error.

CCgiResponse
CCgiResponse is the object that takes output from the CGI program and sends it to the web
browser via the web server.

CNcbiOstream& WriteHeader() const

CNcbiOstream& WriteHeader(CNcbiOstream& out) const

This writes the MIME header necessary for all documents sent back to the web browser. By
default, this function assumes that the "Content-type" is "text/html". Use the second form of
the function if you want to use a stream other that the default.

void SetContentType(const string &type)

Sets the content type. By default this is "text/html". For example, if you were to send plaintext
back to the client, you would set type to "text/plain".

string GetContentType(void) const

Retrieves the content type.

CNcbiOstream& out(void) const

This returns a reference to the output stream being used by the CCgiResponse object. Example:

CCgiResponse Response;

Page 16

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Response.WriteHeader();
Response.out() << "hello, world" << flush;

CNcbiOstream* SetOutput(CNcbiOstream* out)

Sets the default output stream. By default this is stdout, which is what most web servers use.

CNcbiOstream* GetOutput(void) const

Get the default output stream.

void Flush() const

Flushes the output stream.

void SetRawCgi(bool raw)

Turns on non-parsed cgi mode. When this is turned on AND the name of the cgi program begins
with "nph-", then the web server does no processing of the data sent back to the client. In this
situation, the client must provide all appropriate http headers. This boolean switch causes some
of these headers to be sent.

bool IsRawCgi(void) const

Check to see if non-parsed cgi mode is on.

void SetHeaderValue(const string& name, const string& value)

Sets an http header with given name and value. For example, SetHeaderValue("Mime-
Version", "1.0"); will create the header "Mime-Version: 1.0".

void SetHeaderValue(const string& name, const tm& value)

Similar to the above, but sets a header value using a date. See time.h for the definition of tm.

void RemoveHeaderValue(const string& name)

Remove the header with name name.

string GetHeaderValue(const string& name) const

Get the value of the header with name name.

bool HaveHeaderValue(const string& name) const

Check to see if the header with name name exists.

void AddCookie(const string& name, const string& value) void AddCookie(const
CCgiCookie& cookie)

Add a cookie to the response. This can either be a name, value pair or use the CCookie class
described below.

void AddCookies(const CCgiCookies& cookies)

Add a set of cookies to the response. See the CCookies class described below.

Page 17

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

const CCgiCookies& Cookies(void) const CCgiCookies& Cookies(void)

Return the set of cookies to be sent in the response.

void RemoveCookie(const string& name)

Remove the cookie with the name name.

void RemoveAllCookies(void)

Remove all cookies.

bool HaveCookies(void) const

Are there cookies?

bool HaveCookie(const string& name) const

Is there a cookie with the given name?

CCgiCookie* FindCookie(const string& name) const

Return a cookie with the given name.

CCgiCookie
A cookie is a name, value string pair that can be stored on the user's web browser. Cookies are
allocated per site and have restrictions on size and number. Cookies have attributes, such as
the domain they originated from. CCgiCookie is used by the CCgiRequest and CCgiResponse
classes.

CCgiCookie(const string& name, const string& value)

Creates a cookie with the given name and value. Throw the "invalid_argument" if "name" or
"value" have invalid format:
! the "name" must not be empty; it must not contain '='
! both "name" and "value" must not contain: ";, "

const string& GetName (void) const

Get the cookie name. The cookie name cannot be changed.

CNcbiOstream& Write(CNcbiOstream& os) const

Write the cookie out to ostream os. Normally this is handled by CCgiResponse.

void Reset(void)

Reset everything but the name to the default state

void CopyAttributes(const CCgiCookie& cookie)

Set all attribute values(but name!) to those from "cookie"

void SetValue (const string& str) void SetDomain (const string& str) void SetValidPath
(const string& str) void SetExpDate (const tm& exp_date) void SetSecure (bool secure) //
"false" by default

Page 18

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

These function set the various properties of a cookie. These functions will throw
"invalid_argument" if "str" has invalid format. For the definition of tm, see time.h.

bool GetValue (string* str) const bool GetDomain (string* str) const bool GetValidPath
(string* str) const bool GetExpDate (string* str) const bool GetExpDate (tm* exp_date)
const bool GetSecure (void) const

These functions return true if the property is set. They also return value of the property in the
argument. If the property is not set, str is emptied. These functions throw the
"invalid_argument" exception if the argument is a zero pointer.

The string version of GetExpDate will return a string of the form "Wed Aug 9 07:49:37 1994"

CCgiCookies
CCgiCookies aggregates a collection of CCgiCookie

CCgiCookies(void) CCgiCookies(const string& str)

Creates a CCgiCookies container. To initialize it with a cookie string, use the format:
"name1=value1; name2=value2; ..."

CCgiCookie* Add(const string& name, const string& value)

Add a cookie with the given name, value pair. Note the above requirements on the string format.
Overrides any previous cookie with same name.

CCgiCookie* Add(const CCgiCookie& cookie)

Add a CCgiCookie.

void Add(const CCgiCookies& cookies)

Adds a CCgiCookie of cookies.

void Add(const string& str)

Adds cookies using a string of the format "name1=value1; name2=value2; ..." Overrides any
previous cookies with same names.

CCgiCookie* Find(const string& name) const

Looks for a cookie with the given name. Returns zero not found.

bool Empty(void) const

"true" if contains no cookies.

bool Remove(const string& name)

Find and remove a cookie with the given name. Returns "false" if one is not found.

void Clear(void)

Remove all stored cookies

CNcbiOstream& Write(CNcbiOstream& os) const

Page 19

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Prints all cookies into the stream "os" (see also CCgiCookie::Write()). Normally this is handled
by CCgiResponse.

An example web-based CGI application
! Introduction
! Program description
! Program design: Distributing the work

Introduction
The previous two chapters described the NCBI C++ Toolkit's CGI and HTML classes, with
an emphasis on their independence from one another. In practice however, a real application
must employ both types of objects, with a good deal of inter-dependency.

Program description
The car.cgi program presents an HTML form for ordering a custom color car with selected
features. The form includes a group of checkboxes (listing individual features) and a set of
radio buttons listing possible colors. Initially, no features are selected, and the default color is
black. Following the form, a summary stating the currently selected features and color, along
with a price quote, is displayed. When the submit button is clicked, the form generates a new
query string (which includes the selected features and color), and the program is restarted.

The program uses a CHTMLPage object with a template file (car.html) to create the display.
The template file contains three <@tag@> locations, which the program uses to map
CNCBINodes to the page, using the AddTagMap() method. Here is an outline of the execution
sequence:

Create an instance of class CCar named car.

Load car with the color and features specified in the query string.

Create a CHTMLPage named page.

Generate a CHTML_form object using the features and color currently selected for car, and
map that HTML form to the <@FORM@> tag in page.

Generate the summary statement and save it in a CHTMLText node mapped to the
<@SUMMARY@> tag.

Generate a price quote and save it in a CHTMLText node mapped to the <@PRICE@> tag.

Output page and exit.

The CCar created in step 1 initially has the default color (black) and no features. Any features
or colors specified in the query string with which the program was invoked are added to car in
step 2, prior to generating the HTML display elements. In step 4, the form element is created
using the set of possible features and the set of possible colors. These sets of attributes are
stored as static data members in an external utility class, CCarAttr. Each feature corresponds
to a CHTML_checkbox element in the form, and each color corresponds to a CHTML_radio
button. The selected color, along with all currently selected features, will be displayed as
selected in the form.

Page 20

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCHTMLPage.html

The summary statement uses a CHTML_ol list element to itemize the selected features in car.
The price is calculated as CCar::m_BasePrice plus an additional $1000 per feature. The submit
button generates a fresh page with the new query string, as the action attribute of the form is
the URL of car.cgi.

Program design: Distributing the work
The program uses three classes: CCar, CCarAttr, and CCarCgi. The CCar class knows nothing
about HTML nodes or CGI objects - its only functions are to store the currently selected color
and features, and compute the resulting price:

class CCar
{
public:
 CCar(unsigned base_price = 12000) { m_BasePrice = base_price; }
 // Mutating member functions
 void AddFeature(const string& feature_name);
 void SetColor(const string& color_name);
 // Access member functions
 bool HasFeature(const string& feature_name) const;
 string GetColor(void) const;
 string GetPrice(void) const;
 const set<string>& GetFeatures() const;
private:
 set<string> m_Features;
 string m_Color;
 unsigned m_BasePrice;
};

Instead, the CCar class provides an interface to all of its data members, thus allowing the
application to get/set features of the car as needed. The static utility class, CCarAttr, simply
provides the sets of possible features and colors, which will be used by the application in
generating the HTML form for submission:

class CCarAttr {
public:
 CCarAttr(void);
 static const set<string>& GetFeatures(void) { return sm_Features; }
 static const set<string>& GetColors (void) { return sm_Colors; }
private:
 static set<string> sm_Features;
 static set<string> sm_Colors;
};

Both of these classes are defined in a header file which is #include'd in the *.cpp files. Finally,
the application class does most of the actual work, and this class must know about CCar,
CCarAttr, HTML, and CGI objects. The CCarCgi class has the following interface:

class CCarCgi : public CCgiApplication
{
public:
 virtual int ProcessRequest(CCgiContext& ctx);
private:

Page 21

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 CCar* CreateCarByRequest(const CCgiContext& ctx);
 void PopulatePage(CHTMLPage& page, const CCar& car);
 static CNCBINode* ComposeSummary(const CCar& car);
 static CNCBINode* ComposeForm (const CCar& car);
 static CNCBINode* ComposePrice (const CCar& car);
 static const char sm_ColorTag[];
 static const char sm_FeatureTag[];
};

The source code is distributed over three files:

car.hpp

car.cpp

car_cgi.cpp

The CCar and CCarAttr classes are defined in car.hpp, and implemented in car.cpp. Both the
class definition and implementation for the CGI application class are in car_cgi.cpp. With this
design, only the application class will be affected by changes made to either the HTML or CGI
class objects. The additional files needed to compile and run the program are:

car.html

Makefile.car_app

CGI Response Codes
Wherever possible the client when encountering errors should return an appropriate response
code consisting of the three digits DDD. In the case of client error codes, these begin with a
"4" (4xx). Table 7 contains a summary of these codes.

Note that error code 404 should be reserved for situations when the requested file
does not exist. It should not be used as a "catch-all" such as when the client simply
uses bogus parameters.

Page 22

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 7. CGI Client Error Codes (4XX)
Error Code Description

400 Bad request; the client erred in the request and should not reattempt it without modifications.

401 Unauthorized; the page is password protected but required credentials were not presented.

402 Payment required; reserved.

403 Forbidden; the client is not allowed here.

404 Not found; the requested resource (as indicated in the path) does not exist on the server, temporarily or permanently.

405 Method not allowed; the server must supply allowedrequest methods in "Allow:" HTTP header.

406 Not acceptable; content characteristics are unacceptable to produce the response.

407 Proxy authentication required; similar to 401, but for proxy.

408 Request timeout; the client does not furnish the entire request within the allotted time.

409 Conflict; usually means bad form submission via PUT method.

410 Gone; the resource is and will be no longer available and forwarding address is and will not be known.

411 Length required; the client must use content-length in the request.

412 Precondition failed; request header inquired for a condition that doesn't hold.

413 Request too big; self-explanatory.

414 Request too long; query-line element is exceeding the maximal size(but the body, if any, can be okay).

415 Unsupported media; resource does not support requested format.

416 Bad range; pertains to multi-part messages when the client requested a fragment that is out of allowed range.

417 Expectation failed; "Expect:" from the HTTP/1.1 header is not met.

Page 23

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 1. Layered design of the CGI classes

Page 24

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 2. Adapting the init() and run() methods inherited from CNcbiApplication

Page 25

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 1. Command classes
Class GetEntry() GetName()

CHelloBasicCommand cmd1 init

CHelloReplyCommand cmd2 reply

Page 26

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2. CGI-related Configuration Settings
Field Value(s) Action

TimeStamp true | false "true" - log start time, finish time, and total elapsed time.

PrintEnv all | {comma separated list of environment variables} "all" - log all environment variables instead of "all" can be a list of
variables to be logged.

Log OnError | OnDebug | On "On" - enable logging; "OnDebug" - enables logging if program
compiled in debug mode; "OnError" - enables logging if CGI fails
for some reason.

StatLog true | false "true" - enable statistical logging.

LogArgs {comma separated list of CGI request variables} If defined, all variables will appear in the statistics log files in form
of key='value' pairs, where key is the variable name. Example:
LogArgs = param1,param2 Here param1 and param2 are names of
the In addition; it is possible to specify alternative aliases for
variable names. Aliases are used in case we want param1 to appear
in the log file under some different name (say, 'alias'). Example:
LogParams = param1=alias,param2 The rationale for aliasing can
be saving space in log files, resolving name ambiguities, or
improving log files readability.

Print_Self_Url true | false (false by default) Turns on/off printing of the CGI's self URL (including argumrnts)
to the application log. The URL is printed as an 'extra' message.

Print_Http_Referer true|false (true by default) Turns on/off printing of HTTP referer to the application log as an
'extra' message.

TimeStatCutOff Number of cut-off seconds Used with StatLog. Used NOT to log statistics if CGI request took
less than specified number of seconds. No effect if set to 0.

RequestErrBufSize Size of CGI request error buffer This parameter works only when the CGI request fails trying to
parse the request string. In this case, the error message includes a
portion of the original request string. (By default, it is the first 256
characters). By setting this parameter, you can disable the printing
buffer diagnostics (value 0) or set the value different than 256.
Example: [CGI]RequestErrBufSize = 1024

DiagPrefixEnv Name of environment variable The value of specified environment variable will be added (as
prefix) to all diagnostic messages isued during the HTTP request
processing. Example: [CGI]DiagPrefixEnv = PROXIED_IP

Iterations Number of requests Number of requests that the FastCGI must process before exiting.
By default, the FastCGI application will exit after it processes 10
requests.

Page 27

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 3. Fast-CGI Settings
Field Value(s) Action

StopIfFailed true | false "true" - stop FastCGI application in case of an error.

PrintIterNo true | false "true" - log FastCGI iteration(call) number.

Debug true | false "true" - logs FastCGI debug information into the output context.

StandaloneServer Unix domain socket (named
pipe for WinNT), or a colon
followed by a port number

Run FastCGI as a stand-alone server on the local port, without Web
server. You can also use environment variable
$FCGI_STANDALONE_SERVER. Example: [FastCGI]
StandaloneServer = :5000 or: [FastCGI]StandaloneServer = /tmp/
fcgi/mysocket

WatchFile.Name, WatchFile.Limit,
WatchFile.Timeout

File name, limit number,
timeout

The watch file "Name" allows one to force the FastCGI application
exit before it processes the pre-set (see "Iterations" above) number
of requests. Between HTTP requests, the application will check
every "Timeout" seconds if the first "Limit" number of bytes in the
watch file "Name" file are changed in any way. If the content is
changed, the application will exit.

Page 28

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 4. CGI Load Balancing Settings
Field Value(s) Action

Name Cookie name Name of the load balancing cookie in the HTTP response.

LifeSpan Cookie life span in seconds Cookie expiration period in seconds.

Domain Internet domain For NCBI services, should be "ncbi.nlm.nih.gov".

Path Cookie path "/" for most cases

Secure true | false Cookie security mode.

Host Host IP address This becomes the value of the cookie. When the registry value is not defined, the application tries to
identify the host value automatically. In this case, the application should be initialized using the
CCgiApplication::SetCafService function.

Page 29

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 5. Restrictions on arguments to the CCgiCookie constructor
Field Restrictions

name (required) No spaces; must be printable ASCII; cannot contain = , or ;

value (required) No spaces; must be printable ASCII; cannot contain , or ;

domain (optional) No spaces; must be printable ASCII; cannot contain , or ;

path (optional) Case sensitive

Page 30

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 6. Effect of setting the diag-destination parameter
value effects

stderr Send diagnostics to the standard error stream (default behavior)

asbody Send diagnostics to the client in place of normal output

Box 1

// File name: justcgi.cpp
// Description: Demonstrate the basic CGI classes and functions
#include "justcgi.hpp"
#include <cgi/cgictx.hpp>
#include <corelib/ncbistd.hpp>
#include <corelib/ncbireg.hpp>
#include
<memory>USING_NCBI_SCOPE;///
////////////////////////
// Implement the application's LoadResource() and ProcessRequest()
methodsCNcbiResource* CCgiApp::LoadResource(void)
{
 auto_ptr<CCgiResource> resource(new CCgiResource(GetConfig()));
 resource->AddCommand(new CCgiBasicCommand(*resource));
 resource->AddCommand(new CCgiReplyCommand(*resource));
 return resource.release();
}
// forward declarations
void ShowCommands (const TCmdList& cmds, CCgiContext& ctx);
void ShowEntries (const TCgiEntries& entries);
int CCgiApp::ProcessRequest(CCgiContext& ctx)
{
 ShowCommands (GetResource().GetCmdList(), ctx);
 ShowEntries (const_cast<TCgiEntries&>(ctx.GetRequest().GetEntries()));
 GetResource().HandleRequest(ctx);
 return 0;
}
///
// Define the resource's default command if none match queryCNcbiCommand*
CCgiResource::GetDefaultCommand(void) const
{
 cerr << " executing CCgiResource::GetDefaultCommand()" << endl;
 return new CCgiBasicCommand(const_cast<CCgiResource&>(*this));
}
///
// Define the Execute() and Clone() methods for the commands
void CCgiCommand::Execute(CCgiContext& ctx)
{
 cerr << " executing CCgiCommand::Execute " << endl;
 const CNcbiRegistry& reg = ctx.GetConfig();
 ctx.GetResponse().WriteHeader();
}
CNcbiCommand* CCgiBasicCommand::Clone(void) const
{

Page 31

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 cerr << " executing CCgiBasicCommand::Clone()" << endl;
 return new CCgiBasicCommand(GetCgiResource());
}
CNcbiCommand* CCgiReplyCommand::Clone(void) const
{
 cerr << " executing CCgiReplyCommand::Clone" << endl;
 return new CCgiReplyCommand(GetCgiResource());
}
// Show what commands have been installedvoid ShowCommands (const TCmdList&
cmds, CCgiContext& ctx)
{
 cerr << "Commands defined for this application are: \n";
 for (TCmdList::const_iterator it = cmds.begin();
 it != cmds.end(); it++) {
 cerr << (*it)->GetName();
 if ((*it)->IsRequested(ctx)) {
 cerr << " (requested)" << endl;
 } else {
 cerr << " (not requested)" << endl;
 }
 }
}
// Show the <key=value> pairs in the request string
void ShowEntries (const TCgiEntries& entries)
{
 cerr << "The entries in the request string were: \n";
 for (TCgiEntries::const_iterator it = entries.begin();
 it != entries.end(); it++) {
 if (! (it->first.empty() && it->second.empty()))
 cerr << it->first << "=" << it->second << endl;
 }
}
static CCgiApp theCgiApp;
int main(int argc, const char* argv[])
{
 SetDiagStream(&cerr);
 return theCgiApp.AppMain(argc, argv);
}

See Box 2, justcgi.hpp

Box 2

// File name: justcgi.hpp
// Description: Demonstrate the basic CGI classes and functions#ifndef
CGI_HPP
#define CGI_HPP
#include <cgi/cgiapp.hpp>
#include <cgi/ncbires.hpp>USING_NCBI_SCOPE;class CCgiApp : public
CCgiApplication
{

Page 32

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

public:
 virtual CNcbiResource* LoadResource(void);
 virtual int ProcessRequest(CCgiContext& context);
};
class CCgiResource : public CNcbiResource
{
public:
 CCgiResource(CNcbiRegistry& config)
 : CNcbiResource(config) {}
 virtual ~CCgiResource() {};
 // defines the command to be executed when no other command matches
 virtual CNcbiCommand* GetDefaultCommand(void) const;
};
class CCgiCommand : public CNcbiCommand
{
public:
 CCgiCommand(CNcbiResource& resource) : CNcbiCommand(resource) {};
 virtual ~CCgiCommand(void) {};
 virtual void Execute(CCgiContext& ctx);
 virtual string GetLink(CCgiContext&) const { return NcbiEmptyString; }
protected:
 CCgiResource& GetCgiResource() const
 {
 return dynamic_cast<CCgiResource&>(GetResource());
}
 virtual string GetEntry() const { return string("cmd"); }
};
class CCgiBasicCommand : public CCgiCommand
{
public:
 CCgiBasicCommand(CNcbiResource& resource) : CCgiCommand(resource) {};
 virtual ~CCgiBasicCommand(void) {};
 virtual CNcbiCommand* Clone(void) const;
 virtual string GetName(void) const { return string("init"); };
protected:
 virtual string GetEntry() const { return string("cmd1"); }
};
class CCgiReplyCommand : public CCgiBasicCommand
{
public:
 CCgiReplyCommand(CNcbiResource& resource) : CCgiBasicCommand(resource)
{};
 virtual ~CCgiReplyCommand(void) {};
 virtual CNcbiCommand* Clone(void) const;
 virtual string GetName(void) const { return string("reply"); };
protected:
 virtual string GetEntry() const { return string("cmd2"); }
};
#endif /* CGI_HPP */

Page 33

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Box 3

Author: Diane Zimmerman
Build CGI application "CGI"
NOTE: see to build Fast-CGI
#################################
APP = cgi
OBJ = cgiapp
LIB = xcgi xncbi

Box 4

Author: Diane Zimmerman
Build test Fast-CGI application "FASTCGI"
NOTES: - it will be automagically built as a plain CGI application if
Fast-CGI libraries are missing on your machine.
- also, it auto-detects if it is run as a FastCGI or a plain
CGI, and behave appropriately.
#################################
APP = fastcgi
OBJ = cgiapp
LIB = xfcgi xncbi
LIBS = $(FASTCGI_LIBS) $(ORIG_LIBS)

Page 34

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

HTML
[12]

The HTML API [Library xhtml: include | src]
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

The HTML module can be used to compose and print out a HTML page by using a static HTML
template with embedded dynamic fragments. The HTML module provides a rich set of classes to
help build the dynamic fragments using HTML tag nodes together with text nodes arranged into
a tree-like structure.

This chapter provides reference material for many of the HTML facilities. You can also see the
quick reference guide, a note about using the HTML and CGI classes together and an additional
class reference document. For an overview of the HTML module please refer to the HTML section
in the introductory chapter on the C++ Toolkit.

Chapter Outline

The following is an outline of the topics presented in this chapter:

! NCBI C++ HTML Classes
" Basic Classes

CNCBINode
CHTMLText
CHTMLPlainText
CHTMLNode
CHTMLElement
CHTMLOpenElement
CHTMLListElement

" Specialized Tag Classes used in Forms
CHTML_form: derived from CHTMLElement
CHTML_input: derived from CHTMLOpenElement
CHTML_checkbox: derived from CHTML_input
CHTML_hidden: derived from CHTML_input
CHTML_image: derived from CHTML_input
CHTML_radio: derived from CHTML_input
CHTML_reset: derived from CHTML_input
CHTML_submit: derived from CHTML_input
CHTML_text: derived from CHTML_input

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! CHTML_select: derived from CHTMLElement
! CHTML_option: derived from CHTMLElement
! CHTML_textarea: derived from CHTMLElement

" Specialized Tag Classes used in Lists
! CHTML_dl: derived from CHTMLElement
! CHTML_ol: derived from CHTMLListElement

" Other Specialized Tag Classes
! CHTML_table: derived from CHTMLElement
! CHTML_a: derived from CHTMLElement
! CHTML_img: derived from CHTMLOpenElement
! CHTML_font: derived from CHTMLElement
! CHTML_color: derived from CHTMLElement
! CHTML_br: derived from CHTMLOpenElement
! CHTML_basefont: derived from CHTMLElement

Generating Web Pages with the HTML classes
" The CNCBINode class
" HTML Text nodes: CHTMLText and CHTMLPlainText
" The NCBI Page classes
" Using the CHTMLPage class with Template Files
" The CHTMLTagNode class
" The CHTMLNode class
" The CHTMLDualNode class
" The CHTMLPopupMenu class
" Using the HTML classes with a CCgiApplication object

Supplementary Information
" The CNCBINode::TMode class
" Quick Reference Guide

Demo Cases [src/html/demo]

Test Cases [src/html/test]

NCBI C++ HTML Classes
The NCBI C++ HTML classes are intended for use in CGI programs that generate HTML. By
creating a structured method for creating HTML, these classes allow for reuse of HTML
generating code and simplifies laborious tasks, such as creating and maintaining tables.

A good resource for the use of HTML is the HTML Sourcebook by Ian Graham.

Using these classes, the in memory representation of an HTML page is of a graphâ!“each
element on the page can have other elements as children. For example, in

Â <HTML><BODY>hello</BODY></HTML>Â

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/html/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/html/demo

the body tag is a child of the html tag and the text "hello" is a child of the body tag. This graph
structure allows for the easy addition of components as well as reuse of code among
components since they share the same base classes.

A sample program, htmldemo.cpp, can be found in internal/c++/src/html/demo.

Next, the following topics are discussed:
! Basic Classes
! Specialized Tag Classes used in Forms
! Specialized Tag Classes used in Lists
! Other Specialized Tag Classes

Basic Classes
There are several basic classes for the html library. The most basic class is CNCBINode, which
is a node that knows how to contain and manipulate child CNCBINodes. Two main types of
classes are derived from CNCBINode, text nodes and tag (or "element") nodes. The text nodes
(CHTMLText and CHTMLPlainText) are intended to be used directly by the user, whereas
the basic tag nodes (CHTMLNode, CHTMLElement, CHTMLOpenElement, and
CHTMLListElement) are base classes for the nodes actually used to construct a page, such as
CHTML_form.

CHTMLText and CHTMLPlainText are both used to insert text into the generated html, with
the latter class performing HTML encoding before generation.

CHTMLNode is the base class for CHTMLElement (tags with close tags, like FORM),
CHTMLOpenElement (tags without end tags, like BR) and CHTMLListElement (tags used in
lists, like OL).

The following basic classes are discussed in more detail, next:
! CNCBINode
! CHTMLText
! CHTMLPlainText
! CHTMLNode
! CHTMLElement
! CHTMLOpenElement
! CHTMLListElement

CNCBINode— CNCBINode uses the following typedefs:typedef list<CNCBINode*>
TChildList typedef map<string, string> TAttributes

CNCBINode* AppendChild(CNCBINode* child) Add a CNCBINode* to the end the list
of child nodes. Returns *this so you can repeat the operation on the same line, e.g. Node-
>AppendChild(new CNCBINode)->AppendChild(new CNCBINode).

CNCBINode* AppendChild(CNodeRef& ref) Add a node by reference to the end the list of
child nodes. Returns *this so you can repeat the operation on the same line.

void RemoveAllChildren(void) Removes all child nodes.

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

TChildList::iterator ChildBegin(void) TChildList::const_iterator ChildBegin(void)
const Returns the first child.

TChildList::iterator ChildEnd(void) TChildList::const_iterator ChildEnd(void) const
Returns the end of the child list (this is not the last child).

TChildList::iterator FindChild(CNCBINode* child) Find a particular child, otherwise
return 0.

virtual CNcbiOstream& Print(CNcbiOstream& out) Create HTML from the node and all
its children and send it to out. Returns a reference to out.

virtual void CreateSubNodes(void) This function is called during printing when the node
has not been initialized. A newly created node is internally marked as not initialized. The intent
of this function is for the user to replace it with a function that knows how to create all of the
subchildren of the node. The main use of this function is in classes that define whole regions
of pages.

const string& GetName(void) const void SetName(const string& namein) Get and set the
name of the node.

bool HaveAttribute(const string& name) const Check for an attribute. Attributes are like
the href in

string GetAttribute(const string& name) const Return a copy of the attribute's value

const string* GetAttributeValue(const string& name) const Return a pointer to the
attribute's value

void SetAttribute(const string& name, const string& value) void SetAttribute(const
string& name) void SetAttribute(const string& name, int value) void
SetOptionalAttribute(const string& name, const string& value) void
SetOptionalAttribute(const string& name, bool set) void SetAttribute(const char* name,
const string& value) void SetAttribute(const char* name) void SetAttribute(const char*
name, int value) void SetOptionalAttribute(const char* name, const string& value) void
SetOptionalAttribute(const char* name, bool set) Set an attribute. SetOptionalAttribute()
only sets the attribute if value contains a string or is true.

CHTMLText— CHTMLText(const string& text)

This is a text node that can contain html tags, including tags of the form <@...@> which are
replaced by CNCBINode's when printing out (this is discussed further in the CHTMLPage
documentation).

const string& GetText(void) const void SetText(const string& text) Get and set the text in
the node.

CHTMLPlainText— CHTMLPlainText(const string& text)

.This node is for text that is to be HTML encoded. For example, characters like "&" are turned
into "&"

const string& GetText(void) const void SetText(const string& text)

Get and set text in the node.

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/

CHTMLNode— CHTMLNode inherits from CNCBINode is the base class for html tags.

CHTMLNode* SetWidth(int width) CHTMLNode* SetWidth(const string& width)
CHTMLNode* SetHeight(int height) CHTMLNode* SetHeight(const string& width)
CHTMLNode* SetAlign(const string& align) CHTMLNode* SetBgColor(const string&
color) CHTMLNode* SetColor(const string& color) Sets various attributes that are in
common for many tags. Avoid setting these on tags that do not support these attributes. Returns
*this so that the functions can be daisy chained:

Â CHTML_table * Table = new CHTML_table;
Table->SetWidth(400)->SetBgColor("#FFFFFF");Â

void AppendPlainText(const string &) Appends a CHTMLPlainText node. A plain text node
will be encoded so that it does not contain any html tags (e.g. "<" becomes "<").

void AppendHTMLText(const string &) Appends a CHTMLTextNode. This type of node
can contain HTML tags, i.e. it is not html encoded.

CHTMLElement— CHTMLElement is the base class for several tags that have the
constructors with the common form:CHTMLElement() CHTMLElement(CNCBINode*
node) CHTMLElement(const string& text) The second constructor appends node. The third
constructor appends CHTMLText(const string& text).

The tags derived from this class include: CHTML_html, CHTML_head, CHTML_body,
CHTML_base, CHTML_isindex, CHTML_link, CHTML_meta, CHTML_script,
CHTML_style, CHTML_title, CHTML_address, CHTML_blockquote, CHTML_center,
CHTML_div, CHTML_h1, CHTML_h2, CHTML_h3, CHTML_h4, CHTML_h5,
CHTML_h6, CHTML_hr, CHTML_p, CHTML_pre, CHTML_dt, CHTML_dd, CHTML_li,
CHTML_caption, CHTML_col, CHTML_colgroup, CHTML_thead, CHTML_tbody,
CHTML_tfoot, CHTML_tr, CHTML_th, CHTML_td, CHTML_applet, CHTML_param,
CHTML_cite, CHTML_code, CHTML_dfn, CHTML_em, CHTML_kbd, CHTML_samp,
CHTML_strike, CHTML_strong, CHTML_var, CHTML_b, CHTML_big, CHTML_i,
CHTML_s, CHTML_small, CHTML_sub, CHTML_sub, CHTML_sup, CHTML_tt,
CHTML_u, CHTML_blink, CHTML_map, CHTML_area

CHTMLOpenElement—This is used for tags that do not have a close tag (like img). The
constructors are of the same form as CHTMLElement. The tags derived from this class include:
CHTML_pnop (paragraph tag without a close tag)

CHTMLListElement—These are elements used in a list.

CHTMLListElement(void) CHTMLListElement(bool compact) CHTMLListElement
(const string& type) CHTMLListElement(const string& type, bool compact) Construct
the ListElement with the given attibutes: TYPE and COMPACT. Both attributes affect the way
the ListElement is displayed.

CHTMLListElement* AppendItem(const string& item) CHTMLListElement*
AppendItem(CNCBINode* item) These functions add CHTMLText and CNCBINode items
as children of the CHTMLListElement. The tags derived from this class include: CHTML_ul,
CHTML_dir, CHTML_menu.

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Specialized Tag Classes used in Forms
The rest of the sections deal with tag classes that have additional members or member functions
that make the tags easier to use. In addition there are helper classes, such as CHTML_checkbox,
that are easier to use instances of HTML tags.

The following specialized tag classes used in forms are discussed, next:
! CHTML_form: derived from CHTMLElement
! CHTML_input: derived from CHTMLOpenElement
! CHTML_checkbox: derived from CHTML_input
! CHTML_hidden: derived from CHTML_input
! CHTML_image: derived from CHTML_input
! CHTML_radio: derived from CHTML_input
! CHTML_reset: derived from CHTML_input
! CHTML_submit: derived from CHTML_input
! CHTML_text: derived from CHTML_input
! CHTML_select: derived from CHTMLElement
! CHTML_option: derived from CHTMLElement
! CHTML_textarea: derived from CHTMLElement

CHTML_form: derived from CHTMLElement— CHTML_form(const string& action
= NcbiEmptyString, const string& method = NcbiEmptyString, const string& enctype =
NcbiEmptyString) Add an HTML form tag with the given attributes. NCBIEmptyString is
simply a null string.

void AddHidden(const string& name, const string& value) Add a hidden value to the form.

CHTML_input: derived from CHTMLOpenElement— CHTML_input(const string&
type, const string& name) Create a input tag of the given type and name. Several of the
following classes are specialized versions of the input tag, for example, CHTML_checkbox.

CHTML_checkbox: derived from CHTML_input— CHTML_checkbox(const
string& name) CHTML_checkbox(const string& name, bool checked, const string&
description = NcbiEmptyString) CHTML_checkbox(const string& name, const string&
value) CHTML_checkbox(const string& name, const string& value, bool checked, const
string& description = NcbiEmptyString) Create a checkbox with the given attributes. This
is an input tag with type = "checkbox".

CHTML_hidden: derived from CHTML_input— CHTML_hidden(const string&
name, const string& value) Create a hidden value with the given attributes. This is an input
tag with type = "hidden".

CHTML_image: derived from CHTML_input— CHTML_image(const string& name,
const string& src) Create an image submit input tag. This is an input tag with type = "image".

CHTML_radio: derived from CHTML_input— CHTML_radio(const string& name,
const string& value) CHTML_radio(const string& name, const string& value, bool
checked, const string& description = NcbiEmptyString) Creates a radio button. Radio
buttons are input tags with type = "radio button".

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CHTML_reset: derived from CHTML_input— CHTML_reset(const string& label =
NcbiEmptyString) Create a reset button. This is an input tag with type = "reset".

CHTML_submit: derived from CHTML_input— CHTML_submit(const string&
name) CHTML_submit(const string& name, const string& label) Create a submit button.
This is an input tag with type = "submit".

CHTML_text: derived from CHTML_input— CHTML_text(const string& name, const
string& value = NcbiEmptyString) CHTML_text(const string& name, int size, const
string& value = NcbiEmptyString) CHTML_text(const string& name, int size, int
maxlength, const string& value = NcbiEmptyString) Create a text box. This is an input tag
with type = "text".

CHTML_select: derived from CHTMLElement— CHTML_select(const string&
name, bool multiple = false) CHTML_select(const string& name, int size, bool multiple
= false) Create a selection tag used for drop-downs and selection boxes.

CHTML_select* AppendOption(const string& option, bool selected = false)
CHTML_select* AppendOption(const string& option, const string& value, bool selected
= false) Add an entry to the selection box by using the option tag. Returns *this to allow you
to daisy-chain calls to AppendOption().

CHTML_option: derived from CHTMLElement— CHTML_option(const string&
content, bool selected = false) CHTML_option(const string& content, const string&
value, bool selected = false) The option tag used inside of select elements. See CHTML_select
for an easy way to add option.

CHTML_textarea: derived from CHTMLElement— CHTML_textarea(const string&
name, int cols, int rows) CHTML_textarea(const string& name, int cols, int rows, const
string& value)

Create a textarea tag inside of a form.

Specialized Tag Classes used in Lists
These are specialized tag classes used in lists. See "Basic Classes" for non-specialized tag
classes used in list.

The following specialized tag classes used in lists are discussed, next:
! CHTML_dl: derived from CHTMLElement
! CHTML_ol: derived from CHTMLListElement

CHTML_dl: derived from CHTMLElement— CHTML_dl(bool compact = false) Create
a dl tag.

CHTML_dl* AppendTerm(const string& term, CNCBINode* definition = 0)
CHTML_dl* AppendTerm(const string& term, const string& definition) CHTML_dl*
AppendTerm(CNCBINode* term, CNCBINode* definition = 0) CHTML_dl*
AppendTerm(CNCBINode* term, const string& definition) Append a term and definition
to the list by using DD and DT tags.

CHTML_ol: derived from CHTMLListElement— CHTML_ol(bool compact = false)
CHTML_ol(const string& type, bool compact = false) CHTML_ol(int start, bool compact

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

= false) CHTML_ol(int start, const string& type, bool compact = false) The last two
constructors let you specify the starting number for the list.

Other Specialized Tag Classes
These tag classes that have additional members or member functions that make the tags easier
to use. The following classes are discussed next:
! CHTML_table: derived from CHTMLElement
! CHTML_a: derived from CHTMLElement
! CHTML_img: derived from CHTMLOpenElement
! CHTML_font: derived from CHTMLElement
! CHTML_color: derived from CHTMLElement
! CHTML_br: derived from CHTMLOpenElement
! CHTML_basefont: derived from CHTMLElement

CHTML_table: derived from CHTMLElement— CNCBINode* Cell(int row, int
column) This function can be used to specify the size of the table or return a pointer to a
particular cell in the table. Throws a runtime_error exception when the children of the table
are not TR or the children of each TR is not TH or TD or there are more columns than should
be.

int CalculateNumberOfColumns(void) const int CalculateNumberOfRows(void) const
Returns number of columns and number of rows in the table.

CNCBINode* InsertAt(int row, int column, CNCBINode* node) CNCBINode*
InsertTextAt(int row, int column, const string& text) Inserts a node or text in the table.
Grows the table if the specified cell is outside the table. Uses Cell() so can throw the same
exceptions.

void ColumnWidth(CHTML_table*, int column, const string & width) Set the width of a
particular column.

CHTML_table* SetCellSpacing(int spacing) CHTML_table* SetCellPadding(int
padding) Set the cellspacing or cellpadding attributes.

CHTML_a: derived from CHTMLElement— CHTML_a(const string& href, const
string& text) CHTML_a(const string& href, CNCBINode* node) Creates a hyperlink that
contains the given text or node.

CHTML_img: derived from CHTMLOpenElement— CHTML_img(const string&
url) CHTML_img(const string& url, int width, int height) Creates an image tag with the
given attributes.

CHTML_font: derived from CHTMLElement— CHTML_font(void) CHTML_font
(int size, CNCBINode* node = 0) CHTML_font(int size, const string& text) CHTML_font
(int size, bool absolute, CNCBINode* node = 0) CHTML_font(int size, bool absolute,
const string& text) CHTML_font(const string& typeface, CNCBINode* node = 0)
CHTML_font(const string& typeface, const string& text) CHTML_font(const string&
typeface, int size, CNCBINode* node = 0) CHTML_font(const string& typeface, int size,
const string& text) CHTML_font(const string& typeface, int size, bool absolute,
CNCBINode* node = 0) CHTML_font(const string& typeface, int size, bool absolute,

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

const string& text) Create a font tag with the given attributes. Appends the given text or node.
Note that it is cleaner and more reusable to use a stylesheet than to use the font tag.

void SetRelativeSize(int size) Set the size of the font tag.

CHTML_color: derived from CHTMLElement— CHTML_color(const string& color,
CNCBINode* node = 0) CHTML_color(const string& color, const string& text) Create a
font tag with the given color and append either node or text.

CHTML_br: derived from CHTMLOpenElement— CHTML_br(void) CHTML_br
(int number) The last constructor lets you insert multiple BR tags.

CHTML_basefont: derived from CHTMLElement— CHTML_basefont(int size)
CHTML_basefont(const string& typeface) CHTML_basefont(const string& typeface,
int size) Set the basefont for the page with the given attributes.

Generating Web Pages with the HTML classes
Web applications involving interactions with a client via a complex HTML interface can be
difficult to understand and maintain. The NCBI C++ Toolkit classes decouple the complexity
of interacting with a CGI client from the complexity of generating HTML output by defining
separate class hierarchies for these activities. In fact, one useful application of the HTML
classes is to generate web pages "offline".

The chapter on Developing CGI Applications discussed only the activities involved in
processing the client's request and generating a response. This section introduces the C++
Toolkit components that support the creation of HTML pages, and concludes with a brief
consideration of how the HTML classes can be used in consort with a running CCgiApplication.
Further discussion of combining a CGI application with the HTML classes can be found in the
section on An example web-based CGI application. See also NCBI C++ HTML Classes in the
Reference Manual.

The following topics are discussed in this section:
! The CNCBINode class
! HTML Text nodes: CHTMLText and CHTMLPlainText
! The NCBI Page classes
! Using the CHTMLPage class with Template Files
! The CHTMLTagNode class
! The CHTMLNode class
! The CHTMLDualNode class
! The CHTMLPopupMenu class
! Using the HTML classes with a CCgiApplication object

The CNCBINode (*) class
All of the HTML classes are derived from the CNCBINode class, which in turn, is derived
from the CObject class. Much of the functionality of the many derived subclasses is
implemented by the CNCBINode base class. The CNCBINode class has just three data
members:
! m_Name - a string, used to identify the type of node or to store text data

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CNCBINode

! m_Attributes - a map<string, string> of properties for this node
! m_Children - a list of subnodes embedded (at run-time) in this node

The m_Name data member is used differently depending on the type of node. For HTML text
nodes, m_Name stores the actual body of text. For CHTMLElement objects, m_Name stores
the HTML tagname that will be used in generating HTML formatted output.

The m_Attributes data member provides for the encoding of specific features to be associated
with the node, such as background color for a web page. A group of "Get/SetAttribute" member
functions are provided for access and modification of the node's attributes. All of the
"SetAttribute" methods return this - a pointer to the HTML node being operated on, and so,
can be daisy-chained, as in:

Â table->SetCellSpacing(0)->SetBgColor("CCCCCC");Â

Care must be taken however, in the order of invocations, as the object type returned by each
operation is determined by the class in which the method is defined. In the above example,
table is an instance of CHTML_table , which is a subclass of CNCBINode - where SetBgColor
() is defined. The above expression then, effectively executes:

Â table->SetCellSpacing(0);
table->SetBgColor("CCCCCC");Â

In contrast, the expression:

Â table->SetBgColor("CCCCCC")->SetCellSpacing(0);Â

would fail to compile, as it would effectively execute:

Â table->SetBgColor("CCCCCC");
(CNCBINode*)table->SetCellSpacing(0);Â

since the method SetCellSpacing() is undefined for CNCBINode() objects.

The m_Children data member of CNCBINode stores a dynamically allocated list of
CNCBINode subcomponents of the node. In general, the in memory representation of each
node is a graph of CNCBINode objects (or subclasses thereof), where each object may in turn
contain additional CNCBINode children. For example, an unordered list is represented as a
CHTML_ul () element containing CHTML_li () subcomponents.

A number of member functions are provided to operate on m_Children. These include methods
to access, add, and remove children, along with a pair of begin/end iterators (ChildBegin() and
ChildEnd()), and a function to dereference these iterators (Node(i)).

Depending on flags set at compile time, m_Children is represented as either a list of CNodeRef
objects, or a list of auto_ptr<CNodeRef>, where CNodeRef is a typedef for
CRef<CNCBINode>. This distinction is transparent to the user however, and the important
point is that the deallocation of all dynamically embedded child nodes is handled automatically
by the containing class.

CNCBINode::Print() recursively generates the HTML text for the node and all of its children,
and outputs the result to a specified output stream. The Print() function takes two arguments:
(1) an output stream, and (2) a CNCBINode::TMode object, where TMode is an internal class
defined inside the CNCBINode class. The TMode object is used by the print function to

Page 10

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=Print
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=ChildBegin
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=ChildEnd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNodeRef

determine what type of encoding takes place on the output, and in some cases, to locate the
containing parent node.

Many of the CNCBINode objects do not actually allocate their embedded subnodes until the
Print() method is invoked. Instead, a kind of lazy evaluation is used, and the information
required to install these nodes to m_Children is used by the CreateSubNodes() method only
when output has been requested (see discussion below).

A slice of the NCBI C++ Toolkit class hierarchy rooted at the CNCBINode class includes the
following directly derived subclasses:
! CNCBINode:

" CSmallPagerBox
" CSelection
" CPagerBox
" CPager
" CHTMLText
" CHTMLTagNode
" CHTMLPlainText
" CHTMLNode
" CHTMLDualNode
" CHTMLBasicPage
" CButtonList

Many of these subclasses make little sense out of context, as they are designed for use as
subcomponents of, for example, a CHTMLPage. Exceptions to this are the text nodes,
described next.

HTML Text nodes: CHTMLText (*) and CHTMLPlainText (*)
The CHTMLText class uses the m_Name data member (inherited from CNCBINode) to store
a text string of arbitrary length. No new data members are introduced, but two new member
functions are defined. SetText() resets m_Name to a new string, and GetText() returns the value
currently stored in m_Name. With the exception of specially tagged sections (described below),
all text occurring in a CHTMLText node is sent directly to the output without further encoding.

The CHTMLPlainText class is provided for text that may require further encoding. In addition
to the SetText() and GetText() member functions described for the CHTMLText class, one
new data member is introduced. m_NoEncode is a Boolean variable that designates whether
or not the text should be further encoded. NoEncode() and SetNoEncode() allow for access
and modification of this private data member. For example:

Â (new CHTMLText("
 testing BR
"))->Print(cout);Â

will generate the output:

Â testing BRÂ

whereas:

Â (new CHTMLPlainText("
 testing BR
"))->Print(cout);Â

Page 11

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPlainText
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CNCBINode
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLText.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPlainText
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetText
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetText

will generate:

Â
 testing BR
Â

The text in the CHTMLText node is output verbatim, and the web browser interprets the

tags as line breaks. In contrast, the CHTMLPlainText node effectively "insulates" its content
from the browser's interpretation by encoding the
 tags as "
".

CHTMLText nodes also play a special role in the implementation of page nodes that work with
template files. A tagname in the text is delimited by "<@" and "@>", as in: <@tagname@>.
This device is used for example, when working with template files, to allow additional nodes
to be inserted in a pre-formatted web page. The CHTMLText::PrintBegin() method is
specialized to skip over the tag names and their delimiters, outputting only the text generated
by the nodes that should be inserted in that tagged section. Further discussion of this feature
is deferred until the section on the NCBI page classes, which contain a TTagMap.

The NCBI Page classes
The page classes serve as generalized containers for collections of other HTML components,
which are mapped to the page by a tagmap. In general, subcomponents are added to a page
using the AddTagMap() method (described below), instead of the AppendChild() method. The
page classes define the following subtree in the C++ Toolkit class hierarchy:
! CHTMLBasicPage

" CHTMLPage
CPmFrontPage
CPmDocSumPage

In addition to the data members inherited from CNCBINode, three new private data
members are defined in the CHTMLBasicPage class.

1 m_CgiApplication - a pointer to the CCgiApplication
2 m_Style - an integer flag indicating subcomponents to display/suppress (e.g., Title)
3 m_TagMap (see discussion)

In effect, m_TagMap is used to map strings to tagged subcomponents of the page - some
of which may not have been instantiated yet. Specifically, m_TagMap is defined as a
TTagMap variable, which has the following type definition:

Â typedef map<string, BaseTagMapper*> TTagMap;Â

Here, BaseTagMapper is a base class for a set of functor-like structs. Each of the derived
subclasses of BaseTagMapper has a single data member (e.g. m_Node, m_Function or
m_Method), which points to either a CNCBINode, or a function that returns a pointer to a
CNCBINode. The BaseTagMapper class also has a single member function, MapTag(),
which knows how to "invoke" its data member.

The simplest subclass of BaseTagMapper is the ReadyTagMapper class whose sole data
member, m_Node, is a CRef pointer to a CNCBINode. In this case the MapTag() function
simply returns &*m_Node. Several different types of tagmappers are derived from the
BaseTagMapper class in nodemap.hpp. Each of these subclasses specializes a different type
of data member, which may be a pointer to a free function, a pointer to a member function,
or a pointer to an object, as in the case of the ReadyTagMapper. The action taken by the

Page 12

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/html/nodemap.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddTagMap
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLBasicPage
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPage
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPmFrontPage
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPmDocSumPage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BaseTagMapper
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MapTag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ReadyTagMapper

tagmapper's MapTag() method in order to return a pointer to a CNCBINode is implemented
accordingly.

The CHTMLBasicPage class also has a member function named MapTag(), which is used in
turn, to invoke a tagmapper's MapTag() method. Specifically, CHTMLBasicPage::MapTag
(tagname) first locates the installed tagmapper associated with tagname, m_TagMap[tagname].
If an entry is found, that tagmapper's MapTag() member function is then invoked, which finally
returns a pointer to a CNCBINode.

A second member function, CHTMLBasicPage::AddTagMap(str, obj), provides for the
insertion of a new tag string and its associated tagmapper struct to m_TagMap. Depending on
the object type of the second argument, a type-specific implementation of an overloaded helper
function, CreateTagMapper(), can be used to install the desired tagmapper.

In order for a new mapping to have any effect however, the tag must also occur in one of the
nodes installed as a child of the page. This is because the Print() methods for the page nodes
do virtually nothing except invoke the Print() methods for m_Children. The m_TagMap data
member, along with all of its supporting methods, is required for the usage of template files,
as described in the next section.

The primary purpose of the CHTMLBasicPage is as a base class whose features are inherited
by the CHTMLPage class - it is not intended for direct usage. Important inherited features
include its three data members: m_CgiApplication, m_Style, and m_TagMap, and its member
functions: Get/SetApplication(), Get/SetStyle(), MapTag(), and AddTagMap(). Several of the
more advanced HTML components generate their content via access of the running CGI
application. For example, see the description of a CSelection node. It is not strictly necessary
to specify a CGI application when instantiating a page object however, and constructors are
available that do not require an application argument.

Using the CHTMLPage class with Template Files
The CHTMLPage class is derived from the CHTMLBasicPage. In combination with the
appropriate template file, this class can be used to generate the standard NCBI web page, which
includes:
! the NCBI logo
! a hook for the application-specific logo
! a top menubar of links to several databases served by the query program
! a links sidebar for application-specific links to relevant sites
! a VIEW tag for the application's web interface
! a bottom menubar for help links, disclaimers, etc.

The template file is a simple HTML text file with one extension -- the use of named tags
(<@tagname@>) which allow the insertion of new HTML blocks into a pre-formatted page.
The standard NCBI page template file contains one such tag, VIEW.

The CHTMLPage class introduces two new data members: m_Title (string), which specifies
the title for the page, and m_TemplateFile (string), which specifies a template file to load. Two
constructors are available, and both accept string arguments that initialize these two data
members. The first takes just the title name and template file name, with both arguments being
optional. The other constructor takes a pointer to a CCgiApplication and a style (type int),
along with the title and template_file names. All but the first argument are optional for the

Page 13

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/programming_manual/ncbi_page.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddTagMap
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateTagMapper
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPage

second constructor. The member functions, SetTitle() and SetTemplateFile(), allow these data
members to be reset after the page has been initialized.

Five additional member functions support the usage of template files and tagnodes as follows:
! CreateTemplate() reads the contents of file m_TemplateFile into a CHTMLText node,

and returns a pointer to that node.
! CreateSubNodes() executes AppendChild(CreateTemplate()), and is called at the top

of Print() when m_Children is empty. Thus, the contents of the template file are read
into the m_Name data member of a CHTMLText node, and that node is then installed
as a child in the page's m_Children.

! CreateTitle() returns new CHTMLText(m_Title).
! CreateView() is effectively a virtual function that must be redefined by the application.

The CHTMLPage class definition returns a null pointer (0).
! Init() is called by all of the CHTMLPage constructors, and initializes m_TagMap as

follows:

Â void CHTMLPage::Init(void)
{
 AddTagMap("TITLE", CreateTagMapper(this,
&CHTMLPage::CreateTitle));
 AddTagMap("VIEW", CreateTagMapper(this,
&CHTMLPage::CreateView));
}Â

As described in the preceding section, CreateTagMapper() is an overloaded function
that creates a tagmapper struct. In this case, CreateTitle() and CreateView() will be
installed as the m_Method data members in the resulting tagmappers. In general, the
type of struct created by CreateTagMapper depends on the argument types to that
function. In its usage here, CreateTagMapper is a template function, whose arguments
are a pointer to an object and a pointer to a class method:

Â template<class C>
BaseTagMapper* CreateTagMapper(const C*, CNCBINode* (C::*method)
(void)) {
 return new TagMapper<C>(method);
}Â

The value returned is itself a template object, whose constructor expects a pointer to
a method (which will be used as a callback to create an object of type C). Here,
AddTagMap() installs CreateTitle() and CreateView() as the data member for the
tagmapper associated with tag "TITLE" and tag "VIEW", respectively.

An example using the NCBI standard template file should help make these concepts more
concrete. The following code excerpt uses the standard NCBI template and inserts a text node
at the VIEW tag position (compare output to unaltered template):

Â #include <html/html.hpp>
#include <html/page.hpp>
USING_NCBI_SCOPE;
int main()
{

Page 14

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/programming_manual/ncbi_page.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateTemplate
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateSubNodes
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateTitle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateView
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=Init
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateTagMapper
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/programming_manual/xmplOut.html

 try {
 CHTMLPage *Page = new CHTMLPage("A CHTMLPage!", "ncbi_page.html");
 Page->AddTagMap("VIEW", new CHTMLText("Insert this string at VIEW
tag"));
 Page->Print(cout);
 cout.flush();
 return 0;
 }
 catch (exception& exc) {
 NcbiCerr << "\n" << exc.what() << NcbiEndl;
 }
 return 1;
}Â

The name of the template file is stored in m_TemplateFile, and no further action on that file
will be taken until Page->Print(cout) is executed. The call to AddTagMap() is in a sense then,
a forward reference to a tag that we know is contained in the template. Thus, although a new
CHTMLText node is instantiated in this statement, it is not appended to the page as a child,
but is instead "mapped" to the page's m_TagMap where it is indexed by "VIEW".

The contents of the template file will not be read until Print() is invoked. At that time, the text
in the template file will be stored in a CHTMLText node, and when that node is in turn printed,
any tag node substitutions will then be made. More generally, nodes are not added to the page's
m_Children graph until Print() is executed. At that time, CreateSubNodes() is invoked if
m_Children is empty. Finally, the actual mapping of a tag (embedded in the template) to the
associated TagMapper in m_TagMap, is executed by CHTMLText::PrintBegin().

The CHTMLPage class, in combination with a template file, provides a very powerful and
general method for generating a "boiler-plate" web page which can be adapted to application-
specific needs using the CHTMLPage::AddTagMap() method. When needed, The user can
edit the template file to insert additional <@tagname@> tags. The AddTagMap() method is
defined only for page objects however, as they are the only class having a m_TagMap data
member.

Before continuing to a general discussion of tagnodes, let's review how the page classes work
in combination with a template file:

1 A page is first created with a title string and a template file name. These arguments
are stored directly in the page's data members, m_Title and m_TemplateFile.

2 The page's Init() method is then called to establish tagmap entries for "TITLE" and
"VIEW" in m_TagMap.

3 Additional HTML nodes which should be added to this page are inserted using the
page's AddTagMap(tagname, *node) method, where the string tagname appears in
the template as "<@tagname@>". Typically, a CGI application defines a custom
implementation of the CreateView() method, and installs it using AddTagMap
("VIEW", CreateView()).

4 When the page's Print() method is called, it first checks to see if the page has any child
nodes, and if so, assumes there is no template loaded, and simply calls PrintChildren
(). If there are no children however, page->CreateSubNodes() is called, which in turn
calls the CreateTemplate() method. This method simply reads the contents of the
template file and stores it directly in a CHTMLText node, which is installed as the
only child of the parent page.

Page 15

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 The page's Print() method then calls PrintChildren(), which (eventually) causes
CHTMLText::PrintBegin() to be executed. This method in turn, encodes special
handling of "<@tagname@>" strings. In effect, it repeatedly outputs all text up to the
first "@" character; extracts the tagname from the text; searches the parent page's
m_TagMap to find the TagMapper for that tagname, and finally, calls Print() on the
HTML node returned by the TagMapper. CHTMLText::PrintBegin() continues in this
fashion until the end of its text is reached.

NOTE: appending any child nodes directly to the page prior to calling the Print() method will
make the template effectively inaccessible, since m_Children() will not be empty. For this
reason, the user is advised to use AddTagNode() rather than AppendChild() when adding
subcomponents.

The CHTMLTagNode (*) class
The objects and methods described to this point provide no mechanisms for dynamically adding
tagged nodes. As mentioned, the user is free to edit the template file to contain additional
<@tag@> names, and AddTagMap() can then be used to associate tagmappers with these new
tags. This however, requires that one know ahead of time how many tagged nodes will be used.
The problem specifically arises in the usage of template files, as it is not possible to add child
nodes directly to the page without overriding the the template file.

The CHTMLTagNode class addresses this issue. Derived directly from CNCBINode, the
class's constructor takes a single (string or char*) argument, tagname, which is stored as
m_Name. The CHTMLTagNode::PrintChildren() method is specialized to handle tags, and
makes a call to MapTagAll(GetName(), mode). Here, GetName() returns the m_Name of the
CHTMLTagNode, and mode is the TMode argument that was passed in to PrintChildren(). In
addition to an enumeration variable specifying the mode of output, a TMode object has a pointer
to the parent node that invoked PrintChildren(). This pointer is used by MapTagAll(), to locate
a parent node whose m_TagMap has an installed tagmapper for the tagname. The TMode
object's parent pointer essentially implements a stack which can be used to retrace the dynamic
chain of PrintChildren() invocations, until either a match is found or the end of the call stack
is reached. When a match is found, the associated tagmapper's MapTag() method is invoked,
and Print() is applied to the node returned by this function.

The following example uses an auxillary CNCBINode(tagHolder) to install additional
CHTMLTagNode objects. The tags themselves however, are installed in the containing page's
m_TagMap, where they will be retrieved by the MapTagAll() function, when PrintChildren()
is called for the auxillary node. That node in turn, is mapped to the page's VIEW tag. When
the parent page is "printed", CreateSubNodes() will create a CHTMLText node. The text node
will hold the contents of the template file and be appended as a child to the page. When
PrintBegin() is later invoked for the text node, MapTagAll() associates the VIEW string with
the CNCBINode, and in turn, calls Print() on that node.

Â #include <html/html.hpp>
#include <html/page.hpp>
USING_NCBI_SCOPE;
int main()
{
 try {
 CHTMLPage *Page = new CHTMLPage("myTitle", "ncbi_page.html");
 CNCBINode *tagHolder = new CNCBINode();
 Page->AddTagMap("VIEW", tagHolder);
 tagHolder->AppendChild(new CHTMLTagNode("TAG1"));

Page 16

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MapTagAll
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLTagNode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=PrintChildren

 tagHolder->AppendChild(new CHTML_br());
 tagHolder->AppendChild(new CHTMLTagNode("TAG2"));
 Page->AddTagMap("TAG1", new CHTMLText("Insert this string at
TAG1"));
 Page->AddTagMap("TAG2", new CHTMLText("Insert another string at
TAG2"));
 Page->Print(cout);
 cout.flush();
 return 0;
 }
 catch (exception& exc) {
 NcbiCerr << "\n" << exc.what() << NcbiEndl;
 }
 return 1;
}Â

The CHTMLNode (*) class
CHTMLNode is derived directly from the CNCBINode class, and provides the base class for
all elements requiring HTML tags (e.g., ,
, , <table>, etc.). The class interface
includes several constructors, all of which expect the first argument to specify the HTML
tagname for the node. This argument is used by the constructor to set the m_Name data member.
The optional second argument may be either a text string, which will be appended to the node
using AppendPlainText(), or a CNCBINode, which will be appended using AppendChild().

A uniform system of class names is applied; each subclass derived from the CHTMLNode base
class is named CHTML_[tag], where [tag] is the HTML tag in lowercase, and is always
preceded by an underscore. The NCBI C++ Toolkit hierarchy defines roughly 40 subclasses
of CHTMLNode - all of which are defined in the Quick Reference Guide at the end of this
section. The constructors for "empty" elements, such as CHTML_br , which have no assigned
values, are simply invoked as CHTML_br(). The Quick Reference Guide provides brief
explanations of each class, along with descriptions of the class constructors.

In addition to the subclasses explicitly defined in the hierarchy, a large number of lightweight
subclasses of CHTMLNode are defined by the preprocessor macro
DECLARE_HTML_ELEMENT(Tag, Parent) defined in html.hpp. All of these elements have
the same interface as other CHTMLNode classes however, and the distinction is invisible to
the user.

A rich interface of settable attributes is defined in the base class, and is applicable to all of the
derived subclasses, including those implemented by the preprocessor macros. Settable
attributes include: class, style, id, width, height, size, alignment, color, title, accesskey, and
name. All of the SetXxx() functions which set these attributes return a this pointer, cast as
CHTMLNode*.

The CHTMLDualNode (*) class
CHTMLDualNode is derived directly from the CNCBINode class, and provides the base class
for all elements requiring different means for displaying data in eHTML and ePlainText modes.

This class interface includes several constructors. The second argument in these constructors
specifies the alternative text to be displayed in ePlainText mode. The first argument of these
constructors expects HTML text or pointer to an object of (or inherited from) CNCBINode

Page 17

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLDualNode
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLNode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DECLARE_HTML_ELEMENT

class. It will be appended to the node using AppendChild() method, and printed out in eHTML
mode. For example:

Â (new CHTMLDualNode(new CHTML_p("text"),"\nTEXT \n"))->Print(cout);Â

will generate the output:

Â <p>text</p>Â

whereas:

Â (new CHTMLDualNode(new CHTML_p("text"),"\n TEXT \n"))->Print(cout,
CNCBINode::ePlainText);Â

will generate:

Â \n TEXT \nÂ

The CHTMLPopupMenu (*) class
CHTMLPopupMenu is a class for support JavaScript-based popup menu's in the HTML
framework. It is derived directly from the CNCBINode class, The HTML pages using it can
be viewed only in browsers with supporting JavaScript version 1.2 (or higher) and CSS
(Cascading Style Sheets).

CHTMLPopupMenu support two popup menu types (CHTMLPopupMenu::EType):
! eSmith - developed by Gary Smith;
! eKurdin - developed by Sergey Kurdin.

We use slightly modified Smith's menu ncbi_menu_dnd.js. This version have the following
differences from the original:
! Added support for dynamic menu (all menues use one container);
! Added automatic menu adjustment in the browser window;
! Turned off dragging possibility;
! Fixed some errors.

You can download it here.

The type of menu can be specified by second argument of CHTMLPopupMenu constructor:

Â CHTMLPopupMenu(const string& name, EType type = eSmith);Â

By default, the "old" (Smith's) popup menu will be used. The first argument of constructor
defines name of the menu. Each menu must use unique name, because this name will be as
name of JavaScript variable.

To add items into menu class CHTMLPopupMenu have method AddItem(). It's two first
parameters are more useful and define item's title and action to be performed on click. The
action must be any valid javascript code or just URL. In latter case it must begin with "http://"
string.

You can change menu style using menu attributes. Each attribute have effect only for specified
menu type (CHTMLPopupMenu::EType), otherwise it will be ignored.

Page 18

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddItem
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLDualNode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/html/ncbi_menu_dnd.js
http://www.ncbi.nlm.nih.gov/corehtml/jscript/ncbi_menu_dnd.js

To attach popup menu to a HTML node a method CHTMLNode::AttachPopupMenu() can be
used. This method works with both menu types.

By default, menu use javascript libraries from the NCBI site. But this behaviour can be changed
using method EnablePopupMenu() of classes CHTML_html and CHTMLPage. This method
also forcibly enabled using popup menues on the HTML page. If we wish to use default
javascript libraries than we can skip call of this function. In this case menues will be enabled
automagicaly (for each type separately) if they are used on page.

An example of popup menu usage should help to make these concepts more clear. The
following code creates HTML page with two different menues:

Â // Create HTML page skeleton with HEAD and BODY
CHTML_html* html = new CHTML_html;
CHTML_head* head = new CHTML_head;
CHTML_body* body = new CHTML_body;
html->AppendChild(head);
html->AppendChild(body);
// Create one menu (Smith's menu by default)
CHTMLPopupMenu* m1 = new CHTMLPopupMenu("Menu1");
m1->AddItem("Red" , "document.bgColor='red'");
m1->AddItem("White" , "document.bgColor='white'");
m1->AddSeparator();
m1->AddItem("Green", "document.bgColor='green'");
m1->SetAttribute(eHTML_PM_fontColor, "black");
m1->SetAttribute(eHTML_PM_fontColorHilite, "yellow");
// We can add menu to the BODY only!
body->AppendChild(m1);
// Create another menu
CHTMLPopupMenu* m2 = new CHTMLPopupMenu("Menu2",CHTMLPopupMenu::eKurdin);
m2->AddItem("NCBI", "http://ncbi.nlm.nih.gov");
m2->AddItem("Netscape", "http://www.netscape.com");
m2->AddItem("Microsoft", "top.location='http://www.microsoft.com'");
m2->SetAttribute(eHTML_PM_titleColor, "yellow");
m2->SetAttribute(eHTML_PM_alignV, "top");
body->AppendChild(m2);
// Add menus call
CHTML_a* anchor1 = new CHTML_a("#","Smith's Menu");
anchor1->AttachPopupMenu(m1, eHTML_EH_Click);
CHTML_a* anchor2 = new CHTML_a("#","Kurdin's Menu");
anchor2->AttachPopupMenu(m2);
body->AppendChild(anchor1);
body->AppendChild(new CHTML_p(""));
body->AppendChild(anchor2);
// Enable using popup menus (we can skip call this function)
//html->EnablePopupMenu(CHTMLPopupMenu::eSmith);
//html->EnablePopupMenu(CHTMLPopupMenu::eKurdin);

// Print page in the HTML format
html->Print(cout);Â

Note: We must add menues to a BODY only, otherwise menu not will work.

Page 19

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EnablePopupMenu
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AttachPopupMenu
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=kJSMenuDefaultURL_Smith

Using the code above you should get popup menues like menues in our example.

Using the HTML classes with a CCgiApplication object
The previous chapter described the NCBI C++ Toolkit's CGI classes, with an emphasis on their
independence from the HTML classes. In practice however, a real application must employ
both types of objects, and they must communicate with one another. The only explicit
connection between the CGI and HTML components is in the HTML page classes, whose
constructors accept a CCgiApplication as an input parameter. The open-ended definition of
the page's m_TagMap data member also allows the user to install tagmapper functions that are
under control of the application, thus providing an "output port" for the application. In
particular, an application-specific CreateView() method can easily be installed as the function
to be associated with a page's VIEW tag. The Hello demo program provides a simple example
of using these classes in coordination with each other.

Supplementary Information
The following topics are discussed in this section:
! The CNCBINode::TMode class
! Quick Reference Guide

The CNCBINode::TMode (*) class
TMode is an internal class defined inside the CNCBINode class. The TMode class has three
data members defined:

1 EMode m_Mode - an enumeration variable specifying eHTML (0) or ePlainText (1)
output encoding

2 CNCBINode* m_Node - a pointer to the CNCBINode associated with this TMode
object

3 TMode* m_Previous - a pointer to the TMode associated with the parent of m_Node
Print() is implemented as a recursive function that allows the child node to dynamically
"inherit" its mode of output from the parent node which contains it. Print() outputs the current
node using PrintBegin(), recursively prints the child nodes using PrintChildren(), and
concludes with a call to PrintEnd(). TMode objects are created dynamically as needed, inside
the Print() function. The first call to Print() from say, a root Page node, generally specifies the
output stream only, and uses a default eHTML enumeration value to initialize a TMode object.
The TMode constructor in this case is:

Â TMode(EMode m = eHTML): m_Mode(m), m_Node(0), m_Previous(0) {}Â

The call to Print() with no TMode argument automatically calls this default constructor to
create a TMode object which will then be substituted for the formal parameter prev inside tbe
Print() method. One way to think of this is that the initial print call - which will ultimately be
propagated to all of the child nodes - is initiated with a "null parent" TMode object that only
specifies the mode of output.

Â CNcbiOstream& CNCBINode::Print(CNcbiOstream& os, TMode prev)
{
 // ...

 TMode mode(&prev, this);

Page 20

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=TMode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/programming_manual/html_jspopupmenu.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/cgi

 PrintBegin(os, mode);
 try {
 PrintChildren(out, mode);
 }
 catch (...) {
 // ...
 }
 PrintEnd(os, mode); }Â

In the first top-level call to Print(), prev is the default TMode object described above, with
NULL values for m_Previous and m_Node. In the body of the Print() method however, a new
TMode is created for subsequent recursion, with the following constructor used to create the
new TMode at that level:

Â TMode(const TMode* M, CNCBINode* N) : m_Mode(M->m_Mode),m_Node(N),m_Previous
(M) {}Â

where M is the TMode input parameter, and N is the current node.

Thus, the output encoding specified at the top level is propagated to the PrintXxx() methods
of all the child nodes embedded in the parent. The CNCBINode::PrintXxx() methods
essentially do nothing;PrintBegin() and PrintEnd() simply return 0, and PrintChildren() just
calls Print() on each child. Thus, the actual printing is implemented by the PrintBegin() and
PrintEnd() metwebpgs.html_CHTMLBasicPaghods that are specialized by the child
objects.

As the foregoing discussion implies, a generic CNCBINode which has no children explicitly
installed will generate no output. For example, a CHTMLPage object which has been initialized
by loading a template file has no children until they are explicitly created. In this case, the Print
() method will first call CreateSubNodes() before executing PrintChildren(). The use of
template files, and the associated set of TagMap functions are discussed in the section on the
NCBI Page classes.

Quick Reference Guide
The following is a quick reference guide to the HTML and related classes:
! CNCBINode

" CButtonList
" CHTMLBasicPage

CHTMLPage
! CPmDocSumPage
! CPmFrontPage

" CHTMLNode
CHTMLComment
CHTMLOpenElement

! CHTML_br
! CHTML_hr
! CHTML_img

Page 21

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateSubNodes
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=PrintBegin
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=PrintEnd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateTemplate

! CHTML_input
" CHTML_checkbox
" CHTML_file
" CHTML_hidden
" CHTML_image
" CHTML_radio
" CHTML_reset
" CHTML_submit
" CHTML_text

! CHTMLElement
" CHTML_a
" CHTML_basefont CHTML_button
" CHTML_dl
" CHTML_fieldset
" CHTML_font

CHTML_color
" CHTML_form
" CHTML_label
" CHTML_legend
" CHTML_option
" CHTML_select
" CHTML_table

CLinkBar
CPageList
CPagerView
CQueryBox

" CHTML_tc
" CHTML_textarea
" CHTML_tr
" CHTMLListElement

CHTML_dir
CHTML_menu
CHTML_ol
CHTML_ul

" CHTMLPlainText
" CHTMLTagNode
" CHTMLDualNode

CHTMLSpecialChar
" CHTMLText

Page 22

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! CHTMLPopupMenu
! CPager
! CPagerBox
! CSelection
! CSmallPagerBox

" CButtonList (Custom feature not for general use.) Â Â Â Â Derived from
CNCBINode ; defined in components.hpp. An HTML select button with a drop down
list; used in CPagerBox . The constructor takes no arguments, and child nodes (options)
are added using method CbuttonList::CreateSubNodes()

" CHTML_a Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an HTML
anchor element, as used in . The constructor takes the URL string as
the argument, and optionally, a CNCBINode to be appended as a child node. The label
inserted before the closing tag () can thus be specified by providing a CHTMLText
node to the constructor, or by using the AppendChild() after the anchor has been
created.

" CHTML_basefont Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an
HTML basefont element used to define the font size and/or typeface for text embedded
in this node by AppendChild(). The constructor expects one to two arguments
specifying size, typeface, or both.

" CHTML_br Â Â Â Â Derived from CHTMLOpenElement , defined in html.hpp - the
HTML component used to insert line breaks. The constructor takes no arguments.

" CHTML_checkbox Â Â Â Â Derived from CHTML_input , defined in html.hpp - can
only be used inside a CHTML_form ; the HTML component for a checkbox. The
constructor takes up to four arguments specifying the name (string), value (string),
state (bool), and description (string) for the node.

" CHTML_color Â Â Â Â Derived from CHTML_font , defined in html.hpp - an HTML
font color element. Two constructors are available, and both expect string color as the
first argument. If no other argument is provided, a NULL CNCBINode is assumed for
the second argument, and text can be added to the node using AppendChild(). An
alternative constructor accepts a simple string text argument.

" CHTML_dir Â Â Â Â Derived from CHTMLListElement , defined in html.hpp - the
HTML component used to insert a dir list. The constructor takes zero to two arguments;
if no arguments are provided, the compact attribute is by default false, and the type
attribute is left to the browser. CHTML_dir("square", true) will create a compact dir
element with square icons. Items can be added to the list using AppendChild(new
CHTMLText("...").

" CHTML_dl Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an HTML
glossary list. The constructor takes a single bool argument; if no arguments are
provided, the compact attribute is by default false. Terms are added to the list using
AppendTerm().

" CHTML_fieldset Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an
element that groups related form controls (such as checkboxes, radio buttons, etc.)
together to define a form control group. The constructors take at most 1 argument,
which may be either a string or a CHTML_legend node. If the argument is a string,
then it is used to create a CHTML_legend node for the fieldset. The individual form
controls to be included in the group are specified using the AppendChild() method.

Page 23

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_fieldset
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CButtonList
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CButtonList
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateSubNodes
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_a
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_a
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_basefont
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_basefont
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_br
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_br
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_checkbox
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_checkbox
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_color
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_color
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_dir
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_dir
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_dl
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_dl
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AppendTerm
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_fieldset

! CHTML_file Â Â Â Â Derived from CHTML_input , defined in html.hpp - used only
inside a CHTML_form - a form input type to create a file widget for selecting files to
be sent to the server. The constructor takes a string name and an optional string value.

! CHTML_font Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an
HTML font element. The constructor takes up to four arguments. The first three
arguments specify the font typeface and size, along with a Boolean value indicating
whether the given font size is absolute or relative. The last argument is either a string
or a CNCBINode containing text. Additional text should be added using the
AppendChild() method.

! CHTML_form Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an
HTML form node with two constructors. The first takes the URL string (for submission
of form data) and method (CHTML::eGet or CHTML::ePost), and the AppendChild
() method is used to add nodes. The second constructor takes three arguments,
specifying the URL, an HTML node to append to the form, and the enumereated get/
post method.

! CHTML_hidden Â Â Â Â Derived from CHTML_input , defined in html.hpp - used
only inside a CHTML_form - the HTML node for adding hidden key/value pairs to
the data that will be submitted by an CHTML_form. The constructor takes a name
string and a value, where the latter may be either a string or an int.

! CHTML_hr Â Â Â Â Derived from CHTMLOpenElement , defined in html.hpp - the
HTML component used to insert a horizontal rule. The constructor takes up to three
arguments, specifying the size, width and shading to be used in the display.

! CHTML_image Â Â Â Â Derived from CHTML_input , defined in html.hpp - used
only inside a CHTML_form - the HTML component used to add an inline active image
to an HTML form. Clicking on the image submits the form data to the CHTML_form's
URL. The constructor takes three arguments, specifying the name of the node, the URL
string for the image file, and a Boolean value (optional) indicating whether or not the
displayed image should have a border.

! CHTML_img Â Â Â Â Derived from CHTMLOpenElement , defined in html.hpp -
an HTML img component for adding an inline image to a web page. The constructor
takes a single URL string argument for the image's src. The alternative constructor
also accepts two integer arguments specifying the width and height of the displayed
image.

! CHTML_input Â Â Â Â Derived from CHTMLOpenElement , defined in html.hpp -
the base class for all HTML input elements to be added to a CHTML_form . The
constructor takes a (char*) input type and a (string) name. The constructor for each of
the subclasses has a static member sm_InputType which is passed as the first argument
to the CParent's (CHTML_input) constructor.

! CHTML_label Â Â Â Â Derived from CHTMLElement , defined in html.hpp -
associates a label with a form control. The constructors take a string argument which
specifies the text for the label, and optionally, a second string argument specifying the
FOR attribute. The FOR attribute explicitly identifies the form control to associate
with this label.

! CHTML_legend Â Â Â Â Derived from CHTMLElement , defined in html.hpp -
defines a caption for a CHTML_fieldset element. The constructors take a single
argument which may be either a string or a CHTMLNode.

! CHTML_menu Â Â Â Â Derived from CHTMLListElement , defined in html.hpp -
the HTML component used to insert a menu list. The constructor takes zero to two
arguments; if no arguments are provided, the compact attribute is by default false, and

Page 24

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_menu
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_file
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_file
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_font
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_font
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_form
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_form
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_hidden
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_hidden
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_hr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_hr
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_image
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_image
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_img
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_img
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_input
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_input
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_label
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_label
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_legend
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_legend
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_menu

the type attribute is left to the browser. CHTML_menu("square", true) will create a
compact menu element with square icons. Items can be added to the list using
AppendChild(new CHTMLText("...").

! CHTML_ol Â Â Â Â Derived from CHTMLListElement , defined in html.hpp - the
HTML component used to insert an enumerated list. The constructor takes up to three
arguments, specifying the starting number, the type of enumeration (Arabic, Roman
Numeral etc.), and a Boolean argument specifying whether or not the display should
be compact. Items can be added to the list using AppendChild(new CHTMLText
("...").

! CHTML_option Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an
HTML option associated with a CHTML_select component. The constructor takes a
value (string), a label (string or char*), and a Boolean indicating whether or not the
option is by default selected. The last two arguments are optional, and by default the
option is not selected.

! CHTML_radio Â Â Â Â Derived from CHTML_input , defined in html.hpp - can only
be used inside a CHTML_form ; the HTML component for a radio button. The
constructor takes up to four arguments specifying the name (string), value (string),
state (bool), and description (string) for the node.

! CHTML_reset Â Â Â Â Derived from CHTML_input , defined in html.hpp - can only
be used inside a CHTML_form ; the HTML component for a reset button. The
constructor takes a single optional argument specifying the button's label.

! CHTML_select Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an
HTML select component. The constructor takes up to three arguments, specifying the
name (string) and size (int) of the selection box, along with a Boolean specifying
whether or not multiple selections are allowed (default is false). Select options should
be added using the AppendOption() method.

! CHTML_submit Â Â Â Â Derived from CHTML_input , defined in html.hpp - can
only be used inside a CHTML_form ; the HTML component for a submit button. The
constructor takes two string arguments specifying the button's name and label
(optional). When selected, this causes the data selections in the including form to be
sent to the form's URL.

! CHTML_table Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an
HTML table element. The constructor takes no arguments, but many member functions
are provided to get/set attributes of the table. Because each of the "set attribute"
methods returns this, the invocations can be strung together in a single statement.

Use InsertAt(row, col, contents) to add contents to table cell row, col. To add contents
to the next available cell, use AppendChild (new CHTML_tc (tag, contents)), where
tag is type char* and contents is type char*, string or CNCBINode*.

! CHTML_tc Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an HTML
table cell element. All of the constructors expect the first argument to be a char*
tagname. The second argument, if present, may be text (char* or string) or a pointer
to a CNCBINode.

! CHTML_text Â Â Â Â Derived from CHTML_input , defined in html.hpp - can only
be used inside a CHTML_form ; the HTML component for a text box inside a form.
The constructor takes up to four arguments: name (string), size (int), maxlength (int),
and value (string). Only the first argument is required.

! CHTML_textarea Â Â Â Â Derived from CHTML_input , defined in html.hpp - can
only be used inside a CHTML_form ; the HTML component for a textarea inside a

Page 25

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_textarea
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_ol
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_ol
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_option
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_option
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_radio
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_radio
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_reset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_reset
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_select
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_select
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_submit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_submit
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_table
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_table
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=InsertAt
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_tc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_tc
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_text
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_text
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_textarea

form. The constructor takes up to four arguments: name (string), cols (int), rows (int),
and value (string). Only the last argument is optional.

! CHTML_tr Â Â Â Â Derived from CHTMLElement , defined in html.hpp - an HTML
table row element. The constructors take a single argument, which may be either a
string or a pointer to a CNCBINode.

! CHTML_ul Â Â Â Â Derived from CHTMLListElement , defined in html.hpp - the
HTML component used to insert an unordered list. The constructor takes zero to two
arguments; if no arguments are provided, the compact attribute is by default false, and
the type attribute is left to the browser. CHTML_menu("square", true) will create a
compact list element with square icons. Items can be added to the list using
AppendChild(new CHTMLText("...").

! CHTMLBasicPage Â Â Â Â Derived from CNCBINode , defined in page.hpp - The
base class for CHTMLPage and its descendants. The HTML page classes serve as
generalized containers for collections of other HTML elements, which together define
a web page. Each page has a TTagMap, which maps names (strings) to the HTML
subcomponents embedded in the page. Two constructors are defined. The first takes
no arguments, and the other, takes a pointer to a CCgiApplication and a style (int)
argument.

! CHTMLComment Â Â Â Â Derived from CHTMLNode , defined in html.hpp - used
to insert an HTML comment. The constructor takes at most one argument, which may
be a char*, a string, or a CNCBINode. The constructor then uses AppendPlainText()
or AppendChild(), depending on the type of argument, to append the argument to the
comment node.

! CHTMLElement Â Â Â Â Derived from CHTMLOpenElement , defined in
html.hpp - the base class for all tagged elements which require a closing tag of the
form </tagname>. CHTMLElement specializes the PrintEnd() method by generating
the end tag </m_Name> on the output, where m_Name stores the tagname of the
instance's subclass. Subclasses include CHTML_a, CHTML_basefont, CHTML_dl,
CHTML_font, CHTML_form, CHTML_option, CHTML_select, CHTML_table,
CHTML_tc, CHTML_textarea, and CHTMLListElement.

! CHTMLListElement Â Â Â Â Derived from CHTMLElement , defined in html.hpp -
the base class for CHTML_ul, CHTML_ol, CHTML_dir, and CHTML_menu lists.
Arguments to the constructor include the tagname and type strings for the list, along
with a Boolean indicating whether or not the list is compact.

! CHTMLNode Â Â Â Â Derived from CNCBINode , defined in html.hpp - the base
class for CHTMLComment and CHTMLOpenElement . Attributes include style, id,
title, accesskey, color, bgcolor, height, width, align, valign, size, name, and class. All
of the constructors require a tagname argument, which may be either type char* or
string. The optional second argument may be type char*, string, or CNCBINode.

! CHTMLOpenElement Â Â Â Â Derived from CHTMLNode , defined in html.hpp -
the base class for all tag elements, including CHTMLElement, CHTML_br,
CHTML_hr, CHTML_img, and CHTML_input. All of the constructors require a
tagname argument, which may be either type char* or string. The optional second
argument may be type char*, string, or CNCBINode.

! CHTMLPage Â Â Â Â Derived from CHTMLBasicPage ; defined in page.hpp - the
basic 3 section NCBI page. There are two constructors. The first takes a title (type
string) and the name of a template file (type string). Both arguments are optional. The
other constructor takes a pointer to a CCgiApplication, a style (type int), a title and a
template_file name. All but the first argument are optional.

Page 26

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPage
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_tr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_tr
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTML_ul
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTML_ul
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLBasicPage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLBasicPage
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLComment
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLComment
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AppendPlainText
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AppendChild
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLElement
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLElement
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=PrintEnd
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLListElement
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLListElement
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLNode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLNode
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLOpenElement
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLOpenElement
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPage

! CHTMLPlainText Â Â Â Â Derived from CNCBINode , defined in html.hpp - A
simple text component, which can be used to insert text that will be displayed verbatim
by a browser (may require encoding). The constructor takes two arguments: the text
to be inserted (char* or string) and a Boolean (default false) indicating that the output
should be encoded. See also CHTMLText .

! CHTMLTagNode Â Â Â Â Derived from CNCBINode ; defined in html.hpp.
! CHTMLDualNode Â Â Â Â Derived from CNCBINode , defined in html.hpp - Allows

the user to explicitly specify what exactly to print out in eHTML and in ePlainText
modes. The constructor takes 2 arguments -- the first one is for eHTML mode output
(string or a pointer to a CNCBINode), and the second one is a plain text for ePlainText
mode output.

! CHTMLSpecialChar Â Â Â Â Derived from CHTMLDualNode , defined in
html.hpp - A class for HTML special chars like , ©, etc. Elements of this
class have two variants for output, for eHTML and ePlainText modes. For example:
 have plain text variant - " ", and © - "(c)". html.hpp has several predefined
simple classes, based on this class, for any special chars. It is CHTML_nbsp,
CHTML_gt, CHTML_lt, CHTML_quot, CHTML_amp, CHTML_copy and
CHTML_reg. Each have one optional arqument, which specify the number of symbols
to output.

! CHTMLText Â Â Â Â Derived from CNCBINode , defined in html.hpp - A simple
text component which can be used to install a default web page design (stored in a
template file) on a CHTMLPage or to simply insert encoded text. The PrintBegin() is
specialized to handle tagnodes occurring in the text. The constructor takes a single
argument - the text itself - which may be of type char* or string. CHTMLPlainText
should be used to insert text that does not embed any tagnodes and requires further
encoding.

! CHTMLPopupMenu Â Â Â Â Derived from CNCBINode ; defined in jsmenu.hpp -
A class for support JavaScript-based popup menu's in the HTML framework. The
pages using this libraries can be viewed only in browsers that support JavaScript
version 1.2 (or higher) and CSS.

! CLinkBar (Custom feature not for general use.) Â Â Â Â Derived from CHTML_table ;
defined in linkbar.hpp - Used to create a horizontal linkbar on a page. The constructor
takes a list of CLinkDefinition , a width (int), and a height (int), where the last two
arguments are optional. Use CLinkBar::AddLink() to add links, and
CLinkBar::CreateSubNodes() to install newly added links as subnodes.

! CLinkDefinition (Custom feature not for general use.) Â Â Â Â Not derived from any
other class; defined in linkbar.hpp - Used to create a link that can be installed to a
CLinkBar . The constructors take up to five arguments, including a name (string), a
width (int), a height (int), a path to an image file (string), and a path to a non-image
file (string),

! CNCBINode Â Â Â Â Derived from CObject, defined in node.hpp - A base class for
all other HTML node classes. Contains data members m_Name, m_Attributes, and
m_Children. The constructor takes at most one argument, name, which defines the
internal data member m_Name.

! CPageList (Custom feature not for general use.) Â Â Â Â Derived from
CHTML_table ; defined in components.hpp. Used by the pager box components to
page between results pages; contains forward and backward URLs, the current page
number, and a map<int, string> that associates page numbers with URLs.

Page 27

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CPageList
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPlainText
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPlainText
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLTagNode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLTagNode
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLDualNode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLDualNode
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLSpecialChar
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLSpecialChar
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLText
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLText
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=PrintBegin
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPopupMenu
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPopupMenu
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CLinkBar
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CLinkBar
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=AddLink
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CreateSubNodes
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CLinkDefinition
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CLinkDefinition
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CNCBINode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNCBINode
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPageList

! CPager (Custom feature not for general use.) Â Â Â Â Derived from CNCBINode ,
defined in html.hpp

! CPagerBox (Custom feature not for general use.) Â Â Â Â Derived from CNCBINode ;
defined in components.hpp. A more elaborate paging component than the
CSmallPagerBox ; contains pointers to a CPageList and (3) CButtonList components
(left, right, and top). Additional properties include width, background color, and
number of results.

! CPagerView (Custom feature not for general use.) Â Â Â Â Derived from
CHTML_table ; defined in pager.hpp.

! CPmDocSumPage (Custom feature not for general use.) Â Â Â Â Derived from
CHTMLPage ; defined in querypages.hpp.

! CPmFrontPage (Custom feature not for general use.) Â Â Â Â Derived from
CHTMLPage ; defined in querypages.hpp.

! CQueryBox (Custom feature not for general use.) Â Â Â Â Derived from
CHTML_table ; defined in components.hpp.

! CSelection (Custom feature not for general use.) Â Â Â Â Derived from CNCBINode ;
defined in components.hpp. A checkbox-like component whose choices are generated
(using the CreateSubNodes() method) from the TCgiEntries of a CCgiRequest object.

! CSmallPagerBox (Custom feature not for general use.) Â Â Â Â Derived from
CNCBINode ; defined in components.hpp. A minimal paging component that displays
the number of results from the query and the current page being viewed. Has
background color and width attributes and contains a pointer to a CPageList . See also
CPagerBox and CPager .

Page 28

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSmallPagerBox
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPager
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CHTMLPlainText
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPagerBox
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CPagerBox
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPagerView
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CPagerView
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPmDocSumPage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CPmDocSumPage
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CPmFrontPage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CPmFrontPage
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CQueryBox
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CQueryBox
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CSelection
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSelection
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=TCgiEntries
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CSmallPagerBox

Data Serialization (ASN.1, XML)
[13]

The SERIAL API [Library xserial:include | src]
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

Serial library provides means for loading, accessing, manipulating, and serialization of data in a
formatted way. It supports serialization in ASN.1 (text or BER encoding) and XML formats, and
writing in JSON format. See also the DATATOOL documentation discussion of generating C+
+ code for serializable objects from the corresponding ASN.1 definition.

The structure of data is described by some sort of formal language. In our case it can be ASN.1,
DTD or XML Schema. Based on such specification, DATATOOL application, which is part of
NCBI C++ toolkit, generates a collection of data storage classes that can be used to store and
serialize data. The design purpose was to make these classes as lightweight as possible, moving
all details of serialization into specialized classes - “object streams”. Structure of the data is
described with the help of “type information”. Data objects contain data and type information
only. Any such data storage object can be viewed as a node tree that provides random access to
its data. Serial library provides means to traversing this data tree without knowing its structure in
advance – using only type information; C++ code generated by DATATOOL makes it possible
to access any child node directly.

"Object streams” are intermediaries between data storage objects and input or output stream. They
perform encoding or decoding of data according to format specifications. Guided by the type
information embedded into data object, on reading they allocate memory when needed, fill in
data, and validate that all mandatory data is present; on writing they guarantee that all relevant
data is written and that the resulting document is well-formed. All it takes to read or write a top-
level data object is one function call – all the details are handled by an object stream.

Closely related to serialization is the task of converting data from one format into another. One
approach could be reading data object completely into memory and then writing it in another
format. The only problem is that the size of data can be huge. To simplify this task and to avoid
storing data in memory, serial library provides “object stream copier” class. It reads data by small
chunks and writes it immediately after reading. In addition to small memory footprint, it also
works much faster.

Input data can be very large in size; also, reading it completely into memory could not be the goal
of processing. Having a large file of data, one might want to investigate information containers
only of a particular type. Serial library provides a variety of means for doing this. The list includes
read and write hooks, several types of stream iterators, and filter templates. It is worth to note
that, when using read hooks to read child nodes, one might end up with an invalid top-level data
object; or, when using write hooks, one might begin with an invalid object and fill in missing data
on the fly – in hooks.

In essence, “hook” is a callback function that client application provides to serial library. Client
application installs the hook, then reads (or writes) data object, and somewhere from the depths
of serialization processing, the library calls this hook function at appropriate times, for example,
when a data chunk of specified type is about to be read. It is also possible to install context-specific

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.stack_path_hooks
http://www.itu.int/ITU-T/studygroups/com17/languages/
http://www.w3.org/XML
http://json.org
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_intro
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.typeinfo.html#ch_ser.typeinfo.html_cobjinfo
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_intro
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_objcopy
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_readhooks
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.objstream.html_writehooks
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.stream_iterators
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.serial_filter

hooks. Such hooks are triggered when serializing a particular object type in a particular context;
for example, for all objects of class A which are contained in object B.

Chapter Outline

The following is an outline of the topics presented in this chapter:

Test Cases [src/serial/test]

CObject[IO]Streams
! Format Specific Streams: The CObject[IO]Stream classes
! The CObjectIStream (*) classes
! The CObjectOStream (*) classes
! The CObjectStreamCopier (*) classes
! Type-specific I/O routines
! The Read hook classes
! The Write hook classes
! The Copy hook classes
! The CObjectHookGuard class
! Stack Path Hooks
! The ByteBlock and CharBlock classes
! NCBI C++ Toolkit Network Service (RPC) Clients

" Introduction and Use
" Implementation Details

! Verification of Class Member Initialization
" Initialization Verification in CSerialObject Classes
" Initialization Verification in Object Streams

! Simplified serialization interface
! Finding in input stream objects of a specific type

The NCBI C++ Toolkit Iterators
! STL generic iterators
! CTypeIterator (*) and CTypeConstIterator (*)
! Class hierarchies, embedded objects, and the NCBI C++ type iterators
! CObjectIterator (*) and CObjectConstIterator (*)
! CStdTypeIterator (*) and CStdTypeConstIterator (*)
! CTypesIterator (*)
! Additional Information

Processing Serial Data
! Accessing the object header files and serialization libraries
! Reading and writing serial data
! Determining Which Header Files to Include

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.objstream.html#ch_ser.stack_path_hooks

! Determining Which Libraries to Link To
User-defined type information
! Introduction
! Installing a GetTypeInfo() function: the BEGIN_/END_ macros
! Specifying internal structure and class inheritance: the ADD_ macros

Runtime Object Type Information
! Introduction
! Motivation
! Object Information Classes
! CObjectTypeInfo (*)
! CConstObjectInfo (*)
! CObjectInfo (*)
! Usage of object type information

Choice objects in the NCBI C++ Toolkit
! Introduction
! C++ choice objects

Traversing a Data Structure
! Locating the Class Definitions
! Accessing and Referencing Data Members
! Traversing a Biostruc
! Iterating Over Containers

SOAP support
! SOAP message
! SOAP client - CSoapHttpClient
! SOAP server - CSoapServerApplication
! Sample SOAP server and client

" Sample server
" Sample client

Test Cases [src/serial/test]
Available Serializable Classes (as per NCBI ASN.1 Specifications) [Library xobjects:
include | src]

The ASN.1 data objects are automatically built from their corresponding specifications in the
NCBI ASN.1 data model, using DATATOOL to generate all of the required source code. This
set of serializable classes defines an interface to many important sequence and sequence-aware
objects that users may directly employ, or extend with their own code. An Object Manager(see
below) coordinates and simplifies the use of these ASN.1-derived objects.

Serializable Classes
! access [include | src]
! biblio [include | src]

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/biblio
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/access
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/access
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/biblio

! cdd [include | src]
! cn3d [include | src]
! docsum [include | src]
! entrez2 [include | src]
! featdef [include | src]
! general [include | src]
! id1 [include | src]
! medlars [include | src]
! medline [include | src]
! mim [include | src]
! mla [include | src]
! mmdb1 [include | src]
! mmdb2 [include | src]
! mmdb3 [include | src]
! ncbimime [include | src]
! objprt [include | src]
! proj [include | src]
! pub [include | src]
! pubmed [include | src]
! seq [include | src]
! seqalign [include | src]
! seqblock [include | src]
! seqcode [include | src]
! seqfeat [include | src]
! seqloc [include | src]
! seqres [include | src]
! seqset [include | src]
! submit [include | src]
! taxon1 [include | src]

A Test Application Using the Serializable ASN.1 Classes
! asn2asn [src]

CObject[IO]Streams
The following topics are discussed in this section:
! Format Specific Streams: The CObject[IO]Stream classes
! The CObjectIStream (*) classes
! The CObjectOStream (*) classes
! The CObjectStreamCopier (*) classes
! Type-specific I/O routines
! The Read hook classes

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/app/asn2asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/cdd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/cdd
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/cn3d
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/cn3d
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/docsum
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/docsum
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/entrez2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/entrez2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/featdef
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/featdef
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/general
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/general
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/id1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/id1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/medlars
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/medlars
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/medline
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/medline
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mim
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mim
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mla
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mla
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb2
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb3
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb3
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/ncbimime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/ncbimime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/objprt
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/objprt
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/proj
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/pub
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/pub
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/pubmed
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/pubmed
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqalign
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqalign
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqblock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqblock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqcode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqcode
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqfeat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqfeat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqloc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqloc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqres
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqres
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqset
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/submit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/submit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/taxon1
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/taxon1

! The Write hook classes
! The Copy hook classes
! The CObjectHookGuard class
! Stack Path Hooks
! The ByteBlock and CharBlock classes
! NCBI C++ Toolkit Network Service Clients
! Verification of Class Member Initialization
! Simplified serialization interface
! Finding in input stream objects of a specific type

Format Specific Streams: The CObject[IO]Stream classes
The reading and writing of serialized data objects entails satisfying two independent sets of
constraints and specifications: (1) format-specific parsing and encoding schemes, and (2)
object-specific internal structures and rules of composition. The NCBI C++ Toolkit
implements serial IO processes by combining a set of object stream classes with an
independently defined set of data object classes. These classes are implemented in the serial
and objects directories respectively.

The base classes for the object stream classes are CObjectIStream and CObjectOStream. Each
of these base classes has derived subclasses which specialize in different formats, including
XML, binary ASN.1, and text ASN.1. A simple example program, xml2asn.cpp (see Box 1),
described in Processing serial data, uses these object stream classes in conjunction with a
CBiostruct object to translate a file from XML encoding to ASN.1 formats. In this chapter, we
consider in more detail the class definitions for object streams, and how the type information
associated with the data is used to implement serial input and output.

Each object stream specializes in a serial data format and a direction (in/out). It is not until the
input and output operators are applied to these streams, in conjunction with a specified
serializable object, that the object-specific type information comes into play. For example, if
instr is a CObjectIStream, the statement: instr >> myObject invokes a Read() method associated
with the input stream, whose sole argument is a CObjectInfo for myObject.

Similarly, the output operators, when applied to a CObjectOstream in conjunction with a
serializable object, will invoke a Write() method on the output stream which accesses the
object's type information. The object's type information defines what tag names and value types
should be encountered on the stream, while the CObject[IO]Stream subclasses specialize the
data serialization format.

The input and output operators (<< and >>) are declared in serial/serial.hpp header.

The CObjectIStream (*) classes
CObjectIStream is a virtual base class for the CObjectIStreamXml, CObjectIStreamAsn, and
CObjectIStreamAsnBinary classes. As such, it has no public constructors, and its user interface
includes the following methods:
! Open()
! Close()
! GetDataFormat()
! ReadFileHeader()

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamAsnBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/serial.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamAsn.html

! Read()
! ReadObject()
! ReadSeparateObject()
! Skip()
! SkipObject()

There are several Open() methods; most of these are static class methods that return a pointer
to a newly created CObjectIStream. Typically, these methods are used with an auto_ptr, as in:

auto_ptr<CObjectIStream> xml_in(CObjectIStream::Open(filename, eSerial_Xml));

Here, an XML format is specified by the enumerated value eSerial_Xml, defined in
ESerialDataFormat. Because these methods are static, they can be used to create a new instance
of a CObjectIStream subclass, and open it with one statement. In this example, a
CObjectIStreamXml is created and opened on the file filename.

An additional non-static Open() method is provided, which can only be invoked as a member
function of a previously instantiated object stream (whose format type is of course, implicit to
its class). This method takes a CNcbiIstream and a Boolean argument, specifying whether or
not the CNcbiIstream should also be deleted when the object stream is closed:

void Open(CNcbiIstream& inStream, bool deleteInStream = false);

The next three methods have the following definitions. Close() closes the stream.
GetDataFormat() returns the enumerated ESerialDataFormat for the stream. ReadFileHeader
() reads the first line from the file, and returns it in a string. This might be used for example,
in the following context:

auto_ptr<CObjectIStream> in(CObjectIStream::Open(fname, eSerial_AsnText));
string type = in.ReadFileHeader();
if (type.compare("Seq-entry") == 0) {
 CSeq_entry seqent;
 in->Read(ObjectInfo(seqent), eNoFileHeader);
 // ...
}
else if (type.compare("Bioseq-set") == 0) {
 CBioseq_set seqset;
 in->Read(ObjectInfo(seqset), eNoFileHeader);
 // ...
}
// ...

The ReadFileHeader() method for the base CObjectIStream class returns an empty
string. Only those stream classes which specialize in ASN.1 text or XML formats
have actual implementations for this method.

Several Read*() methods are provided for usage in different contexts. CObjectIStream::Read
() should be used for reading a top-level "root" object from a data file. For convenience, the
input operator >>, as described above, indirectly invokes this method on the input stream, using
a CObjectTypeInfo object derived from myObject. By default, the Read() method first calls
ReadFileHeader(), and then calls ReadObject(). Accordingly, calls to Read() which follow the
usage of ReadFileHeader()must include the optional eNoFileHeader argument.

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESerialDataFormat

Most data objects also contain embedded objects, and the default behavior of Read() is to load
the top-level object, along with all of its contained subobjects into memory. In some cases this
may require significant memory allocation, and it may be only the top-level object which is
needed by the application. The next two methods, ReadObject() and ReadSeparateObject(),
can be used to load subobjects as either persistent data members of the root object or as
temporary local objects. In contrast to Read(), these methods assume that there is no file header
on the stream.

As a result of executing ReadObject(member), the newly created subobject will be instantiated
as a member of its parent object. In contrast, ReadSeparateObject(local), instantiates the
subobject in the local temporary variable only, and the corresponding data member in the parent
object is set to an appropriate null representation for that data type. In this case, an attempt to
reference that subobject after exiting the scope where it was created generates an error.

The Skip() and SkipObject() methods allow entire top-level objects and subobjects to be
"skipped". In this case the input is still read from the stream and validated, but no object
representation for that data is generated. Instead, the data is stored in a delay buffer associated
with the object input stream, where it can be accessed as needed. Skip() should only be applied
to top-level objects. As with the Read() method, the optional ENoFileHeader argument can be
included if the file header has already been extracted from the data stream. SkipObject
(member) may be applied to subobjects of the root object.

All of the Read and Skip methods are like wrapper functions, which define what activities take
place immediately before and after the data is actually read. How and when the data is then
loaded into memory is determined by the object itself. Each of the above methods ultimately
calls objTypeInfo->ReadData() or objTypeInfo->SkipData(), where objTypeInto is the static
type information object associated with the data object. This scheme allows the user to install
type-specific read, write, and copy hooks, which are described below. For example, the default
behavior of loading all subobjects of the top-level object can be modified by installing
appropriate read hooks which use the ReadSeparateObject() and SkipObject() methods where
needed.

The CObjectOStream (*) classes
The output object stream classes mirror the CObjectIStream classes. The CObjectOStream
base class is used to derive the CObjectOStreamXml, CObjectOStreamAsn, and
CObjectOStreamAsnBinary classes. There are no public constructors, and the user interface
includes the following methods:
! Open()
! Close()
! GetDataFormat()
! WriteFileHeader()
! Write()
! WriteObject()
! WriteSeparateObject()
! Flush()
! FlushBuffer()

Again, there are several Open() methods, which are static class methods that return a pointer
to a newly created CObjectOstream:

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsnBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ReadObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ReadSeparateObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsn.html

static CObjectOStream* Open(const string& fileName, ESerialDataFormat
format);
static CObjectOStream* Open(ESerialDataFormat format,
 const string& fileName, unsigned openFlags = 0);
static CObjectOStream* Open(ESerialDataFormat format,
 CNcbiOstream& os, bool deleteOutStream = false);

The Write*() methods correspond to the Read*() methods defined for the input streams. Write
() first calls WriteFileHeader(), and then calls WriteObject(). WriteSeparateObject() can be
used to write a temporary object (and all of its children) to the output stream. It is also possible
to install type-specific write hooks. Like the Read() methods, these Write() methods serve as
wrapper functions that define what occurs immediately before and after the data is actually
written.

The CObjectStreamCopier (*) classes
The CObjectStreamCopier class is neither an input nor an output stream class, but a helper
class, which allows one to "pass data through" without storing the intermediate objects in
memory. Its sole constructor is:

CObjectStreamCopier(CObjectIStream& in, CObjectOStream& out);

and its most important method is the Copy(CObjectTypeInfo&) method, which, given an
object's description, reads that object from the input stream and writes it to the output stream.
The serial formats of both the input and output object streams are implicit, and thus the
translation between two different formats is performed automatically.

In keeping with the Read and Write methods of the CObjectIStream and CObjectOStream
classes, the Copy method takes an optional ENoFileHeader argument, to indicate that the file
header is not present in the input and should not be generated on the output. The CopyObject
() method corresponds to the ReadObject() and WriteObject() methods.

As an example, consider how the Run() method in xml2asn.cpp might be implemented
differently using the CObjectStreamCopier class:

int CTestAsn::Run() {
auto_ptr<CObjectIStream>
xml_in(CObjectIStream::Open("1001.xml", eSerial_Xml));
auto_ptr<CObjectOStream>
txt_out(CObjectOStream::Open("1001.asntxt", eSerial_AsnText));
CObjectStreamCopier txt_copier(*xml_in, *txt_out);
txt_copier.Copy(CBiostruc::GetTypeInfo());
auto_ptr<CObjectOStream>
 bin_out(CObjectOStream::Open("1001.asnbin", eSerial_AsnBinary));
CObjectStreamCopier bin_copier(*xml_in, *bin_out);
bin_copier.Copy(CBiostruc::GetTypeInfo());
return 0;
}

It is also possible to install type-specific Copy hooks. Like the Read and Write methods, the
Copy methods serve as wrapper functions that define what occurs immediately before and after
the data is actually copied.

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectStreamCopier.html

Type-specific I/O routines
Much of the functionality needed to read and write serializable objects may be type-specific
yet application-driven. Because the specializations may vary with the application, it does not
make sense to implement fixed methods, yet we would like to achieve a similar kind of object-
specific behavior.

To address these needs, the C++ Toolkit provides hook mechanisms, whereby the needed
functionality can be installed with the object's static class type information object. Such hooks
can be installed globally, where they will be applied on all streams where these events occur,
or locally, where they will only be applied to a selected stream.

For any given object and specific stream, at most one read hook and one write hook is "active".
If myObject has a locally installed read hook as well as a global read hook, then the locally
installed hook will override the global hook when a read occurs on the "local" stream. Read
events on all of the other "non-local" streams will of course, trigger the globally installed hook.
Designating multiple read/write hooks (both local and global) for a selected object does not
generate an error. Older or less specific hooks are simply overridden by the more specific or
most recently installed hook.

The Read hook classes
All of the different contexts in which an object might be encountered on an input stream can
be reduced to three cases:

as a stand-alone object

as a data member of a containing object

as a variant of a choice object

Hooks can be installed for each of these contexts, depending on the desired level of specificity.
Corresponding to these contexts, three abstract base classes provide the foundations for
deriving new Read hooks:
! CReadObjectHook
! CReadClassMemberHook
! CReadChoiceVariantHook

Each of these base hook classes exists only to define a pure virtual Read method, which can
then be implemented (in a derived subclass) to install the desired type of read hook. If the goal
is to apply the new Read method in all contexts, then the new hook should be derived from the
CReadObjectHook class, and registered with the object's static type information object. For
example, to install a new CReadObjectHook for a CBioseq, one might use:

CObjectTypeInfo(CBioseq::GetTypeInfo()).SetGlobalReadHook(
myReadBioseqHook);

Another way of installing hooks of any type (read/write/copy, object/member/variant) is
provided by CObjectHookGuard class described below.

Alternatively, if the desired behavior is to trigger the specialized Read method only when the
object occurs as a data member of a particular containing class, then the new hook should be
derived from the CReadClassMemberHook, and registered with that member's type
information object:

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CObjectTypeInfo(CBioseq::GetTypeInfo()).FindMember(
"Seq-inst").SetGlobalReadHook(myReadSeqinstHook);

Similarly, one can install a read hook that will only be triggered when the object occurs as a
choice variant:

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).FindVariant(
"Bioseq").SetGlobalReadHook(myReadBioseqHook);

The new hook classes for these examples should be derived from CReadObjectHook,
CReadClassMemberHook, and CReadChoiceVariantHook, respectively. In the first case, all
occurrences of CBioseq on any input stream will trigger the new Read method. In contrast, the
last case installs this new Read method to be triggered only when the CBioseq occurs as a
choice variant in a CSeq_entry object.

All of the virtual Read methods take two arguments: a CObjectIStream and a reference to a
CObjectInfo. For example, the CReadObjectHook class declares the ReadObject() method as:

virtual void ReadObject(CObjectIStream& in,
 const CObjectInfo& object) = 0;

The ReadClassMember and ReadChoiceVariant hooks differ from the ReadObject hook class,
in that the second argument to the virtual Read method is an iterator, pointing to the object
type information for a data member or choice variant respectively.

In summary, to install a read hook for an object type:

derive a new class from the appropriate hook class:
! if the target object occurs in any context, use the CReadObjectHook class.
! if the target object occurs as a data member, use the CReadClassMemberHook class.
! if the target object occurs as a choice variant, use the CReadChoiceVariant Hook class.

implement the virtual Read method for the new class.

install the hook, using the SetGlobalReadHook() or SetLocalReadHook() method defined in
! CObjectTypeInfo for a CReadObjectHook
! CMemberInfo for a CReadClassMemberHook
! CVariantInfo for a CReadChoiceVariantHook

or use CObjectHookGuard class to install any of these hooks.

In many cases you will need to read the hooked object and do some special processing, or to
skip the entire object. To simplify object reading or skipping all base hook classes have
DefaultRead() and DefaultSkip() methods taking the same arguments as the user provided
ReadXXXX() methods. Thus, to read a bioseq object from a hook:

void CMyReadObjectHook::ReadObject(CObjectIStream& in, const CObjectInfo&
object)
{
 DefaultRead(in, object);
 // Do some user-defined processing of the bioseq
}

Page 10

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Note that from a choice variant hook you can not skip stream data -- this could leave the choice
object in an uninitialized state. For this reason the CReadChoiceVariantHook class has no
DefaultSkip() method.

For a good example of using a CReadClassMemberHook object, see the asn2asn.cpp and
test_serial.cpp demo programs.

The Write hook classes
The Write hook classes parallel the Read hook classes, and again, we have three base classes:
! CWriteObjectHook
! CWriteClassMemberHook
! CWriteChoiceVariantHook

These classes define the pure virtual methods:

CWriteObjectHook::WriteObject(
CObjectOStream&,
 const CConstObjectInfo& object) = 0;
CWriteClassMemberHook::WriteClassMember(
CObjectOStream&,
 const CConstObjectInfoMI& member) = 0;
CWriteChoiceVariantHook::WriteChoiceVariant(
CObjectOStream&,
 const CConstObjectInfoCV& variant) = 0;

Like the read hooks, your derived write hooks can be installed by invoking the
SetGlobalWriteObjectHook() or SetLocalWriteObjectHook() methods for the appropriate type
information objects. Corresponding to the examples for read hooks then, we would have:

CObjectTypeInfo(CBioseq::GetTypeInfo()).
SetGlobalWriteHook(myWriteBioseqHook);
CObjectTypeInfo(CBioseq::GetTypeInfo()).FindMember("Seq-inst").
SetGlobalWriteHook(myWriteSeqinstHook);

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).FindVariant("Bioseq").
SetGlobalWriteHook(myWriteBioseqHook);

CObjectHookGuard class provides is a simple way to install write hooks.

The asn2asn.cpp and test_serial.cpp demo programs also demonstrate the usage of the
CWriteClassMemberHook class.

The Copy hook classes
As with the Read and Write hook classes, there are three base classes which define the following
Copy methods:

CCopyObjectHook::CopyObject(CObjectStreamCopier& copier,
 const CObjectTypeInfo& object) = 0;

CCopyClassMemberHook::CopyClassMember(CObjectStreamCopier& copier,
 const CObjectTypeInfoMI& member) = 0;

Page 11

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test/test_serial.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test/test_serial.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp

CCopyChoiceVariantHook::CopyChoiceVariant(CObjectStreamCopier&,
 const CObjectTypeInfoCV& variant) = 0;

Newly derived copy hooks can be installed by invoking the SetGlobalCopyObjectHook() or
SetLocalCopyObjectHook() methods for the appropriate type information objects. The other
way of installing hooks is described below in the CObjectHookGuard section.

To do default copying of an object in the overloaded hook method each of the base copy hook
classes has DefaultCopy() method.

The CObjectHookGuard class
To simplify hooks usage CObjectHookGuard class may be used. It's a template class: the
template parameter is the class to be hooked (in case of member or choice variant hooks it's
the parent class of the member).

The CObjectHookGuard class has several constructors for installing different hook types. The
last argument to all constructors is a stream pointer. By default the pointer is NULL and the
hook is intalled as a global one. To make the hook stream-local pass the stream to the guard
constructor.
! Object read/write hooks: CObjectHookGuard(CReadObjectHook& hook,

CObjectIStream* in = 0); CObjectHookGuard(CWriteObjectHook& hook,
CObjectOStream* out = 0);

! Class member read/write hooks: CObjectHookGuard(string id,
CReadClassMemberHook& hook, CObjectIStream* in = 0); CObjectHookGuard
(string id, CWriteClassMemberHook& hook, CObjectOStream* out = 0);

The string "id" argument is the name of the member in ASN.1 specification for generated
classes.
! Choice variant read/write hooks: CObjectHookGuard(string id,

CReadChoiceVariantHook& hook, CObjectIStream* in = 0); CObjectHookGuard
(string id, CWriteChoiceVariantHook& hook,CObjectOStream* out = 0);

The string "id" argument is the name of the variant in ASN.1 specification for generated classes.

The guard's destructor will uninstall the hook. Since all hook classes are derived from CObject
and stored as CRef<>-s, the hooks are destroyed automatically when uninstalled. For this
reason it's recommended to create hook objects on heap.

Stack Path Hooks
When using serialization hooks one might want to specify a more specific context when such
hook should be triggered. For example, "I want to hook the reading of object A when and only
when it is a member of object B, not all occurrences of object A", or "I want to hook the reading
of all members named 'Title' in all objects, not only in a specific one". The serial library makes
it possible to set serialization hooks by string that describes a place (or stack path), for example:

TypeName.Member1.Member2.HookedMember

The format of the string is as follows:

Stackpath ::= (TypeName | Wildcard) ('.' (MemberName | Wildcard))+

Where TypeName and MemberName are strings, '.' is a separator. Wildcard is defined as

Page 12

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Wildcard ::= ('?' | '*')

Here the question mark means "one member with any name", while the asterisk means "one
or more members with any names".

As with regular serialization hooks, it is possible to install a path hookfor a specific object:

CObjectTypeInfo(CBioseq::GetTypeInfo()).
SetPathReadHook(in, path, myReadBioseqHook);

a data member of an object:

CObjectTypeInfo(CBioseq::GetTypeInfo()).FindMember("Seq-nst").
SetPathReadHook(in, path, myReadSeqinstHook);

or a variant of a choice object:

CObjectTypeInfo(CSeq_entry::GetTypeInfo()).FindVariant("Bioseq").
SetPathReadHook(in, path, myReadBioseqHook);

Here in is a pointer to an input object stream. If it is equal to zero, the hook will be installed
globally, otherwise - for that particular stream. In addition to that, it is possible to install such
hooks in object streams. So, for example to install a read hook on all string data members and
choice variants named LastName, one could use either the following code:

CObjectTypeInfo(CStdTypeInfo<string>::GetTypeInfo()).
SetPathReadHook(in,"*.LastName",myObjHook);

Or this one:

in->SetPathReadObjectHook("*.LastName", myObjHook);

Setting path hooks directly in streams also makes it possible to differentiate between LastName
being a data member and choice variant. So, for example

in->SetPathReadMemberHook("*.LastName", myMemHook);

will catch all data members and skip choice variants; while

in->SetPathReadVariantHook("*.LastName", myVarHook);

will trigger for all variants and skip data members.

Stream Iterators
When working with a stream, it is sometimes convenient to be able to read or write data
elements directly, bypassing the standard data storage mechanism. For example, when reading
a large container object, the purpose could be to process its elements. It is possible to read
everything at once, but this could require a lot of memory to store the data in. An alternative
approach, which greatly reduces the amount of required memory, could be to read elements
one by one, process them as they arrive, and then discard. Or, when writing a container, one
could construct it in memory only partially, and then add missing elements 'on the fly' - where

Page 13

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

appropriate. To make it possible, the SERIAL library introduces stream iterators. Needless to
say, the most convenient way of using this mechanism is in read/write hooks.

SERIAL library defines the following stream iterator classes: CIStreamClassMemberIterator
and CIStreamContainerIterator for input streams, and COStreamClassMember and
COStreamContainer for output ones.

Reading a container could look like this:

for (CIStreamContainerIterator i(in, containerType); i; ++i) {
 CElementClass element;
 i >> element;
}

Writing - like this:

set<CElementClass> container; // your container
............COStreamContainer osc(out, containerType);
for (set<CElementClass>::const_iterator i = container.begin();
 i != container.end(); ++i) {
const CElementClass& element = *i;
osc << element;
}

For more examples of using stream iterators please refer to asn2asn sample application.

The ByteBlock and CharBlock classes
CObject[IO]Stream::ByteBlock class may be used for non-standard processing of an OCTET
STRING data, e.g. from a read/write hooks. The CObject[IO]Stream::CharBlock class has
almost the same functionality, but may be used for VisibleString data processing.

An example of using ByteBlock or CharBlock classes is generating data on-the-fly in a write
hook. To use block classes:

Initialize the block variable with an i/o stream and, in case of output stream, the length of the
block.

Use Read()/Write() functions to process block data

Close the block with the End() function

Below is an example of using CObjectOStream::ByteBlock in an object write hook for non-
standard data processing. Note, that ByteBlock and CharBlock classes read/write data only.
You should also provide some code for writing class' and members' tags.

Since OCTET STRING and VisibleString in the NCBI C++ Toolkit are implemented as
vector<char> and string classes, which have no serailization type info, you can not install a
read or write hook for these classes. The example also demonstrates how to process members
of these types using the containing class hook. Another example of using CharBlock with write
hooks can be found in test_serial.cpp application.

void CWriteMyObjectHook::WriteObject(CObjectOStream& out,
 const CConstObjectInfo& object)

Page 14

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial/test/test_serial.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp

{
 const CMyObject& obj = *reinterpret_cast<const CMyObject*>
 (object.GetObjectPtr());
 if (NothingToProcess(obj)) {
 // No special processing - use default write method
 DefaultWrite(out, object);
 return;
 }
 // Write object open tag
 out.BeginClass(object.GetClassTypeInfo());
 // Iterate object members
 for (CConstObjectInfo::CMemberIterator member =
 object.BeginMembers(); member; ++member) {
 if (NeedProcessing(member)) {
 // Write the special member manually
 out.BeginClassMember(member.GetMemberInfo()->GetId());
 // Start byte block, specify output stream and block size
 size_t length = GetRealDataLength(member);
 CObjectOStream::ByteBlock bb(out, length);
 // Processing and output
 for (int i = 0; i < length;) {
 char* buf;
 int buf_size;
 // Assuming ProcessData() generates the data from "member",
 // starting from position "i" and stores the data to "buf"
 ProcessData(member, i, &buf_size, &buf);
 i += buf_size;
 bb.Write(buf, buf_size);
 }
 }
 // Close the byte block
 bb.End();
 // Close the member
 out.EndClassMember();
 }
 else {
 // Default writer for members without special processing
 if (member.IsSet())
 out.WriteClassMember(member);
 }
 // Close the object
 out.EndClass();
}

NCBI C++ Toolkit Network Service (RPC) Clients
The following topics are discussed in this section:
! Introduction and Use
! Implementation Details

Introduction and Use—The C++ Toolkit now contains datatool-generated classes for
certain ASN.1-based network services: at the time of this writing, Entrez2, ID1, and MedArch.

Page 15

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

(There is also an independently written class for the Taxon1 service, CTaxon1, which this page
does not discuss further.) All of these classes, declared in headers named objects/.../client
(_).hpp, inherit certain useful properties from the base template CRPCClient<>:
! They normally defer connection until the first actual query, and disconnect

automatically when destroyed, but let users request either action explicitly.
! They are designed to be thread-safe (but, at least for now, maintain only a single

connection per instance, so forming pools may be appropriate).
The usual interface to these classes is through a family of methods named AskXxx, each of
which takes a request of an appropriate type and an optional pointer to an object that will receive
the full reply and returns the corresponding reply choice. For example,
CEntrez2Client::AskEval_boolean takes a request of type const CEntrez2_eval_boolean& and
an optional pointer of type CEntrez2_reply*, and returns a reply of type
CRef<CEntrez2_boolean_reply>. All of these methods automatically detect server-reported
errors or unexpected reply choices, and throw appropriate exceptions when they occur. There
are also lower-level methods simply named Ask, which may come in handy if you do not know
what kind of query you will need to make.

In addition to these standard methods, there are certain class-specific methods: CEntrez2Client
adds GetDefaultRequest and SetDefaultRequest for dealing with those fields of Entrez2-
request besides request itself, and CID1Client adds {Get,Set}AllowDeadEntries (off by
default) to control how to handle the result choice gotdeadseqentry.

Implementation Details—In order to get datatool to generate classes for a service, you must
add some settings to the corresponding modulename.def file. Specifically, you must set [-]
clients to the relevant base file name (typically service_client), and add a correspondingly
named section containing the entries listed in Table 1. (If a single specification defines multiple
protocols for which you would like datatool to generate classes, you may list multiple client
names, separated by spaces.)

Verification of Class Member Initialization
When serializing an object, it is important to verify that all mandatory primitive data members
(e.g. strings, integers) are given a value. The NCBI C++ Toolkit implements this through a
data initialization verification mechanism. In this mechanism, the value itself is not validated;
that is, it still could be semantically incorrect. The purpose of the verification is only to make
sure that the member has been assigned some value. The verification also provides for a
possibility to check whether the object data member has been initialized or not. This could be
useful when constructing such objects in memory.

From this perspective, each data member (XXX) of a serial object generated by DATATOOL
from an ASN or XML specification has the IsSetXXX() and CanGetXXX() methods. Also,
input and output streams have SetVerifyData() and GetVerifyData() methods. The purpose of
CanGetXXX() method is to answer the question whether it is safe or not to call the
corresponding GetXXX(). The meaning of IsSetXXX() is whether the data member has been
assigned a value explicitly (using assignment function call, or as a result of reading from a
stream) or not. The stream's SetVerifyData() method defines a stream behavior in case it comes
across an uninitialized data member.

There are three kinds of object data members:
! optional ones,
! mandatory with a default value,
! mandatory with no default value.

Page 16

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CRPCClient&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTaxon1&d=C

Optional members and mandatory ones with no default have "no value" initially. As such, they
are "ungetatable"; that is, GetXXX() throws an exception (this is also configurable though).
Mandatory members with a default are always getable, but not always set. It is possible to
assign a default value to a mandatory member with a default value. In this case it becomes set,
and as such will be written into an output stream.

The discussion above refers only to primitive data members, such as strings, or integers. The
behavior of containers is somewhat different. All containers are pre-created on the parent object
construction, so for container data members CanGetXXX() always returns TRUE. This can be
justified by the fact that containers have a sort of "natural default value" - empty. Also,
IsSetXXX() will return TRUE if the container is either mandatory, or has been read (even if
empty) from the input stream, or SetXXX() was called for it.

The following additional topics are discussed in this section:
! Initialization Verification in CSerialObject Classes
! Initialization Verification in Object Streams

Initialization Verification in CSerialObject Classes—CSerialObject defines two
functions to manage how uninitialized data members would be treated:

 static void SetVerifyDataThread(ESerialVerifyData verify);
 static void SetVerifyDataGlobal(ESerialVerifyData verify);

The SetVerifyDataThread() defines the behavior of GetXXX() for the current thread, while
the SetVerifyDataGlobal() for the current process. Please note, that disabling
CUnassignedMember exceptions in GetXXX() function is potentially dangerous because it
could silently return garbage.

The behavior of initialization verification has been designed to allow for maximum flexibility.
It is possible to define it using environment variables, and then override it in a program, and
vice versa. It is also possible to force a specific behavior, no matter what the program sets, or
could set later on. The ESerialVerifyData enumerator could have the following values:
! eSerialVerifyData_Default
! eSerialVerifyData_No
! eSerialVerifyData_Never
! eSerialVerifyData_Yes
! eSerialVerifyData_Always

Setting eSerialVerifyData_Never or eSerialVerifyData_Always results in a "forced" behavior:
setting eSerialVerifyData_Never prohibits later attempts to enable verification; setting
eSerialVerifyData_Always prohibits attempts to disable it. The default behavior could be
defined from the outside, using the SET_VERIFY_DATA_GET environment variable:

 SET_VERIFY_DATA_GET ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS')

Alternatively, the default behavior can also be set from a program code using
CSerialObject::SetVerifyDataXXX() functions.

Setting the environment variable to "Never/Always" overrides any attempt to change the
verification behavior in the program. Setting "Never/Always" for the process overrides
attempts to change it for a thread. "Yes/No" setting is less restrictive: the environment variable,

Page 17

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

if present, provides the default, which could then be overridden in a program, or thread. Here
thread settings supersede the process ones.

Initialization Verification in Object Streams— Data member verification in object
streams is a bit more complex.

First, it is possible to set the verification behavior on three different levels:
! for a specific stream (SetVerifyData()),
! for all streams created by a current thread (SetVerifyDataThread()),
! for all stream created by the current process (SetVerifyDataGlobal()).

Second, there are more options in defining what to do in case of an uninitialized data member:
! throw an exception;
! skip it on writing (write nothing), and leave uninitialized (as is) on reading;
! write some default value on writing, and assign it on reading (even though there is no

default).
So, ESerialVerifyData enumerator could now have two more values:
eSerialVerifyData_DefValue and eSerialVerifyData_DefValueAlways. In this case, on
reading a missing data member, stream initializes it with a "default" (usually 0); on writing the
unset data member, it writes it "as is". For comparison: in the "No/Never" case on reading a
missing member stream could initialize it with a "garbage", while on writing it writes nothing.
The latter case produces semantically incorrect output, but preserves information of what has
been set, and what is not set.

The default behavior could be set similarly to CSerialObject. The environment variables are
as follows:

 SET_VERIFY_DATA_READ ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS' |
 'DEFVALUE' | 'DEFVALUE_ALWAYS')
 SET_VERIFY_DATA_WRITE ::= ('NO' | 'NEVER' | 'YES' | 'ALWAYS' |
 'DEFVALUE' | 'DEFVALUE_ALWAYS')

Simplified Serialization Interface
The reading and writing of serial object requires creation of special object streams which
encode and decode data. While such streams provide with a greater flexibility in setting the
formatting parameters, in some cases it is not needed - the default behavior is quite enough.
NCBI C++ toolkit library makes it possible to use the standard I/O streams in this case, thus
hiding the creation of object streams. So, the serialization would look like this:

cout << MSerial_AsnText << obj;

The only information that is always needed is the output format. It is defined by the following
stream manipulators:
! MSerial_AsnText
! MSerial_AsnBinary
! MSerial_Xml

Few additional manipulators define the handling of un-initialized object data members:
! MSerial_VerifyDefault
! MSerial_VerifyNo

Page 18

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! MSerial_VerifyYes
! MSerial_VerifyDefValue

Finding in input stream objects of a specific type
When processing serialized data, it is pretty often that one has to find all objects of a specific
type, with this type not being a root one. To make it easier, serial library defines a helper
template function Serial_FilterObjects. The idea is to be able to define a special hook class
with a single virtual function Process with a single parameter: object of the requested type.
Input stream is being scanned then, and, when an object of the requested type is encountered,
the user-supplied function is being called.

Say of instance, an input stream contains Bioseq objects, and you need to find and process all
Seq-inst objects in it. First, you need to define a class that will process them:

Class CProcessSeqinstHook : public
CSerial_FilterObjectsHook<CSeq_inst>
{
public:
 virtual void Process(const CSeq_inst& obj);
};

Second, you just call filtering function specifying the root object type:

Serial_FilterObjects<CBioseq>(input_stream, new
CProcessSeqinstHook());

Another variant of this function – Serial_FilterStdObjects – finds objects of standard type, not
derived from CSerialObject – strings, for example. The usage is similar. First, define a hook
class that will process data:

class CProcessStringHook : public CSerial_FilterObjectsHook<string>
{
public:
 virtual void Process(const string& obj);
};

Then, call the filtering function:

Serial_FilterStdObjects<CBioseq>(input_stream, new CProcessStringHook());

Even more sophisticated, yet easier to use mechanism relies on multi-threading. It puts data
reading into a separate thread and hides synchronization issues from client application. There
are two template classes, which make it possible: CIStreamObjectIterator and
CIStreamStdIterator. The former finds objects of CSerialObject type:

CIStreamObjectIterator<CBioseq,CSeq_inst> i(input_stream);
for (; i.IsValid(); ++i) {
 const CSeq_inst& obj = *i;
 ...
}

The latter – objects of standard type:

Page 19

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CIStreamStdIterator<CBioseq,string> i(input_stream);
for (; i.IsValid(); ++i) {
 const string& obj = *i;
 ...
}

The NCBI C++ Toolkit Iterators
The following topics are discussed in this section:
! STL generic iterators
! CTypeIterator (*) and CTypeConstIterator (*)
! Class hierarchies, embedded objects, and the NCBI C++ type iterators
! CObjectIterator (*) and CObjectConstIterator (*)
! CStdTypeIterator (*) and CStdTypeConstIterator (*)
! CTypesIterator (*)
! Context filtering in type iterators
! Additional Information

STL generic iterators
Iterators are an important cornerstone in the generic programming paradigm - they serve as
intermediaries between generic containers and generic algorithms. Different containers have
different access properties, and the interface to a generic algorithm must account for this.

The vector class allows input, output, bidirectional, and random access iterators. In contrast,
the list container class does not allow random access to its elements. This is depicted
graphically by one less strand in the ribbon connector. In addition to the iterators, the generic
algorithms may require function objects such as less<T> to support the template
implementations.

The STL standard iterators are designed to iterate through any STL container of homogeneous
elements, e.g., vectors, lists, deques, stacks, maps, multimaps, sets, multisets, etc. A
prerequisite however, is that the container must have begin() and end() functions defined on it
as start and end points for the iteration.

But while these standard iterators are powerful tools for generic programming, they are of no
help in iterating over the elements of aggregate objects - e.g., over the heterogeneous data
members of a class object. As this is an essential operation in processing serialized data
structures, the NCBI C++ Toolkit provides additional types of iterators for just this purpose.
In the section on Runtime object type information, we described the CMemberIterator and
CVariantIterator classes, which provide access to the instance and type information for all of
the data members and choice variants of a class or choice object. In some cases however, we
may wish to visit only those data members which are of a certain type, and do not require any
type information. The iterators described in this section are of this type.

CTypeIterator (*) and CTypeConstIterator (*)
The CTypeIterator and CTypeConstIterator can be used to traverse a structured object, stopping
at all data members of a specified type. For example, it is very common to represent a linked
list of objects by encoding a next field that embeds an object of the same type. One way to
traverse the linked list then, would be to "iterate" over all objects of that type, beginning at the
head of the list. For example, suppose you have a CPersonclass defined as:

Page 20

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeConstIterator.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeIterator.html

class CPerson
{
public:
 CPerson(void);
 CPerson(const string& name, const string& address, CPerson* p);
 virtual ~CPerson(void);
 static const CTypeInfo* GetTypeInfo(void);
 string m_Name, m_Addr;
 CPerson *m_NextDoor;
};

Given this definition, one might then define a neighborhood using a single CPerson. Assuming
a function FullerBrushMan(CPerson&) must now be applied to each person in the
neighborhood, this could be implemented using a CTypeIterator as follows:

CPerson neighborhood("Moe", "123 Main St",
 new CPerson("Larry", "127 Main St",
 new CPerson("Curly", "131 Main St", 0)));
for (CTypeIterator<CPerson> house(Begin(neighborhood)); house; ++house) {
 FullerBrushMan(*house);
}

In this example, the data members visited by the iterator are of the same type as the top-level
aggregate object, since neighbor is an instance of CPerson. Thus, the first "member" visited is
the top-level object itself. This is not always the case however. The top-level object is only
included in the iteration when it is an instance of the type specified in the template argument
(CPerson in this case).

All of the NCBI C++ Toolkit type iterators are recursive. Thus, since neighborhood has
CPerson data members, which in turn contain objects of type CPerson, all of the nested data
members will also be visited by the above iterator. More generally, given a hierarchically
structured object containing data elements of a given type nested several levels deep, the NCBI
C++ Toolkit type iterators effectively generate a "flat" list of all these elements.

It is not difficult to imagine situations where recursive iterators such as the CTypeIterator could
lead to infinite loops. An obvious example of this would be a doubly-linked list. For example,
suppose CPerson had both previous and next data members, where x->next->previous == x.
In this case, visiting x followed by x->next would lead back to x with no terminating condition.
To address this issue, the Begin() function accepts an optional second argument,
eDetectLoops. eDetectLoops is an enum value which, if included, specifies that the iterator
should detect and avoid infinite loops. The resulting iterator will be somewhat slower but can
be safely used on objects whose references might create loops.

Let's compare the syntax of this new iterator class to the standard iterators:

ContainerType<T> x;
for (ContainerType<T>::IteratorType i = x.begin(); i != x.end(); ++i)
for (CTypeIterator<T> i(Begin(ObjectName)); i; ++i)

The standard iterator begins by pointing to the first item in the container x.begin(), and with
each iteration, visits subsequent items until the end of the container x.end() is reached.
Similarly, the CTypeIterator begins by pointing to the first data member of ObjectName that

Page 21

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EDetectLoops

is of type T, and with each iteration, visits subsequent data members of type T until the end of
the top-level object is reached.

A lot of code actually uses = Begin(...) instead of (Begin(...)) to initialize iterators; although
the alternate syntax is somewhat more readable and often works, some compilers can mis-
handle it and give you link errors. As such, direct initialization as shown above generally works
better. Also, note that this issue only applies to construction; you should (and must) continue
to use = to reset existing iterators.

How are generic iterators such as these implemented? The Begin() expression returns an object
containing a pointer to the input object ObjectName, as well as a pointer to a CTypeInfo object
containing type information about that object. On each iteration, the ++ operator examines the
current type information to find the next data member which is of type T. The current object,
its type information, and the state of iteration is pushed onto a local stack, and the iterator is
then reset with a pointer to the next object found, and in turn, a pointer to its type information.
Each data member of type T (or derived from type T) must be capable of providing its own
type information as needed. This allows the iterator to recursively visit all data members of the
specified type at all levels of nesting.

More specifically, each object included in the iteration, as well as the initial argument to Begin
(), must have a statically implemented GetTypeInfo() class member function to provide the
needed type information. For example, all of the serializable objects generated by datatool in
the src/objects subtrees have GetTypeInfo() member functions. In order to apply type iterators
to user-defined classes (as in the above example), these classes must also make their type
information explicit. A set of macros described in the section on User-defined Type Information
are provided to simplify the implementation of the GetTypeInfo() methods for user-defined
classes. The example included at the end of this section (see Additional Information) uses
several of the C++ Toolkit type iterators and demonstrates how to apply some of these macros.

The CTypeConstIterator parallels the CTypeIterator, and is intended for use with const objects
(i.e. when you want to prohibit modifications to the objects you are iterating over). For const
iterators, the ConstBegin() function should be used in place of Begin().

Class hierarchies, embedded objects, and the NCBI C++ type iterators
As emphasized above, all of the objects visited by an iterator must have the GetTypeInfo()
member function defined in order for the iterators to work properly. For an iterator that visits
objects of type T, the type information provided by GetTypeInfo() is used to identify:
! data members of type T
! data members containing objects of type T
! data members derived from type T
! data members containing objects derived from type T

Explicit encoding of the class hierarchy via the GetTypeInfo() methods allows the user to
deploy a type iterator over a single specified type which may in practice include a set of types
via inheritance. The section Additional Information a simple example of this feature. The
preprocessor macros used in this example which support the encoding of hierarchical class
relations are described in the User-defined Type Information section. A further generalization
of this idea is implemented by the CTypesIterator described later.

Page 22

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=Begin

CObjectIterator (*) and CObjectConstIterator (*)
Because the CObject class is so central to the Toolkit, a special iterator is also defined, which
can automatically distinguish CObjects from other class types. The syntax of a CObjectIterator
is:

for (CObjectIterator i(Begin(ObjectName)); i; ++i)

Note that there is no need to specify the object type to iterate over, as the type CObject is built
into the iterator itself. This iterator will recursively visit all CObjects contained or referenced
in ObjectName. The CObjectConstIterator is identical to the CObjectIterator but is designed
to operate on const elements and uses the ConstBegin() function.

User-defined classes that are derived from CObject can also be iterated over (assuming their
GetTypeInfo() methods have been implemented). In general however, care should be used in
applying this type of iterator, as not all of the NCBI C++ Toolkit classes derived from CObject
have implementations of the GetTypeInfo() method. All of the generated serializable objects
in include/objectsdo have a defined GetTypeInfo() member function however, and thus can be
iterated over using either a CObjectIterator or a CTypeIterator with an appropriate template
argument.

CStdTypeIterator (*) and CStdTypeConstIterator (*)
All of the type iterators described thus far require that each object visited must provide its own
type information. Hence, none of these can be applied to standard types such as int, float, double
or the STL type string. The CStdTypeIterator and CStdTypeConstIterator classes selectively
iterate over data members of a specified type. But for these iterators, the type must be a simple
C type (int, double, char*, etc.) or an STL type string. For example, to iterate over all the string
data members in a CPerson object, we could use:

for (CStdTypeIterator<string> i(Begin(neighborhood)); i; ++i) {
 cout << *i << ' ';
}

The CStdTypeConstIterator is identical to the CStdTypeIterator but is designed to operate on
const elements and requires the ConstBegin() function.

Code examples using the CTypeIterator and CStdTypeIterator are given in ctypeiter.cpp (see
Box 2; for ctypeiter.hpp, see Box 3).

CTypesIterator (*)
Sometimes it is necessary to iterate over a set of types contained inside an object. The
CTypesIterator, as its name suggests, is designed for this purpose. For example, suppose you
have loaded a gene sequence into memory as a CBioseq (named seq), and want to iterate over
all of its references to genes and organisms. The following sequence of statements defines an
iterator that will step through all of seq's data members (recursively), stopping only at
references to gene and organism citations:

CTypesIterator i;
CType<CGene_ref>::AddTo(i); // define the types to stop at
CType<COrg_ref>::AddTo(i);

for (i = Begin(seq); i; ++i) {

Page 23

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=CTypesIterator
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/iterator.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/iterator.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCStdTypeIterator.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCStdTypeConstIterator.html

 if (CType<CGene_ref>::Match(i)) {
 CGene_ref* geneRef = CType<CGene_ref>::Get(i);
 ...
 }
 else if (CType<COrg_ref>::Match(i) {
 COrg_ref* orgRef = CType<COrg_ref>::Get(i);
 ...
 }
}

Here, CType is a helper template class that simplifies the syntax required to use the multiple
types iterator:
! CType<TypeName>::AddTo(i) specifies that iterator i should stop at type TypeName.
! CType<TypeName>::Match(i) returns true if the specified type TypeName is the type

currently pointed to by iterator i.
! CType<TypeName>::Get(i) retrieves the object currently pointed to by iterator iif

there is a type match to TypeName, and otherwise returns 0. In the event there is a type
match, the retrieved object is type cast to TypeName before it is returned.

The Begin() expression is as described for the above CTypeIterator and CTypeConstIterator
classes. The CTypesConstIterator is the const implementation of this type of iterator, and
requires the ConstBegin() function.

Context Filtering In Type Iterators
In addition to traversing object of a specific type one might want to specify the context in which
such objects should appear. For example, you could wish to iterate over string data members,
but only those of them that are called title. This could be done using context filtering. Such
filter is a string with the format identical to the one used in Stack Path Hooks and is specified
as an additional parameter of a type iterator. So, for example, the declaration of string data
member iterator with context filtering could look like this:

CStdTypeIterator<string> i(Begin(my_obj), "*.title")

Additional Information
The following example demonstrates how the class hierarchy determines which data members
will be included in a type iterator. The example uses five simple classes:
! Class CA contains a single int data member and is used as a target object type for the

type iterators demonstrated.
! class CB contains an auto_ptr to a CA object.
! Class CC is derived from CA and is used to demonstrate the usage of class hierarchy

information.
! Class CD contains an auto_ptr to a CC object, and, since it is derived from CObject,

can be used as the object pointed to by a CRef.
! Class CX contains both pointers-to and instances-of CA, CB, CC, and CD objects, and

is used as the argument to Begin() for the demonstrated type iterators.
The preprocessor macros used in this example implement the GetTypeInfo() methods for the
classes, and are described in the section on User-defined type information.

Page 24

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTypesConstIterator
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCType.html

// Define a simple class to use as iterator's target objects
class CA
{
public:
 CA() : m_Data(0) {};
 CA(int n) : m_Data(n) {};
 static const CTypeInfo* GetTypeInfo(void);
 int m_Data;
};
// Define a class containing an auto_ptr to the target class
class CB
{
public:
 CB() : m_a(0) {};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CA> m_a;
};
// define a subclass of the target class
class CC : public CA
{
public:
 CC() : CA(0){};
 CC(int n) : CA(n){};
 static const CTypeInfo* GetTypeInfo(void);
};

// define a class derived from CObject to use in a CRef
// this class also contains an auto_ptr to the target class
class CD : public CObject
{
public:
 CD() : m_c(0) {};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CC> m_c;
};
// This class will be the argument to the iterator. It contains 4
// instances of CA - directly, through pointers, and via inheritance
class CX
{
public:
 CX() : m_a(0), m_b(0), m_d(0) {};
 ~CX(){};
 static const CTypeInfo* GetTypeInfo(void);
 auto_ptr<CA> m_a; // auto_ptr to a CA
 CB *m_b; // pointer to an object containing a CA
 CC m_c; // instance of a subclass of CA
 CRef<CD> m_d; // CRef to an object containing an auto_ptr to CC
};
////////// Implement the GetTypeInfo() methods /////////
////////// (see User-defined type information) /////////
BEGIN_CLASS_INFO(CA)

Page 25

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

{
 ADD_STD_MEMBER(m_Data);
 ADD_SUB_CLASS(CC);
}
END_CLASS_INFO

BEGIN_CLASS_INFO(CB)
{
 ADD_MEMBER(m_a, STL_auto_ptr, (CLASS, (CA)));
}
END_CLASS_INFO

BEGIN_DERIVED_CLASS_INFO(CC, CA)
{
}
END_DERIVED_CLASS_INFO

BEGIN_CLASS_INFO(CD)
{
 ADD_MEMBER(m_c, STL_auto_ptr, (CLASS, (CC)));
}
END_CLASS_INFO

BEGIN_CLASS_INFO(CX)
{
 ADD_MEMBER(m_a, STL_auto_ptr, (CLASS, (CA)));
 ADD_MEMBER(m_b, POINTER, (CLASS, (CB)));
 ADD_MEMBER(m_c, CLASS, (CC));
 ADD_MEMBER(m_d, STL_CRef, (CLASS, (CD)));
}
END_CLASS_INFO

int main(int argc, char** argv)
{
 CB b;
 CD d;

 b.m_a.reset(new CA(2));
 d.m_c.reset(new CC(4));
 CX x;

 x.m_a.reset(new CA(1)); // auto_ptr to CA
 x.m_b = &b; // pointer to CB containing auto_ptr to CA
 x.m_c = *(new CC(3)); // instance of subclass of CA
 x.m_d = &d; // CRef to CD containing auto_ptr to CC

 cout << "Iterating over CA objects in x" << endl << endl;

Page 26

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 for (CTypeIterator<CA> i(Begin(x)); i; ++i)
 cout << (*i).m_Data << endl;

 cout << "Iterating over CC objects in x" << endl << endl;

 for (CTypeIterator<CC> i(Begin(x)); i; ++i)
 cout << (*i).m_Data << endl;

 cout << "Iterating over CObjects in x" << endl << endl;
 for (CObjectIterator i(Begin(x)); i; ++i) {
 const CD *tmp = dynamic_cast<const CD*>(&*i);
 cout << tmp->m_c->m_Data << endl;
 }
 return 0;
}

Figure 1 illustrates the paths traversed by CTypeIterator<CA> and CTypeIterator<CC>, where
both iterators are initialized with Begin(a). The data members visited by the iterator are
indicated by enclosing boxes. See Figure 1.

For additional examples of using the type iterators described in this section, see ctypeiter.cpp.

Processing Serial Data
Although this discussion focuses on ASN.1 and XML formatted data, the data structures and
tools described here have been designed to (potentially) support any formalized serial data
specification. Many of the tools and objects have open-ended abstract or template
implementations that can be instantiated differently to fit various specifications.

The following topics are discussed in this section
! Accessing the object header files and serialization libraries
! Reading and writing serial data
! Determining Which Header Files to Include
! Determining Which Libraries to Link To

Accessing the object header files and serialization libraries
Reading and writing serialized data is implemented by an integrated set of streams, filters, and
object types. An application that reads encoded data files will require the object header files
and libraries which define how these serial streams of data should be loaded into memory. This
entails #include statements in your source files, as well as the associated library specifications
in your makefiles. The object header and implementation files are located in the include/
objects and src/objects subtrees of the C++ tree, respectively. The header and implementation
files for serialized streams and type information are in the include/serial and src/serial
directories.

If you have checked out the objects directories, but not explicitly run the datatool code
generator, then you will find that your include/objects subdirectories are (almost) empty, and
the source subdirectories contain only makefiles and ASN.1 specifications. These makefiles
and ASN.1 specifications can be used to build your own copies of the objects' header and

Page 27

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/serial
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial

implementation files, using make all_r (if you configured using the --with-objects flag), or
running datatool explicitly.

However, building your own local copies of these header and implementation files is neither
necessary nor recommended, as it is simpler to use the pre-generated header files and prebuilt
libraries. The pre-built header and implementation files can be found in $NCBI/c++/include/
objects/ and $NCBI/c++/src/objects/, respectively. Assuming your makefile defines an include
path to $NCBI/c++/include, selected object header files such as Date.hpp, can be included as:

#include <OBJECTS Date.hpp general>

This header file (along with its implementations in the accompanying src directory) was
generated by datatool using the specifications from src/objects/general/general.asn. In order to
use the classes defined in the objects directories, your source code should begin with the
statements:

USING_NCBI_SCOPE;
using namespace objects;

All of the objects' header and implementation files are generated by datatool, as specified in
the ASN.1 specification files. The resulting object definitions however, are not in any way
dependent on ASN.1 format, as they simply specify the in-memory representation of the
defined data types. Accordingly, the objects themselves can be used to read, interpret, and write
any type of serialized data. Format specializations on the input stream are implemented via
CObjectIStream objects, which extract the required tags and values from the input data
according to the format specified. Similarly, Format specializations on an output stream are
implemented via CObjectOStream objects.

Reading and writing serial data
Let's consider a program xml2asn.cpp that translates an XML data file containing an object of
type Biostruc, to ASN.1 text and binary formats. In main(), we begin by initializing the
diagnostic stream to write errors to a local file called xml2asn.log. (Exception handling,
program tracing, and error logging are described in the Diagnostic Streams section).

An instance of the CTestAsn class is then created, and its member function AppMain() is
invoked. This function in turn calls CTestAsn::Run(). The first three lines of code there define
the XML input and ASN.1 output streams, using auto_ptrs, to ensure automatic destruction of
these objects.

Each stream is associated with data serialization mechanisms appropriate to the
ESerialDataFormat provided to the constructor:

enum ESerialDataFormat {
 eSerial_None = 0,
 eSerial_AsnText = 1, // open ASN.1 text format
 eSerial_AsnBinary = 2, // open ASN.1 binary format
 eSerial_Xml = 3 // open XML format (not supported yet)
};

CObjectIStream and CObjectOStream are base classes which provide generic interfaces
between the specific type information of a serializable object and an I/O stream. The object

Page 28

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ESerialDataFormat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/general/Date.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/general/general.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStream.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/mmdb1/mmdb1.asn

stream classes that will actually be instantiated by this application, CObjectIStreamXml,
CObjectOStreamAsn, and CObjectOStreamAsnBinary, are descendants of these base classes.

Finally, a variable for the object type that will be generated from the input stream (in this case
a CBiostruc) is defined, and the CObject[I/O]Stream operators "<<" and ">>" are used to read
and write the serialized data to and from the object. (Note that it is not possible to simply "pass
the data through", from the input stream to the output stream, using a construct like: *inObject
>> *outObject). The CObject[I/O]Streams know nothing about the structure of the specific
object - they have knowledge only of the serialization format (text ASN, binary ASN, XML,
etc.). In contrast, the CBiostruc knows nothing about I/O and serialization formats, but it
contains explicit type information about itself. Thus, the CObject[I/O]Streams can apply their
specialized serialization methods to the data members of CBiostruc using the type information
associated with that object's class.

Determining Which Header Files to Include
As always, we include the corelib header files, ncbistd.hpp and ncbiapp.hpp. In addition, the
serial header files that define the generic CObject[IO]Stream objects are included, along with
serial.hpp, which defines generalized serialization mechanisms. Finally, we need to include
the header file for the object type we will be using.

There are two source browsers that can be used to locate the appropriate header file for a
particular object type. All class names in the NCBI C++ Toolkit begin with the letter "C".
Using the class hierarchy browser, we find CBiostruc, derived from CBiostruc_Base, which
is in turn derived from CObject. Following the CBiostruc link, we can then use the locate button
to move to the LXR source code navigator, and there, find the name of the header file. In this
case, we find CBiostruc.hpp is located in include/objects/mmdb1. Alternatively, if we know
the name of the C++ class, the source code navigator's identifier search tool can be used directly.
In summary, the following #include statements appear at the top of xml2asn.cpp:

#include <corelib/ncbiapp.hpp>
#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <objects/mmdb1/Biostruc.hpp>

Determining Which Libraries to Link To
Determining which libraries must be linked to requires a bit more work and may involve some
trial and error. The list of available libraries currently includes:

access biblio cdd featdef general medlars medline mmdb1 mmdb2 mmdb3 ncbimime objprt
proj pub pubmed seq seqalign seqblock seqcode seqfeat seqloc seqres seqset submit xcgi
xconnect xfcgi xhtml xncbi xser

It should be clear that we will need to link to the core library, xncbi, as well as to the serial
library, xser. In addition, we will need to link to whatever object libraries are entailed by using
a CBiostruc object. Minimally, one would expect to link to the mmdb libraries. This in itself
is insufficient however, as the CBiostruc class embeds other types of objects, including
PubMed citations, features, and sequences, which in turn embed additional objects such as
Date. The makefile for xml2asn.cpp, Makefile.xml2asn.app lists the libraries required for
linking in the make variable LIB.

Page 29

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDate.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectIStreamXml.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsn.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectOStreamAsnBinary.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html

###
This file was originally generated from by shell script "new_project.sh"
###
APP = xml2asn
OBJ = xml2asn
LIB = mmdb1 mmdb2 mmdb3 seqloc seqfeat pub medline biblio general xser xncbi
LIBS = $(NCBI_C_LIBPATH) -lncbi $(ORIG_LIBS)

See also the example program, asn2asn.cpp which demonstrates more generalized translation
of Seq-entry and Bioseq-set (defined in seqset.asn).

User-defined type information
The following topics are discussed in this section:
! Introduction
! Installing a GetTypeInfo() function: the BEGIN_/END_macros
! Specifying internal structure and class inheritance: the ADD_ macros

Introduction
Object type information, as it is used in the NCBI C++ Toolkit, is defined in the section on
Runtime Object Type Information. As described there, all of the classes and constructs defined
in the serial include and src directories have a static implementation of a GetTypeInfo() function
that yields a CTypeInfo for the object of interest. In this section, we describe how type
information can also be generated and accessed for user-defined types. We begin with a review
of some of the basic notions introduced in the previous discussion.

The type information for a class is stored outside any instances of that class, in a statically
created CTypeInfo object. A class's type information includes the class layout, inheritance
relations, external alias, and various other attributes that are independent of specific instances.
In addition, the type information object provides an interface to the class's data members.

Limited type information is also available for primitive data types, enumerations, containers,
and pointers. The type information for a primitive type specifies that it is an int, float, or char,
etc., and whether or not that element is signed. Enumerations are a special kind of primitive
type, whose type information specifies its enumeration values and named elements. Type
information for containers can specify both the type of container and the type of elements. The
type information for a pointer provides convenient methods of access to the type information
for the type pointed to.

For all types, the type information is encoded in a static CTypeInfo object, which is then
accessed by all instances of a given type using a GetTypeInfo() function. For class types, this
function is implemented as a static method for the class. For non class types, GetTypeInfoXxx
() is implemented as a static global function, where Xxx is a unique suffix generated from the
type's name. With the first invocation of GetTypeInfo() for a given type, the static CTypeInfo
object is created, which then persists (local to the function GetTypeInfo()) throughout
execution. Subsequent calls to GetTypeInfo() simply return a pointer to this statically created
local object.

In order to make type information about user-defined classes accessible to your application,
the user-defined classes must also implement a static GetTypeInfo() method. A set of
preprocessor macros is available, which greatly simplifies this effort. A pre-requisite to using
these macros however, is that the class definition must include the following line:

Page 30

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqset/seqset.asn

DECLARE_INTERNAL_TYPE_INFO();

This pre-processor macro will generate the following in-line statement in the class definition:

static const NCBI_NS_NCBI::CTypeInfo* GetTypeInfo(void);

As with class objects, there must be some means of declaring the type information function
for an enumeration prior to using the macros which implement that function. Given an
enumeration named EMyEnum, DECLARE_ENUM_INFO(EMyEnum) will generate the
following declaration:

const CEnumeratedTypeValues* GetTypeInfo_enum_EMyEnum(void);

The DECLARE_ENUM_INFO() macro should appear in the header file where the
enumeration is defined, immediately following the definition. The
DECLARE_INTERNAL_ENUM_INFO macro is intended for usage with internal class
definitions, as in:

class ClassWithEnum {
 enum EMyEnum {
 ...
 };

 DECLARE_INTERNAL_ENUM_INFO(EMyEnum);
 ...
};

The C++ Toolkit also allows one to provide type information for legacy C style struct and
choice elements defined in the C Toolkit. The mechanisms used to implement this are
mentioned but not described in detail here, as it is not likely that newly-defined types will be
in these categories.

Installing a GetTypeInfo() function: the BEGIN_/END_macros
Several pre-processor macros are available for the installation of the GetTypeInfo() functions
for different types. Table 2 lists six BEGIN_NAMED_*_INFO macros, along with a
description of the type of object each can be applied to and its expected arguments. Each macro
in Table 2 has a corresponding END_*_INFO macro definition.

The first four macros in Table 2 apply to C++ objects. The
DECLARE_INTERNAL_TYPE_INFO() macro must appear in the class definition's public
section. These macros take two string arguments:
! an external alias for the type, and
! the internal C++ symbolic class name

The next two macros implement global, uniquely named functions which provide access to
type information for C++ enumerations; the resulting functions are named
GetTypeInfo_enum_[EnumName]. The DECLARE_ENUM_INFO() or
DECLARE_ENUM_INFO_IN() macro should be used in these cases to declare the
GetTypeInfo*() functions.

The usage of these six macros generally takes the following form:

Page 31

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BEGIN_*_INFO(ClassName)
{
 ADD_*(MemberName);
 ADD_*(memberName);
 ...
}
END_*_INFO

That is, the BEGIN/END macros are used to generate the function's signature and enclosing
block, and various ADD_* macros are applied to add information about internal members and
class relations.

List of the BEGIN_/END_ macros
! BEGIN_NAMED_CLASS_INFO (ClassAlias, ClassName)
! BEGIN_CLASS_INFO (ClassName)

These macros should be used on classes that do not contain any pure virtual functions. For
example, the GetTypeInfo() method for the CPerson class (used in the chapter on iterators) can
be implemented as:

BEGIN_NAMED_CLASS_INFO("CPerson", CPerson) {

ADD_NAMED_STD_MEMBER("m_Name", m_Name);

ADD_NAMED_STD_MEMBER("m_Addr", m_Addr);

ADD_NAMED_MEMBER("m_NextDoor", m_NextDoor, POINTER, (CLASS, (CPerson)));

} END_CLASS_INFO

or, equivalently, as:

BEGIN_CLASS_INFO(CPerson) {

ADD_STD_MEMBER(m_Name);

ADD_STD_MEMBER(m_Addr);

ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson))); }

END_CLASS_INFO

Here, the CPerson class has two string data members, m_Name and m_Addr, as well as a
pointer to an object of the same type (CPerson*). All built-in C++ types such as int, float, string
etc., use the ADD_NAMED_STD_MEMBER or ADD_STD_MEMBER macros. These and
other macros used to add members are defined in Specifying internal structure and class
inheritance: the ADD_ macros and Table 3.
! BEGIN_NAMED_ABSTRACT_CLASS_INFO(ClassAlias, ClassName)
! BEGIN_ABSTRACT_CLASS_INFO(ClassName)

These macros must be used on abstract base classes which contain pure virtual functions.
Because these abstract classes cannot be instantiated, special handling is required in order to
install their static GetTypeInfo() methods.

Page 32

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ABSTRACT_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ABSTRACT_CLASS_INFO

! BEGIN_NAMED_DERIVED_CLASS_INFO (ClassAlias, ClassName,
BaseClassName)

! BEGIN_DERIVED_CLASS_INFO (ClassName, BaseClassName)
These macros should be used on derived subclasses whose parent classes also have the
GetTypeInfo() method implemented. Data members inherited from parent classes should not
be included in the derived class type information.

BEGIN_DERIVED_CLASS_INFO(CA, CBase) {

// ... data members in CA not inherited from CBase }

END_DERIVED_CLASS_INFO

BEGIN_DERIVED_CLASS_INFO(CB, CBase) {

// ... data members in CB not inherited from CBase } END_DERIVED_CLASS_INFO

NOTE:The type information for classes derived directly from CObject does not however,
follow this protocol. In this special case, although the class is derived from CObject, you should
not use the DERIVED_CLASS macros to implement GetTypeInfo(), but instead use the usual
BEGIN_CLASS_INFO macro. CObject's have a slightly different interface to their type
information (see CObjectGetTypeInfo), and apply these macros differently.
! BEGIN_NAMED_CHOICE_INFO (ClassAlias, ClassName)
! BEGIN_CHOICE_INFO (ClassName)

These macros install GetTypeInfo() for C++choice objects, which are implemented as C++
classes. See Choice objects in the C++ Toolkit for a description of C++ choice objects. Each
of the choice variants occurs as a data member in the class, and the macros used to add choice
variants (ADD_NAMED_*_CHOICE_VARIANT) are used similarly to those which add data
members to classes (see discussion of the ADD* macros below).
! BEGIN_NAMED_ENUM_INFO (EnumAlias, EnumName, IsInteger)
! BEGIN_ENUM_INFO (EnumName, IsInteger)

In addition to the two arguments used by the BEGIN_*_INFO macros for classes, a Boolean
argument (IsInteger) indicates whether or not the enumeration includes arbitrary integer values
or only those explicitly specified.
! BEGIN_NAMED_ENUM_IN_INFO (EnumAlias, CppContext, EnumName,

IsInteger)
! BEGIN_ENUM_IN_INFO (CppContext, EnumName, IsInteger)

These macros also implement the type information functions for C++ enumerations --but in
this case, the enumeration is defined outside the scope where the macro is applied, so a context
argument is required. This new argument, CppContext, specifies the C++ class name or
external namespace where the enumeration is defined.

Again, when using the above macros to install type information, the corresponding class
definitions must include a declaration of the static class member function GetTypeInfo() in
the class's public section. The DECLARE_INTERNAL_TYPE_INFO() macro is provided to
ensure that the declaration of this method is correct. Similarly, the
DECLARE_INTERNAL_ENUM_INFO and DECLARE_ENUM_INFO macros should be
used in the header files where enumerations are defined. The DECLARE_ASN_TYPE_INFO
and DECLARE_ASN_CHOICE_INFO macros can be used to declare the type information
functions for C-style structs and choice nodes.

Page 33

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ENUM_IN_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_DERIVED_CLASS_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObjectGetTypeInfo
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_CHOICE_INFO%20class=
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_CHOICE_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ADD_NAMED_CHOICE_VARIANT
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_ENUM_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_IN_INFO
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=BEGIN_NAMED_ENUM_IN_INFO

Specifying internal structure and class inheritance: the ADD_ macros
Information about internal class structure and inheritance is specified using the ADD_* macros
(see Table 3). Again, each macro has both a "named" and "unnamed" implementation. The
arguments to all of the ADD_NAMED_* macros begin with the external alias and C++ name
of the item to be added.

The ADD_* macros that take only an alias and a name require that the type being added must
be either a built-in type or a type defined by the name argument. When adding a CRef data
member to a class or choice object however, the class referenced by the CRef must be made
explicit with the RefClass argument, which is the C++ class name for the type pointed to.

Similarly, when adding an enumerated data member to a class, the enumeration itself must be
explicitly named. For example, if class CMyClass contains a data member m_MyEnumVal of
type EMyEnum, then the BEGIN_NAMED_CLASS_INFO macro for CMyClass should
contain the statement:

ADD_ENUM_MEMBER (m_MyEnumVal, EMyEnum);

or, equivalently:

ADD_NAMED_ENUM_MEMBER ("m_MyEnumVal", m_MyEnumVal, EMyEnum);

or, to define a "custom" (non-default) external alias:

ADD_NAMED_ENUM_MEMBER ("m_CustomAlias", m_MyEnumVal, EMyEnum);

Here, EMyEnum is defined in the same namespace and scope as CMyClass. Alternatively, if
the enumeration is defined in a different class or namespace (and therefore, then the
ADD_ENUM_IN_MEMBER macro must be used:

ADD_ENUM_IN_MEMBER (m_MyEnumVal, COtherClassName::, EMyEnum);

In this example, EMyEnum is defined in a class named COtherClassName. The CppContext
argument (defined here as COtherClassName::) acts as a scope operator, and can also be used
to specify an alternative namespace. The ADD_NAMED_ENUM_CHOICE_VARIANT and
ADD_NAMED_ENUM_IN_CHOICE_VARIANT macros are used similarly to provide
information about enumerated choice options. The ADD_ENUM_VALUE macro is used to
add enumerated values to the enumeration itself, as demonstrated in the above example of the
BEGIN_NAMED_ENUM_INFO macro.

The most complex macros by far are those which use the TypeMacro and TypeMacroArgs
arguments: ADD(_NAMED)_MEMBER and ADD(_NAMED)_CHOICE_VARIANT. These
macros are more open-ended and allow for more complex specifications. We have already seen
one example of using a macro of this type, in the implementation of the GetTypeInfo() method
for CPerson:

ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)));

The ADD_MEMBER and ADD_CHOICE_VARIANT macros always take at least two
arguments:

the internal member (variant) name

Page 34

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the definition of the member's (variant's) type

Depending on the (second) TypeMacro argument, additional arguments may or may not be
needed. In this example, the TypeMacro is POINTER, which does require additional
arguments. The TypeMacroArgs here specify that m_NextDoor is a pointer to a class type
whose C++ name is CPerson.

More generally, the remaining arguments depend on the value of TypeMacro, as these
parameters complete the type definition. The possible strings which can occur as TypeMacro,
along with the additional arguments required for that type, are given in Table 4.

The ADD_MEMBER macro generates a call to the corresponding ADD_NAMED_MEMBER
macro as follows:

#define ADD_MEMBER(MemberName,TypeMacro,TypeMacroArgs) \
 ADD_NAMED_MEMBER(#MemberName,MemberName,TypeMacro,TypeMacroArgs)

Some examples of using the ADD_MEMBER macro are:

ADD_MEMBER(m_X);
ADD_MEMBER(m_A, STL_auto_ptr, (CLASS, (ClassName)));
ADD_MEMBER(m_B, STL_CHAR_vector, (char));
ADD_MEMBER(m_C, STL_vector, (STD, (int)));
ADD_MEMBER(m_D, STL_list, (CLASS, (ClassName)));
ADD_MEMBER(m_E, STL_list, (POINTER, (CLASS, (ClassName))));
ADD_MEMBER(m_F, STL_map, (STD, (long), STD, (string)));

Similarly, the ADD_CHOICE_VARIANT macro generates a call to the corresponding
ADD_NAMED_CHOICE_VARIANT macro. These macros add type information for the
choice object's variants.

Runtime Object Type Information
The following topics are discussed in this section:
! Introduction
! Motivation
! Object Information Classes
! Usage of object type information

Introduction
Run-time information about data types is necessary in several contexts, including:

When reading, writing, and processing serialized data, where runtime information about a
type's internal structure is needed

When reading from an arbitrary data source, where data members' external aliases must be
used to locate the corresponding class data members (e.g.MyXxx may be aliased as my-xxx in
the input data file)

When using a generalized C++ type iterator to traverse the data members of an object

Page 35

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

When accessing the object type information per se (without regard to any particular object
instance), e.g. to dump it to a file as ASN.1 or DTD specifications (not data)

In the first three cases above, it is necessary to have both the object itself as well as its runtime
type information. This is because in these contexts, the object is usually passed inside a generic
function, as a pointer to its most base parent type CObject. The runtime type information is
needed here, as there is no other way to ascertain the actual object's data members. In addition
to providing this information, a runtime type information object provides an interface for
accessing and modifying these data members.

In the last case (4) above, the type information is used independent of any actual object
instances.

Type and Object specific info—The NCBI C++ Toolkit uses two classes to support these
requirements:
! Type information classes (base class CTypeInfo) are intended for internal usage only,

and they encode information about a type, devoid of any instances of that type. This
information includes the class layout, inheritance relations, external alias, and various
other attributes such as size, which are independent of specific instances. Each data
member of a class also has its own type information. Thus, in addition to providing
information relevant to the member's occurrence in the class (e.g. the member name
and offset), the type information for a class must also provide access to the type
information for each of its members. Limited type information is also available for
types other than classes, such as primitive data types, enumerations, containers, and
pointers. For example, the type information for a primitive type specifies that it is an
int, float, or char, etc., and whether or not that element is signed. Enumerations are a
special kind of primitive type, whose type information specifies its enumeration values
and named elements. Type information for containers specifies both the type of
container and the type of elements that it holds.

! Object information classes (base class CObjectTypeInfo) include a pointer to the type
information as well as a pointer to the object instance, and provide a safe interface to
that object. In situations where type information is used independent of any concrete
object, the object information class simply serves as a wrapper to a type information
object. Where access to an object instance is required, the object pointer provides direct
access to the correctly type-cast instance, and the interface provides methods to access
and/or modify the object itself or members of that object.

The C++ Toolkit stores the type information outside any instances of that type, in a statically
created CTypeInfo object. For class objects, this CTypeInfo object can be accessed by all
instances of the class via a static GetTypeInfo() class method. Similarly, for primitive types
and other constructs that have no way of associating methods with them per se, a static globally
defined GetTypeInfoXxx() function is used to access a static CTypeInfo object. (The Xxx suffix
is used here to indicate that a globally unique name is generated for the function).

All of the automatically generated classes and constructs defined in the C++ Toolkit's
objects/ directory already have static GetTypeInfo() functions implemented for them. In order
to make type information about user-defined classes and elements also accessible, you will
need to implement static GetTypeInfo() functions for these constructs. A number of pre-
processor macros are available to support this activity, and are described in the section on User-
defined Type Information.

Type information is often needed when the object itself has been passed anonymously, or as a
pointer to its parent class. In this case, it is not possible to invoke the GetTypeInfo() method

Page 36

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCTypeInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectTypeInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=GetTypeInfo

directly, as the object's exact type is unknown. Using a <static_cast> operator to enable the
member function is also unsafe, as it may open the door to incorrectly associating an object's
pointer with the wrong type information. For these reasons, the CTypeInfo class is intended
for internal usage only, and it is the CObjectTypeInfo classes that provide a more safe and
friendly user interface to type information.

Motivation
We use a simple example to help motivate the use of this type and object information model.
Let us suppose that we would like to have a generic function LoadObject(), which can populate
an object using data read from a flat file. For example, we might like to have:

bool LoadObject(Object& myObj, istream& is);

where myObj is an instance of some subclass of Object. Assuming that the text in the file is
of the form:

MemberName1 value1
MemberName5 value5
MemberName2 value2
:

we would like to find the corresponding data member in myObj for each MemberName, and
set that data member's value accordingly. Unfortunately, myObj cannot directly supply any
useful type information, as the member names we seek are for a specific subclass of Object.
Now suppose that we have an appropriate type information object available for myObj, and
consider how this might be used:

bool LoadObject(TypeInfo& info, Object& myObj, istream& is)
{
 string myName, myValue;

 while (!is.eof()) {
 is >> myName >> myValue;
 void* member = FindMember(info, myObj, myName);
 AssignValue(member, myValue);
 }
}

Here, we assume that our type information object, info, stores information about the memory
offset of each data member in myObj, and that such information can be retrieved using some
sort of identifying member name such as myName. This is not too difficult to imagine, and
indeed, this is exactly the type of information and facility provided by the C++ Toolkit's type
information classes. The FindMember() function just needs to return a void pointer to the
appropriate location in memory. The AssignValue() function presents a much greater challenge
however, as its two sole arguments are a void pointer and a string. This would be fine if the
data member was indeed a void pointer, and a string value was acceptable. In general this is
not the case, and stronger methods are clearly needed.

In particular, for each data member encountered, we need to retrieve the type of that member
as well as its location in memory, so as to process myValue appropriately before assigning it.
In addition, we need safer mechanisms for making such "untyped" assignments. Ideally, we
would like a FindMember() function that returns a correctly cast pointer to that data member,

Page 37

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

along with its associated type information. This is what the object information classes provide
- a pointer to the object instance as well as a pointer to its static type information. The interface
to the object information class also provides a number of methods such as GetClassMember
(), GetTypeFamily(), SetPrimitiveValue(), etc., to support the type of activity described above.

Object Information Classes
The following topics are discussed in this section:
! CObjectTypeInfo (*)
! CConstObjectInfo (*)
! CObjectInfo (*)

CObjectTypeInfo (*)—This is the base class for all object information classes. It is intended
for usage where there is no concrete object being referenced, and all that is required is access
to the type information. A CObjectTypeInfo contains a pointer to a low-level CTypeInfo object,
and functions as a user-friendly wrapper class.

The constructor for CObjectTypeInfo takes a pointer to a const CTypeInfo object as its single
argument. This is precisely what is returned by all of the static GetTypeInfo() functions. Thus,
to create a CObjectTypeInfo for the CBioseq class - without reference to any particular instance
of CBioseq - one might use:

CObjectTypeInfo objInfo(CBioseq::GetTypeInfo());

One of the most important methods provided by the CObjectTypeInfo class interface is
GetTypeFamily(), which returns an enumerated value indicating the type family for the object
of interest. Five type families are defined by the ETypeFamily enumeration:

ETypeFamily GetTypeFamily(void) const;
 enum ETypeFamily {
 eTypeFamilyPrimitive,
 eTypeFamilyClass,
 eTypeFamilyChoice,
 eTypeFamilyContainer,
 eTypeFamilyPointer
};

Different queries become appropriate depending on the ETypeFamily of the object. For
example, if the object is a container, one might need to determine the type of container (e.g.
whether it is a list, map etc.), and the type of element. Similarly, if an object is a primitive type
(e.g. int, float, string, etc.), an appropriate query becomes what the value type is, and in the
case of integer-valued types, whether or not it is signed. Finally, in the case of more complex
objects such as class and choice objects, access to the type information for the individual data
members and choice variants is needed. The following methods are included in the
CObjectTypeInfo interface for these purposes:
! GetTypeFamily() == eTypeFamilyPrimitive:

" EPrimitiveValueType GetPrimitiveValueType(void) const;
" bool IsPrimitiveValueSigned(void) const;

! GetTypeFamily() == eTypeFamilyClass:
" CMemberIterator BeginMembers(void) const;

Page 38

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ETypeFamily
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectTypeInfo.html

! CMemberIterator FindMember(const string& memberName) const;
! CMemberIterator FindMemberByTag(int memberTag) const;

" GetTypeFamily() == eTypeFamilyChoice:
! CVariantIterator BeginVariants(void) const;
! CVariantIterator FindVariant(const string& memberName) const;
! CVariantIterator FindVariantByTag(int memberTag) const;

" GetTypeFamily() == eTypeFamilyContainer:
! EContainerType GetContainerType(void) const;
! CObjectTypeInfo GetElementType(void) const;

" GetTypeFamily() == eTypeFamilyPointer:
! CObjectTypeInfo GetPointedType(void) const;

The two additional enumerations referred to here, EContainerType and
EPrimitiveValueType, are defined, along with ETypeFamily, in include/serial/serialdef.hpp.

Different iterator classes are used for iterating over class data members versus choice variant
types. Thus, if the object of interest is a C++ class object, then access to the type information
for its members can be gained using a CObjectTypeInfo::CMemberIterator. The
BeginMembers() method returns a CMemberIterator pointing to the first data member in the
class; the FindMember*() methods return a CMemberIterator pointing to a data member whose
name or tag matches the input argument. The CMemberIterator class is a forward iterator whose
operators are defined as follows:
" the ++ operator increments the iterator (makes it point to the next class member)
" the () operator tests that the iterator has not exceeded the legitimate range
" the * dereferencing operator returns a CObjectTypeInfo for the data member the

iterator currently points to
Similarly, the BeginVariants() and FindVariant() methods allow iteration over the choice
variant data types for a choice class, and the dereferencing operation yields a CObjectTypeInfo
object for the choice variant currently pointed to by the iterator.

CConstObjectInfo (*)—The CConstObjectInfo (derived from CObjectTypeInfo) adds an
interface to access the particular instance of an object (in addition to the interface inherited
from CObjectTypeInfo, which provides access to type information only). It is intended for
usage with const instances of the object of interest, and therefore the interface does not permit
any modifications to the object. The constructor for CConstObjectInfo takes two arguments:

CConstObjectInfo(const void* instancePtr, const CTypeInfo* typeinfoPtr);

(Alternatively, the constructor can be invoked with a single STL pair containing these two
objects.)

Each CConstObjectInfo contains a pointer to the object's type information as well as a pointer
to an instance of the object. The existence or validity of this instance can be checked using any
of the following CConstObjectInfo methods and operators:
" bool Valid(void) const;
" operator bool(void) const;
" bool operator!(void) const;

Page 39

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCConstObjectInfo.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EContainerType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EPrimitiveValueType
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/serial/serialdef.hpp

For primitive type objects, the CConstObjectInfo interface provides access to the currently
assigned value using GetPrimitiveValueXxx(). Here, Xxx may be Bool, Char, Long, ULong,
Double, String, ValueString, or OctetString. In general, to get a primitive value, one first
applies a switch statement to the value returned by GetPrimitiveValueType(), and then calls
the appropriate GetPrimitiveValueXxx() method depending on the branch followed, e.g.:

switch (obj.GetPrimitiveValueType()) {
case ePrimitiveValueBool:
 bool b = obj.GetPrimitiveValueBool();
 break;

case ePrimitiveValueInteger:
 if (obj.IsPrimitiveValueSigned()) {
 long l = obj.GetPrimitiveValueLong();
 } else {
 unsigned long ul = obj.GetPrimitiveValueULong();
 }
 break;
 //... etc.
}

Member iterator methods are also defined in the CConstObjectInfo class, with a similar
interface to that found in the CObjectTypeInfo class. In this case however, the dereferencing
operators return a CConstObjectInfo object - not a CObjectTypeInfo object - for the current
member. For C++class objects, these member functions are:
! CMemberIterator BeginMembers(void) const;
! CMemberIterator FindClassMember(const string& memberName) const;
! CMemberIterator FindClassMemberByTag(int memberTag) const;

For C++ choice objects, only one variant is ever selected, and only that choice variant is
instantiated. As it does not make sense to define a CConstObjectInfo iterator for uninstantiated
variants, the method GetCurrentChoiceVariant() is provided instead. The dereferencing
operator (*) can be applied to the object returned by this method to obtain a CConstObjectInfo
for the variant. Of course, type information for unselected variants can still be accessed using
the CObjectTypeInfo methods.

The CConstObjectInfo class also defines an element iterator for container type objects.
CConstObjectInfo::CElementIterator is a forward iterator whose interface includes increment
and testing operators. Dereferencing is implemented by the iterator's GetElement() method,
which returns a CConstObjectInfo for the element currently pointed to by the iterator.

Finally, for pointer type objects, the type returned by the method GetPointedObject() is also a
CConstObjectInfo for the object - not just a CObjectTypeInfo.

CObjectInfo (*)—The CObjectInfo class is in turn derived from CConstObjectInfo, and is
intended for usage with mutable instances of the object of interest. In addition to all of the
methods inherited from the parent class, the interface to this class also provides methods that
allow modification of the object itself or its data members.

For primitive type objects, a set of SetPrimitiveValueXxx() methods are available,
complimentary to the GetPrimitiveValueXxx() methods described above. Methods that return
member iterator objects are again reimplemented, and the de-referencing operators now return

Page 40

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectInfo.html

a CObjectInfo object for that data member. As the CObjectInfo now points to a mutable object,
these iterators can be used to set values for the data member. Similarly,
GetCurrentChoiceVariant() now returns a CObjectInfo, as does
CObjectInfo::CElementIterator::GetElement().

Usage of object type information
We can now reconsider how our LoadObject() function might be implemented using the
CObjectInfo class:

bool LoadObject(CObjectInfo& info, CNcbiIStream& is)
{
 string alias, myValue;

 while (!is.eof()) {
 is >> alias >> myValue;

 CObjectInfo dataMember(*info.FindClassMember(alias));
 if (!dataMember) {
 ERR_POST(ERROR, "Couldn't find member named:" << alias);
 }
 SetValue(dataMember, myValue);
 }
}

Here, info contains pointers to the CObject itself as well as to its associated CTypeInfo object.
For each member alias read from the file, we apply FindClassMember(alias), and dereference
the returned iterator to retrieve a CObjectInfo object for that member. We then use the operator
() to verify that the member was located, and if so, use the member's CObjectInfo to set a value
in the function SetValue():

void SetValue(const CObjectInfo& obj, const string value)
{
 if (obj.GetTypeFamily() == eTypeFamilyPrimitive) {

 switch (obj.GetPrimitiveValueType()) {

 case ePrimitiveValueBool:
 obj.SetPrimitiveValueBool (atoi (value.c_str()));
 break;

 case ePrimitiveValueChar:
 obj.SetPrimitiveValueChar (value.c_str()[0]);
 break;

 //... etc
 }
 } else {
 ERR_POST(ERROR, "Attempt to assign non-primitive from string:" <<
value);
 }
}

Page 41

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

In this example, SetValue() can only assign primitive types. More generally however, the
CObjectInfo class allows the assignment of more complex types that are simply not
implemented here. Note also that the arguments to SetValue() are const, even though the
function does modify the value of the data instance pointed to. In particular, the type const
CObjectInfo should not be confused with the type CConstObjectInfo. The former specifies that
object information construct is non-mutable, although the instance it points to can be modified.
The latter specifies that the instance itself is non-mutable.

In addition to user-specific applications of the type demonstrated in this example, the generic
implementations of the C++ type iterators and the CObject[IO]Streamclass methods provide
excellent examples of how runtime object type information can be deployed.

As a final example of how type information might be used, we consider an application whose
simple task is to translate a data file on an input stream to a different format on an output stream.
One important use of the object classes defined in include/objects is the hooks and parsing
mechanisms available to applications utilizing CObject[IO]Streams. The stream objects
specialize in different formats (such as XML or ASN.1), and must work in concert with these
type-specific object classes to interpret or generate serialized data. In some cases however, the
dynamic memory allocation required for large objects may be substantial, and it is preferable
to avoid actually instantiating a whole object all at once.

Instead, it is possible to use the CObjectStreamCopier class, described in CObject[IO]Streams.
Briefly, this class holds two CObject[IO]Stream data members pointing to the input and output
streams, and a set of Copy methods which take a CTypeInfo argument. Using this class, it is
easy to translate files between different formats; for example:

auto_ptr<CObjectIStream> in(CObjectIStream::Open
("mydata.xml",eSerial_Xml));
auto_ptr<CObjectOStream> out(CObjectOStream::Open
("mydata.asn",eSerial_AsnBinary));
CObjectStreamCopier copier(*in, *out);
copier.Copy (CBioseq_set::GetTypeInfo());

copies a CBioseq_set encoded in XML to a new file, reformatted in ASN.1 binary format.

Choice objects in the NCBI C++ Toolkit
The following topics are discussed in this section:
! Introduction
! C++ choice objects

Introduction
The datatool program processes the ASN.1 specification files (*.asn) in the src/objects/
directories to generate the associated C++ class definitions. The corresponding program
implemented in the C Toolkit, asntool, used the ASN.1 specifications to generate C enums,
structs, and functions. In contrast, datatool must generate C++ enums, classes and methods. In
addition, for each defined object type, datatool must also generate the associated type
information method or function.

There is a significant difference in how these two tools implement ASN.1 choice elements. As
an example, consider the following ASN.1 specification:

Page 42

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObjectStreamCopier.html

Object-id ::= CHOICE {
 id INTEGER,
 str VisibleString
}

The ASN.1 choice element specifies that the corresponding object may be any one of the listed
types. In this case, the possible types are an integer and a string. The approach used in asntool
was to implement all choice objects as ValNodes, which were in turn defined as:

typedef struct valnode {
 unsigned choice;
 DataVal data;
 struct valnode *next;
} ValNode;

The DataVal field is a union, which may directly store numerical values, or alternatively, hold
a void pointer to a character string or C struct. Thus, to process a choice element in the C
Toolkit, one could first retrieve the choice field to determine how the data should be interpreted,
and subsequently, retrieve the data via the DataVal field. In particular, no explicit
implementation of individual choice objects was used, and it was left to functions which
manipulate these elements to enforce logical consistency and error checking for legitimate
values. A C struct which included a choice element as one of its fields merely had to declare
that element as type ValNode. This design was further complicated by the use of a void pointer
to store non-primitive types such as structs or character strings.

In contrast, the C++ datatool implementation of choice elements defines a class with built-in,
automatic error checking for each choice object. The usage of CObject class hierarchy (and
the associated type information methods) solves many of the problems associated with working
with void pointers.

C++ choice objects
The classes generated by datatool for choice elements all have the following general structure:

class C[AsnChoiceName] : public CObject
{
public:
 ... // constructors and destructors
 DECLARE_INTERNAL_TYPE_INFO(); // declare GetTypeInfo() method
 enum E_Choice { // enumerate the class names
 e_not_set, // for the choice variants
 e_Xxx,
 ...
 };
 typedef CXxx TXxx; // typedef each variant class
 ...
 virtual void Reset(void); // reset selection to none
 E_Choice Which(void) const; // return m_choice
 void Select(E_Choice index, // change the current selection
 EResetVariant reset);
 static string SelectionName(E_Choice index);
 bool IsXxx(void) const; // true if m_choice == eXxx
 CXxx& GetXxx(void);

Page 43

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 const CXxx& GetXxx(void) const;
 CXxx& SetXxx(void);
 void SetXxx(const CRef<CXxx>& ref);
 ...
private:
 E_Choice m_choice; // choice state
 union {
 TXxx m_Xxx;
 ...
 };
 CObject *m_object; // variant's data
 ...
};

For the above ASN.1 specification, datatool generates a class named CObject_id, which is
derived from CObject. For each choice variant in the specification, an enumerated value (in
E_Choice), and an internal typedef are defined, and a declaration in the union data member is
made. For this example then, we would have:

enum E_Choice {
 e_not_set,
 e_Id,
 e_Str
};
...
typedef int TId;
typedef string TStr;
...
union {
 TId m_Id;
 string *m_string;
};

In this case both of the choice variants are C++ built-in types. More generally however, the
choice variant types may refer to any type of object. For convenience, we refer to their C++
type names here as "CXxx",

Two private data members store information about the currently selected choice variant:
m_choice holds the enum value, and m_Xxx holds (or points to a CObject containing) the
variant's data. The choice object's member functions provide access to these two data members.
Which() returns the currently selected variant's E_Choice enum value. Each choice variant has
its own Get() and Set() methods. Each GetXxx() method throws an exception if the variant
type for that method does not correspond to the current selection type. Thus, it is not possible
to unknowingly retrieve the incorrect type of choice variant.

Select(e_Xxx) uses a switch(e_Xxx) statement to initialize m_Xxx appropriately, sets
m_choice to e_Xxx, and returns. Two SetXxx() methods are defined, and both use this Select
() method. SetXxx() with no arguments calls Select(e_Xxx) and returns m_Xxx (as initialized
by Select()). SetXxx(TXxx& value) also calls Select(e_Xxx) but resets m_Xxx to value before
returning.

Some example choice objects in the C++ Toolkit are:

Page 44

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! CDate
! CInt_fuzz
! CObject_id
! CPerson_id
! CAnnotdesc
! CSeq_annot

Traversing a Data Structure
The following topics are discussed in this section:
! Locating the Class Definitions
! Accessing and Referencing Data Members
! Traversing a Biostruc
! Iterating Over Containers

Locating the Class Definitions
In general, traversing through a class object requires that you first become familiar with the
internal class structure and member access functions for that object. In this section we consider
how you can access this information in the source files, and apply it. The example provided
here involves a Biostruc type which is implemented by class CBiostruc, and its base (parent)
class, CBiostruc_Base.

The first question is: how do I locate the class definitions implementing the object to be
traversed? There are now two source browsers which you can use. To obtain a synopsis of the
class, you can search the index or the class hierarchy of the Doc++ browser and follow a link
to the class. For example, a synopsis of the CBiostruc class is readily available. From this page,
you can also access the relevant source files archived by theLXR browser, by following the
Locate CBiostruc link. Alternatively, you may want to access the LXR engine directly by using
the Identifier search tool.

Because we wish to determine which headers to include, the synopsis displayed by the Identifier
search tool is most useful. There we find a single header file, Biostruc.hpp, listed as defining
the class. Accordingly, this is the header file we must include. The CBiostruc class inherits
from the CBiostruc_Base class however, and we will need to consult that file as well to
understand the internal structure of the CBiostruc class. Following a link to the parent class
from the class hierarchy browser, we find the definition of the CBiostruc_Base class.

This is where we must look for the definitions and access functions we will be using. However,
it is the derived user class (CBiostruc) whose header should be #include'd in your source files,
and which should be instantiated by your local program variable. For a more general discussion
of the relationship between the base parent objects and their derived user classes, see Working
with the serializable object classes.

Accessing and Referencing Data Members
Omitting some of the low-level details of the base class, we find the CBiostruc_Base class has
essentially the following structure:

class CBiostruc_Base : public CObject
{
public:

Page 45

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__Base.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDate.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCInt__fuzz.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCObject__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCPerson__id.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCAnnotdesc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCSeq__annot.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__Base.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classes.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/hierarchy.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBiostruc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc.hpp

 // type definitions
 typedef list< CRef<CBiostruc_id> > TId;
 typedef list< CRef<CBiostruc_descr> > TDescr;
 typedef list< CRef<CBiostruc_feature_set> > TFeatures;
 typedef list< CRef<CBiostruc_model> > TModel;
 typedef CBiostruc_graph TChemical_graph;
 // Get() members
 const TId& GetId(void) const;
 const TDescr& GetDescr(void) const;
 const TChemical_graph& GetChemical_graph(void) const;
 const TFeatures& GetFeatures(void) const;
 const TModel& GetModel(void) const;
 // Set() members
 TId& SetId(void);
 TDescr& SetDescr(void);
 TChemical_graph& SetChemical_graph(void);
 TFeatures& SetFeatures(void);
 TModel& SetModel(void);
private:
 TId m_Id;
 TDescr m_Descr;
 TChemical_graph m_Chemical_graph;
 TFeatures m_Features;
 TModel m_Model;
};

With the exception of the structure's chemical graph, each of the class's private data members
is actually a list of references (pointers), as specified by the type definitions. For example, TId
is a list of CRef objects, where each CRef object points to a CBiostruc_id. The CRef class is
a type of smart pointer used to hold a pointer to a reference-counted object. The dereferencing
operator, when applied to a (dereferenced) iterator pointing to an element of CBiostruc::TId,
e.g. **CRef_i, will return a CBiostruc_id. Thus, the call to GetId() returns a list which must
then be iterated over and dereferenced to get the individual CBiostruc_id objects. In contrast,
the function GetChemicalGraph() returns the object directly, as it does not involve a list or a
CRef.

NOTE: It is strongly recommended that you use type names defined in the generated classes
(e.g. TId, TDescr) rather than generic container names (list< CRef<CBiostruc_id> > etc.). The
real container class may change occasionally and you will have to modify the code using
generic container types every time it happens. When iterating over a container it's
recommended to use ITERATE and NON_CONST_ITERATE macros.

The GetXxx() and SetXxx() member functions define the user interface to the class, providing
methods to access and modify ("mutate") private data. In addition, most classes, including
CBiostruc, have IsSetXxx() and ResetXxx() methods to validate and clear the data members,
respectively.

Traversing a Biostruc
The program traverseBS.cpp (see Box 4) demonstrates how one might load a serial data file
and iterate over the components of the resulting object. This example reads from a text ASN.
1 Biostruc file and stores the information into a CBiostruc object in memory. The overloaded
Visit() function is then used to recursively examine the object CBiostruc bs and its components.

Page 46

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBiostruc__id.html

Visit(bs) simply calls Visit() on each of the CBiostruc data members, which are accessed using
bs.GetXxx(). The information needed to write each of these functions - the data member types
and member function signatures - is contained in the respective header files. For example,
looking at Biostruc_.hpp, we learn that the structure's descriptor list can be accessed using
GetDescr(), and that the type returned is a list of pointers to descriptors:

typedef list< CRef<CBiostruc_descr> > TDescr;
const TDescr& GetDescr(void) const;

Consulting the base class for CBiostruc_desc in turn, we learn that this class has a choice state
defining the type of value stored there as well as the method that should be used to access that
value. This leads to an implementation of Visit(CBiostruc::TDescr DescrList) that uses an
iterator over its list argument and a switch statement over the current descriptor's choice state.

Iterating Over Containers
Most of the Visit() functions implemented here rely on standard STL iterators to walk through
a list of objects. The general syntax for using an iterator is:

ContainerType ContainerName;
for (ContainerType::IteratorType
 i = ContainerName.begin(); i != ContainerName.end(); ++i) {

 ObjectType ObjectName = *i;
 // ...
}

Dereferencing the iterator is required, as the iterator behaves like a pointer that traverses
consecutive elements of the container. For example, to iterate over the list of descriptors in the
Biostruc, we use a container of type CBiostruc::TDescr, and an iterator of type const_iterator
to ensure that the data is not mutated in the body of the loop. Because the descriptor list contains
pointers (CRefs) to objects, we will actually need to dereference twice to get to the objects
themselves.

for (CBiostruc::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

 const CBiostruc_descr& thisDescr = **i;
 // ...
}

In traversing the descriptor list in this example, we handled each type of descriptor with an
explicit case statement. In fact, however, we really only visit those descriptors whose types
have string representations: TName, TPdb_comment, and TOther_comment. The other two
descriptor types, THistory and TAttribute, are objects that are "visited" recursively, but the
associated visit functions are not actually implemented (see Box 5, traverseBS.hpp).

The NCBI C++ Toolkit provides a rich and powerful set of iterators for various application
needs. An alternative to using the above switch statement to visit elements of the descriptor
list would have been to use an NCBI CStdTypeIterator that only visits strings. For example,
we could implement the Visit function on a CBiostruc::TDescr as follows:

Page 47

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc_descr_.hpp#L62
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/mmdb1/Biostruc_.hpp#L65

void Visit (const CBiostruc::TDescr& descList)
{
 for (CBiostruc::TDescr::const_iterator i1 = descList.begin();
 i1 != descList.end(); ++i1) {

 for (CStdTypeConstIterator<string> i = ConstBegin(**i1); i; ++i) {
 cout << *i << endl;
 }
 }
}

In this example, the iterator will skip over all but the string data members.

The CStdTypeIterator is one of several iterators which makes use of an object's type
information to implement the desired functionality. We began this section by positing that the
traversal of an object requires an a priori knowledge of that object's internal structure. This is
not strictly true however, if type information for the object is also available. An object's type
information specifies the class layout, inheritance relations, data member names, and various
other attributes such as size, which are independent of specific instances. All of the C++ type
iterators described in The NCBI C++ Toolkit Iterators section utilize type information, which
is the topic of the next section: Runtime Object Type Information.

SOAP support
The NCBI C++ Toolkit SOAP server and client provide a limited support of version 1.1 of
SOAP specification over HTTP transport protocol, and use document binding style with literal
schema definition. Document/literal is the style that most Web services' platforms are focusing
on currently. Parsing of WSDL (Web services description language) specification and
automatic C++ code generation are not supported. Still, since WSDL message types section
uses XML schema, and since application is capable of parsing Schema, the major part of C+
+ code generation can be done automatically.

SOAP message
The core section of the SOAP specification is the messaging framework. The client sends a
request and receives a response in a form of a SOAP message. A SOAP message is a one-way
transmission between SOAP nodes: from a SOAP sender to a SOAP receiver. The root element
of a SOAP message is the Envelope. The Envelope contains an optional Header element
followed by a mandatory Body element. The Body element represents the message payload -
it is a generic container that can contain any number of elements from any namespace.

In the Toolkit, the CSoapMessage class defines Header and Body containers. Serializable
objects (derived from the CSerialObject class) can be added into these containers using
AddObject() method. Such message object can then be sent to a message receiver. The response
will also come in a form of an object of CSoapMessage class. At this time, it is possible to
investigate its contents using GetContent() method; or ask directly for an object of a specific
type using SOAP_GetKnownObject() template function.

SOAP client (CSoapHttpClient)
SOAP client is the initial SOAP sender - a node that originates a SOAP message. Knowing
SOAP receiver's URL, it sends a SOAP message request to it and receives a response using
Invoke() method.

Page 48

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSoapHttpClient
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSoapMessage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSerialObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSoapMessage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=SOAP_GetKnownObject

Internally, data objects in the Toolkit SOAP library are serialized and de-serialized using
serializable objects streams. Since each serial data object also provides access to its type
information, writing such objects is a straightforward operation. Reading the response is not
that transparent. Before actually parsing incoming data, SOAP processor should decide what
object type information to use. Hence, a client application should tell the SOAP processor what
types of data objects it might encounter in the incoming data. If the processor recognizes the
object's type, it will parse it and store as a correct data object of this specific type. Otherwise,
the processor will parse the data into an object of CAnyContentObject class.

So, a SOAP client must define the server's URL and register (using RegisterObjectType()
method), object types which might be present in incoming data. Other functions encapsulate
valid operations for a given Web server.

SOAP server (CSoapServerApplication)
SOAP server is an ultimate SOAP receiver. It receives SOAP messages from a client, and is
responsible for processing the contents of the SOAP Body and SOAP Header.

The processing of incoming requests is being done with the help of "message listeners" -the
server methods which analyze requests in the form of objects of CSoapMessage class and create
a response. It is possible to have more than one listener for each message. When such listener
returns TRUE, the SOAP server base class object passes the request to the next listener, if it
exists, and so on.

To give server the ability to return WSDL specification the name of the specification file should
be provided in the SOAP server constructor, and the file should be deployed alongside the
server.

Sample SOAP server and client
The Toolkit contains a simple example of SOAP client and server in its src/app/sample/soap
folder.

The sample SOAP server supports the following operations:

GetDescription() - server receives an empty object of type Description, and it sends back a
single string;

GetVersion() - server receives a string, and it sends back two integer numbers and a string;

DoMath() - server receives a list of Operand objects (two integers and an enumerated value),
and it sends back a list of integers

The starting point is the WSDL specification - src\app\sample\soap\server
\soap_server_sample.wsdl

Both client and server use data objects whose types are described in the message types section
of WSDL specification. So, we extract the XML schema part of the specification into a separate
file, and create a static library - soap_dataobj. All code in this library is generated automatically
by .

Sample server—Server is a CGI application. In its constructor we define the name of WSDL
specification file and the default namespace for the data objects. Since server's ability to return
a WSDL specification upon request from a client is optional, it is possible to give an empty

Page 49

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CSoapMessage
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAnyContentObject
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSoapServerApplication

file name here. Once the name is not empty, the WSDL file should be deployed alongside the
server.

During initialization server should register incoming object types and message listeners:

// Register incoming object types, so the SOAP message parser can

// recognize these objects in incoming data and parse them correctly.

RegisterObjectType(CVersion::GetTypeInfo);

RegisterObjectType(CMath::GetTypeInfo);

// Register SOAP message processors.

// It is possible to set more than one listeners for a particular message;

// such listeners will be called in the order of registration.

AddMessageListener((TWebMethod)(&CSampleSoapServerApplication::GetDescription),
"Description"); AddMessageListener((TWebMethod)
(&CSampleSoapServerApplication::GetDescription2), "Description");

AddMessageListener((TWebMethod)(&CSampleSoapServerApplication::GetVersion),
"Version");

AddMessageListener((TWebMethod)(&CSampleSoapServerApplication::DoMath),
"Math");

Note that while it is possible to register the Description type, it does not make much sense: the
object has no content, so there is no difference whether it will be parsed correctly or not.

Message listeners are user-defined functions that process incoming messages. They analyze
the content of SOAP message request and populate the response object.

Sample client—Unlike SOAP server, SOAP client object has nothing to do with
CCgiApplication class. It is "just" an object. As such, it can be created and destroyed when
appropriate. Sample SOAP client constructor defines the server URL and the default
namespace for the data objects. Its constructor is the proper place to register incoming object
types:

// Register incoming object types, so the SOAP message parser can

// recognize these objects in incoming data and parse them correctly.

RegisterObjectType(CDescriptionText::GetTypeInfo);

RegisterObjectType(CVersionResponse::GetTypeInfo);

RegisterObjectType(CMathResponse::GetTypeInfo);

Other methods encapsulate operations supported by the SOAP server, which the client talks
to. Common schema is to create two SOAP message object - request and response, populate
request object, call Invoke() method of the base class, and extract the meaningful data from
the response.

Page 50

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search?string=CCgiApplication

Figure 1. Traversal path of the CTypeIterator

Page 51

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 1. Network Service Client Generation Parameters
Name Value

class (REQUIRED) C++ class name to use.

service Named service to connect to; if you do not define this, you will need to override x_Connect in the user class.

serialformat Serialization format: normally AsnBinary, but AsnText and Xml are also legal.

request (REQUIRED) ASN.1 type for requests; may include a module name, a field name (as with Entrez2), or both. Must be a CHOICE.

reply (REQUIRED) ASN.1 type for replies, as above.

reply.choice_name Reply choice appropriate for requests of type choice_name; defaults to choice_name as well, and determines the return
type of AskChoice_name. May be set to special to suppress automatic method generation and let the user class handle
the whole thing.

Page 52

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2. BEGIN_NAMED_* Macro names and their usage
Macro name Used for Arguments

BEGIN_NAMED_CLASS_INFO Non-abstract class object ClassAlias, ClassName

BEGIN_NAMED_ABSTRACT_CLASS_INFO Abstract class object ClassAlias, ClassName

BEGIN_NAMED_DERIVED_CLASS_INFO Derived subclass object ClassAlias, ClassName, BaseClassName

BEGIN_NAMED_CHOICE_INFO C++ class choice object ClassAlias, ClassName

BEGIN_NAMED_ENUM_INF Enum object EnumAlias, EnumName, IsInteger

BEGIN_NAMED_ENUM_IN_INFO internal Enum object EnumAlias, CppContext, EnumName, IsInteger

Page 53

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 3. ADD_* Macros and their usage
Macro name Usage Arguments

ADD_NAMED_STD_MEMBER Add a standard data member
to a class

MemberAlias, MemberName

ADD_NAMED_CLASS_MEMBER Add an internal class
member to a class

MemberAlias, MemberName

ADD_NAMED_SUB_CLASS Add a derived subclass to a
class

SubClassAlias, SubClassName

ADD_NAMED_REF_MEMBER Add a CRef data member to
a class

MemberAlias, MemberName, RefClass

ADD_NAMED_ENUM_MEMBER Add an enumerated data
member to a class

MemberAlias, MemberName, EnumName

ADD_NAMED_ENUM_IN_MEMBER Add an externally defined
enumerated data member to
a class

MemberAlias, MemberName, CppContext, EnumName

ADD_NAMED_MEMBER Add a data member of the
type specified by
TypeMacro to a class

MemberAlias, MemberName, TypeMacro,
TypeMacroArgs

ADD_NAMED_STD_CHOICE_VARIANT Add a standard variant type
to a C++ choice object

VariantAlias, VariantName

ADD_NAMED_REF_CHOICE_VARIANT Add a CRef variant to a C+
+ choice object

VariantAlias, VariantName, RefClass

ADD_NAMED_ENUM_CHOICE_VARIANT Add an enumeration variant
to a C++ choice object

VariantAlias, VariantName, EnumName

ADD_NAMED_ENUM_IN_CHOICE_VARIANT Add an enumeration variant
to a C++ choice object

VariantAlias, VariantName, CppContext, EnumName

ADD_NAMED_CHOICE_VARIANT Add a variant of the type
specified by TypeMacro to a
C++ choice object

VariantAlias, VariantName, TypeMacro, TypeMacroArgs

ADD_ENUM_VALUE Add a named enumeration
value to an enum

EnumValName, Value

Page 54

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 4. Type macros and their arguments
TypeMacro TypeMacroArgs

CLASS (ClassName)

STD (C++ type)

StringStore ()

null ()

ENUM (EnumType, EnumName)

POINTER (Type,Args)

STL_multiset (Type,Args)

STL_set (Type,Args)

STL_multimap (KeyType,KeyArgs,ValueType,ValueArgs)

STL_map (KeyType,KeyArgs,ValueType,ValueArgs)

STL_list (Type,Args)

STL_list_set (Type,Args)

STL_vector (Type,Args)

STL_CHAR_vector (C++ Char type)

STL_auto_ptr (Type,Args)

CHOICE (Type,Args)

Box 1

// File name: xml2asn.cpp
// Description: Reads an XML Biostruc file into memory
// and saves it in ASN.1 text and binary formats.#include <corelib/
ncbistd.hpp>
#include <corelib/ncbiapp.hpp>
#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <objects/mmdb1/Biostruc.hpp>
USING_NCBI_SCOPE;
class CTestAsn : public CNcbiApplication {
public:
 virtual int Run ();
};
using namespace objects;int CTestAsn::Run() {
 auto_ptr<CObjectIStream>
 xml_in(CObjectIStream::Open("1001.xml", eSerial_Xml));
 auto_ptr<CObjectOStream>
 txt_out(CObjectOStream::Open("1001.asntxt", eSerial_AsnText));
 auto_ptr<CObjectOStream>
 bin_out(CObjectOStream::Open("1001.asnbin", eSerial_AsnBinary));
 CBiostruc bs;
 *xml_in >> bs;
 *txt_out << bs;
 *bin_out << bs;

Page 55

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 return 0;
}
int main(int argc, const char* argv[])
{
 CNcbiOfstream diag("asntrans.log");
 SetDiagStream(&diag);
 CTestAsn theTestApp;
 return theTestApp.AppMain(argc, argv);
}

Box 2

// File name: ctypeiter.cpp
// Description: Demonstrate using a CTypeIterator
// Notes: build with xncbi and xser libraries

#include "ctypeiter.hpp"
#include <serial/serial.hpp>
#include <serial/objistr.hpp>
#include <serial/objostr.hpp>
#include <serial/iterator.hpp>
#include <serial/serialimpl.hpp>

// type information for class CPerson
BEGIN_CLASS_INFO(CPerson){
 ADD_STD_MEMBER(m_Name);
 ADD_STD_MEMBER(m_Addr);
 ADD_MEMBER(m_NextDoor, POINTER, (CLASS, (CPerson)))->SetOptional();
}END_CLASS_INFO

// type information for class CDistrictBEGIN_CLASS_INFO(CDistrict){
 ADD_STD_MEMBER(m_Number);
 ADD_MEMBER(m_Blocks, STL_list, (CLASS, (CPerson)));
}END_CLASS_INFO

// main and other functions
USING_NCBI_SCOPE;

static void FullerBrushMan (const CPerson& p) {
 cout << "knock-knock! is " << p.m_Name << " home?" << endl;
}
int main(int argc, char** argv)
{ // Instantiate a few CPerson objects
 CPerson neighborhood("Moe", "1 Main St",
 new CPerson("Larry", "2 Main St",
 new CPerson("Curly", "3 Main St",
0)));
 CPerson another ("Harpo", "2 River Rd",
 new CPerson("Chico", "4 River Rd",
 new CPerson("Groucho", "6 River Rd",
0)));

Page 56

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.box.ch_ser.ctypeiter_hpp.html

 // Create a CDistrict and install some CPerson objects CDistrict
district1(1);
 district1.AddBlock(neighborhood);
 district1.AddBlock(another);
 // Send the FullerBrushMan to all CPersons in district1
 for (CTypeConstIterator<CPerson> house = ConstBegin(district1);
 house; ++house) {
 FullerBrushMan(*house);
 }
 // Iterate over all strings for the CPersons in district1
 list<CPerson> blocks = district1.GetBlocks();
 for (list<CPerson>::iterator b = blocks.begin();
 b != blocks.end(); ++b) {
 for (CStdTypeIterator<string> i = Begin(*b); i; ++i) {
 cout << *i << ' ';
 }
 cout << endl;
 }
 return 0;
}

Box 3

// File name: ctypeiter.hpp#ifndef CTYPEITER_HPP
#define CTYPEITER_HPP
#include <corelib/ncbistd.hpp>
#include <corelib/ncbiobj.hpp>
#include <serial/typeinfo.hpp>
#include <string>
#include <list>USING_NCBI_SCOPE;class CPerson
{
public: CPerson(void)
 : m_Name(0), m_Addr(0), m_NextDoor(0)
 {}
 CPerson(string n, string s, CPerson* p)
 : m_Name(n), m_Addr(s), m_NextDoor(p)
 {}
 virtual ~CPerson(void) {}
 static const CTypeInfo* GetTypeInfo(void);
 string m_Name, m_Addr;
 CPerson *m_NextDoor;
};
class CDistrict
{
public: CDistrict(void) : m_Number(0) {}
 CDistrict(int n) : m_Number(n) {}
 virtual ~CDistrict(void) {}
 static const CTypeInfo* GetTypeInfo(void);
 int m_Number;
 void AddBlock (const CPerson& p) { m_Blocks.push_back(p); }

Page 57

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 list<CPerson>& GetBlocks() { return m_Blocks; }
private: list<CPerson> m_Blocks;
};
#endif /* CTYPEITER_HPP */

Box 4

// File name: traverseBS.cpp
// Description: Reads an ASN.1 Biostruc text file into memory
// and visits its components#include <serial/serial.hpp>
#include <serial/iterator.hpp>
#include <serial/objistr.hpp>
#include <serial/serial.hpp>
#include <objects/general/Dbtag.hpp>
#include <objects/general/Object_id.hpp>
#include <objects/seq/Numbering.hpp>
#include <objects/seq/Pubdesc.hpp>
#include <objects/seq/Heterogen.hpp>
#include <objects/mmdb1/Biostruc.hpp>
#include <objects/mmdb1/Biostruc_id.hpp>
#include <objects/mmdb1/Biostruc_history.hpp>
#include <objects/mmdb1/Mmdb_id.hpp>
#include <objects/mmdb1/Biostruc_descr.hpp>
#include <objects/mmdb1/Biomol_descr.hpp>
#include <objects/mmdb1/Molecule_graph.hpp>
#include <objects/mmdb1/Inter_residue_bond.hpp>
#include <objects/mmdb1/Residue_graph.hpp>
#include <objects/mmdb3/Biostruc_feature_set.hpp>
#include <objects/mmdb2/Biostruc_model.hpp>
#include <objects/pub/Pub.hpp>
#include <corelib/ncbistre.hpp>
#include "traverseBS.hpp"USING_NCBI_SCOPE;
using namespace objects;int CTestAsn::Run()
{
 // initialize ASN input stream
 auto_ptr<CObjectIStream>
 inObject(CObjectIStream::Open("1001.val", eSerial_AsnBinary));
 // initialize, read into, and traverse CBiostruc object CBiostruc
bs;
 *inObject >> bs;
 Visit (bs);

 return 0;
}
/***
*
* The overloaded free "visit" functions are used to explore the
* Biostruc and all its component members - most of which are also
* class objects. Each class has a public interface that provides
* access to its private data via "get" functions.
*

Page 58

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.box.ch_ser.traverse_hpp.html

**/void
Visit (const CBiostruc& bs)
{
 cout << "Biostruc:\n" << endl;
 Visit (bs.GetId());
 Visit (bs.GetDescr());
 Visit (bs.GetChemical_graph());
 Visit (bs.GetFeatures());
 Visit (bs.GetModel());
}

/**
*
* TId is a type defined in the CBiostruc class as a list of CBiostruc_id,
* where each id has a choice state and a value. Depending on the choice
* state, a different get() function is used.
*
***/
void Visit (const CBiostruc::TId& idList)
{
 cout << "\n Visiting Ids of Biostruc:\n";

 for (CBiostruc::TId::const_iterator i = idList.begin();
 i != idList.end(); ++i) {

 // dereference the iterator to get to the id object
 const CBiostruc_id& thisId = **i;
 CBiostruc_id::E_Choice choice = thisId.Which();
 cout << "choice = " << choice;

 // select id's get member function depending on choice
 switch (choice) {
 case CBiostruc_id::e_Mmdb_id:
 cout << " mmdbId: " << thisId.GetMmdb_id().Get() << endl;
 break;
 case CBiostruc_id::e_Local_id:
 cout << " Local Id: " << thisId.GetLocal_id().GetId() <<
endl;
 break;
 case CBiostruc_id::e_Other_database:
 cout << " Other DB Id: "
 << thisId.GetOther_database().GetDb() << endl;
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
}

/

Page 59

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*
* TDescr is also a type defined in the Biostruc class as a list of
* CBiostruc_descr, where each descriptor has a choice state and a value.
*
***/
void Visit (const CBiostruc::TDescr& descList)
{
 cout << "\n Visiting Descriptors of Biostruc:\n";

 for (CBiostruc::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

 // dereference the iterator to get the descriptor
 const CBiostruc_descr& thisDescr = **i;
 CBiostruc_descr::E_Choice choice = thisDescr.Which();
 cout << "choice = " << choice;

 // select the get function depending on choice
 switch (choice) {
 case CBiostruc_descr::e_Name:
 cout << " Name: " << thisDescr.GetName() << endl;
 break;
 case CBiostruc_descr::e_Pdb_comment:
 cout << " Pdb comment: " << thisDescr.GetPdb_comment() <<
endl;
 break;
 case CBiostruc_descr::e_Other_comment:
 cout << " Other comment: " << thisDescr.GetOther_comment() <<
endl;
 break;
 case CBiostruc_descr::e_History:
 cout << " History: " << endl;
 Visit (thisDescr.GetHistory());
 break;
 case CBiostruc_descr::e_Attribution:
 cout << " Attribute: " << endl;
 Visit (thisDescr.GetAttribution());
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
 VisitWithIterator (descList);
}
/
**
**
*
* An alternate way to visit the descriptor nodes using a CStdTypeIterator
*
**

Page 60

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_ser.iterators.html#ch_ser.iterators.html_stdType

**
 /void VisitWithIterator (const CBiostruc::TDescr& descList) {
 cout << "\n Revisiting descriptor list with string iterator...:\n";

 for (CBiostruc::TDescr::const_iterator i1 = descList.begin();
 i1 != descList.end(); ++i1) {

 const CBiostruc_descr& thisDescr = **i1;

 for (CStdTypeConstIterator<NCBI_NS_STD::string>
 i = ConstBegin(thisDescr); i; ++i) {
 cout << "next descriptor" << *i << endl;
 }
 }
}
/
**
**
*
* Chemical graphs contain lists of descriptors, molecule_graphs, bonds,
and
* residue graphs. Here we just visit some of the descriptors.
*
**
**
/void Visit (const CBiostruc::TChemical_graph& G)
{
 cout << "\n\n Visiting Chemical Graph of Biostruc\n";

 const CBiostruc_graph::TDescr& descList = G.GetDescr();
 for (CBiostruc_graph::TDescr::const_iterator i = descList.begin();
 i != descList.end(); ++i) {

 // dereference the iterator to get the descriptor
 const CBiomol_descr& thisDescr = **i;
 CBiomol_descr::E_Choice choice = thisDescr.Which();
 cout << "choice = " << choice;

 // select the get function depending on choice
 switch (choice) {
 case CBiomol_descr::e_Name:
 cout << " Name: " << thisDescr.GetName() << endl;
 break;
 case CBiomol_descr::e_Pdb_class:
 cout << " Pdb class: " << thisDescr.GetPdb_class() << endl;
 break;
 case CBiomol_descr::e_Pdb_source:
 cout << " Pdb Source: " << thisDescr.GetPdb_source() << endl;
 break;
 case CBiomol_descr::e_Pdb_comment:

Page 61

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 cout << " Pdb comment: " << thisDescr.GetPdb_comment() <<
endl;
 break;
 case CBiomol_descr::e_Other_comment:
 cout << " Other comment: " << thisDescr.GetOther_comment() <<
endl;
 break;
 case CBiomol_descr::e_Organism: // skipped
 case CBiomol_descr::e_Attribution:
 break;
 case CBiomol_descr::e_Assembly_type:
 cout << " Assembly Type: " << thisDescr.GetAssembly_type() <<
endl;
 break;
 case CBiomol_descr::e_Molecule_type:
 cout << " Molecule Type: " << thisDescr.GetMolecule_type() <<
endl;
 break;
 default:
 cout << "Choice not set or unrecognized" << endl;
 }
 }
}
void Visit (const CBiostruc::TFeatures&)
{
 cout << "\n\n Visiting Features of Biostruc\n";
}
void Visit (const CBiostruc::TModel&)
{
 cout << "\n\n Visiting Models of Biostruc\n";
}
int main(int argc, const char* argv[])
{
 // initialize diagnostic stream CNcbiOfstream diag
("traverseBS.log");
 SetDiagStream(&diag);

 CTestAsn theTestApp;
 return theTestApp.AppMain(argc, argv);
}

Box 5

// File name traverseBS.hpp#ifndef NCBI_TRAVERSEBS__HPP
#define NCBI_TRAVERSEBS__HPP
#include <corelib/ncbistd.hpp>
#include <corelib/ncbiapp.hpp>
USING_NCBI_SCOPE;
using namespace objects;// class CTestAsn
class CTestAsn : public CNcbiApplication {
public:

Page 62

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 virtual int Run ();
};
void Visit(const CBiostruc&);
void Visit(const CBiostruc::TId&);
void Visit(const CBiostruc::TDescr&);
void Visit(const CBiostruc::TChemical_graph&);
void Visit(const CBiostruc::TFeatures&);
void Visit(const CBiostruc::TModel&);
void Visit(const CBiostruc_history&) {
 cout << "visiting history" << endl;
};
// Not implemented
void Visit(const CBiostruc_descr::TAttribution&) {};
void VisitWithIterator (const CBiostruc::TDescr& descList);
#endif /* NCBI_TRAVERSEBS__HPP */

Page 63

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Biological Sequence Data Model
[14]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Bioinformatics
A Practical Guide to the Analysis of Genes and Proteins
Second Edition (2001)
Edited by Andreas D. Baxevanis, B. F. Francis Ouellette
ISBN 0-471-38391-0

Chapter 2 - The NCBI Data Model

Chapter Outline

The following is an outline of the topics presented in this chapter:
! Data Model
! General Use Objects
! Bibliographic References
! MEDLINE Data
! Biological Sequences
! Collection of Sequences
! Sequence Locations and Identifiers
! Sequence Features
! Sequence Alignments
! Sequence Graphs

Data Model
The Data Model section outlines the NCBI model for biotechnology information, which is
centered on the concept of a biological sequence as a simple, linear coordinate system.
! Introduction
! Biological Sequences
! Classes of Biological Sequences
! Locations on Biological Sequences
! Associating Annotation With Locations On Biological Sequences
! Collections of Related Biological Sequences
! Consequences of the Data Model

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Introduction
The NCBI sequence databases and software tools are designed around a particular model of
biological sequence data. It is designed to provide a few unifying concepts which cross a wide
range of domains, providing a path between the domains. Specialized objects are defined which
are appropriate within a domain. In the following sections we will present the unifying ideas,
then examine each area of the model in more detail.

Since we expect that computer technologies will continue to develop at a rapid rate, NCBI has
made considerable investment of time and energy to ensure that our data and software tools
are not too tightly bound to any particular computer platform or database technology. However,
we also wish to embrace the intellectual rigor imposed by describing our data within a formal
system and in a machine readable and checkable way. For this reason we have chosen to
describe our data in Abstract Syntax Notation 1 (ASN.1; ISO 8824, 8825). Enough explanation
will be given here to allow the reader to examine the data definitions. A much fuller description
of ASN.1 and the NCBI software tools which use it appears in later chapters.

The data specification chapters are arranged by ASN.1 module with detailed discussions of
data objects defined in each and the software functions available to operate on those objects.
Each ASN.1 defined object has a matching "C" language structure. Each "C" structure has at
a minimum, a function to create it, write it to an ASN.1 stream, read it from an ASN.1 stream,
and destroy it. Many objects have additional functions. Some of these are described in the
chapter on the module and some with more extensive interfaces are described in additional
chapters. Each module chapter begins with a description of the elements, followed by the full
ASN.1 definition of the module, then the "C" code header defining the structures.

This chapter provides an overview of all modules. Selected ASN.1 definitions are inserted into
the body of the text as necessary. They are also described in the chapter on the appropriate
module.

There are two major areas for which data objects have been defined. One is bibliographic data.
It is clear that this class of information is central to all scientific fields within and outside of
molecular biology so we expect these definitions to be widely useful. We have followed the
American National Standard for Bibliographic References (ANSI Z39.29-1977) and consulted
with the US Patent Office and professional librarians to ensure complete and accurate
representation of citation information. Unlike biological data, this data is relatively well
understood, so we hope that the bibliographic specification can be quite complete and stable.
Despite its importance, the bibliographic specification will not be discussed further here, since
it does not present ideas which may be novel to the reader.

The other major area of the specification is biological sequence data and its associated
information. Here the data model attempts to achieve a number of goals. Biomedical
information is a vast interconnected web of data which crosses many domains of discourse
with very different ways of viewing the world. Biological science is very much like the parable
of the blind men and elephant. To some of the blind men the elephant feels like a column, to
some like a snake, to others like a wall. The excitement of modern biological research is that
we all agree that, at least at some level, we are all exploring aspects of the same thing. But it
is early enough in the development of the science that we cannot agree on what that thing is.

The power of molecular biology is that DNA and protein sequence data cut across most fields
of biology from evolution to development, from enzymology to agriculture, from statistical
mechanics to medicine. Sequence data can be viewed as a simple, relatively well defined
armature on which data from various disciplines can be hung. By associating diverse data with

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the sequence, connections can be made between fields of research with no other common
ground, and often with little or no idea of what the other field is doing.

This data model establishes a biological sequence as a simple integer coordinate system with
which diverse data can be associated. It is reasonable to hope that such a simple core can be
very stable and compatible with a very wide range of data. Additional information closely
linked to the coordinate system, such as the sequence of amino acids or bases, or genes on a
genetic map are layered onto it. With stable identifiers for specific coordinate systems, a greater
diversity of information about the coordinate system can be specifically attached to it in a very
flexible yet rigorous way. The essential differences between different biological forms are
preserved, yet they can viewed as aspects of the same thing around the core, and thus move us
toward our goal of understanding the totality.

Biological Sequences
A Bioseq is a single continuous biological sequence. It can be nucleic acid or protein. It can
be fully instantiated (i.e. we have data for every residue) or only partially instantiated (e.g. we
know a fragment is 10 kilobases long, but we only have sequence data over 1 kilobase). A
Bioseq is defined in ASN.1 as follows:

Bioseq ::= SEQUENCE {
 id SET OF Seq-id , -- equivalent identifiers
 descr Seq-descr OPTIONAL , -- descriptors
 inst Seq-inst , -- the sequence data
 annot SET OF Seq-annot OPTIONAL }

In ASN.1 a named datatype begins with a capital letter (e.g. Bioseq). The symbol "::=" means
"is defined as". A primitive type is all capitals (e.g. SEQUENCE). A field within a named
datatype begins with a lower case letter (e.g. descr). A structured datatype is bounded by curly
brackets ({}). We can now read the definition above: a Bioseq is defined as a SEQUENCE
(i.e. a structure where the elements must come in order; the mathematical notion of
SEQUENCE, not the biological one). The first element of Bioseq is called "id" and is a SET
OF (i.e. an unordered collection of repeating elements of the same type) a named datatype
called "Seq-id". Seq-id would have its own definition elsewhere. The second element is called
"descr" and is a named type called "Seq-descr", which is OPTIONAL. In this text, when we
wish to refer to the id element of the named type Bioseq, we will use the notation "Bioseq.id".

A Bioseq has two OPTIONAL elements, which both have descriptive information ABOUT
the sequence. Seq-descr is a collection of types of information about the context of the
sequence. It may set biological context (e.g. define the organism sequenced), or bibliographic
context (e.g. the paper it was published in), among other things. Seq-annot is information that
is explicitly tied to locations on the sequence. This could be feature tables, alignments, or
graphs, at the present time. A Bioseq can have more than one feature table, perhaps coming
from different sources, or a feature table and a graph, etc.

A Bioseq is only REQUIRED to have two elements, id and inst. Bioseq.id is one or more
identifiers for this Bioseq. An identifier is a key which allows us to retrieve this object from a
database or identify it uniquely. It is not a name, which is a human compatible description, but
not necessarily a unique identifier. The name "Jane Doe" does not uniquely identify a person
in the United States, while the identifier, social security number, does. Each Seq-id is a
CHOICE of one of a number of identifier types from different databases, which may have
different structures. All Bioseqs MUST have at least one identifier.

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Classes of Biological Sequences
The other required element of a Bioseq is a Seq-inst. This element instantiates the sequence
itself. It represents things like is it DNA, RNA, or protein? Circular or linear? Double-stranded
or single-stranded? How long is it?

Seq-inst ::= SEQUENCE {

repr ENUMERATED {

not-set (0) ,

virtual (1) ,

raw (2) ,

seg (3) ,

const (4) ,

ref (5) ,

consen (6) ,

map (7) ,

other (255) } ,

mol ENUMERATED {

not-set (0) ,

dna (1) ,

rna (2) ,

aa (3) ,

na (4) ,

other (255) } ,

length INTEGER OPTIONAL ,

fuzz Int-fuzz OPTIONAL ,

topology ENUMERATED {

not-set (0) ,

linear (1) ,

circular (2) ,

tandem (3) ,

other (255) } DEFAULT linear ,

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

strand ENUMERATED {

not-set (0) ,

ss (1) ,

ds (2) ,

mixed (3) ,

other (255) } OPTIONAL ,

seq-data Seq-data OPTIONAL ,

ext Seq-ext OPTIONAL ,

hist Seq-hist OPTIONAL }

Seq-inst is the parent class of a sequence representation class hierarchy. There are two major
branches to the hierarchy. The molecule type branch is indicted by Seq-inst.mol. This could
be a nucleic acid, or further sub classified as RNA or DNA. The nucleic acid may be circular,
linear, or one repeat of a tandem repeat structure. It can be double, single, or of a mixed
strandedness. It could also be a protein, in which case topology and strandedness are not
relevant.

There is also a representation branch, which is independent of the molecule type branch. This
class hierarchy involves the particular data structure used to represent the knowledge we have
about the molecule, no matter which part of the molecule type branch it may be in. The repr
element indicates the type of representation used. The aim of such a set of representation classes
is to support the information to express different views of sequence based objects, from
chromosomes to restriction fragments, from genetic maps to proteins, within a single overall
model. The ability to do this confers profound advantages for software tools, data storage and
retrieval, and traversal of related sequence and map data from different scientific domains.

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

A virtual representation is used to describe a sequence about which we may know things like
it is DNA, it is double stranded, we may even know its length, but we do not have the actual
sequence itself yet. Most fields of the Seq-inst are filled in, but Seq-inst.seq-data is empty. An
example would be a band on a restriction map.

A raw representation is used for what we traditionally consider a sequence. We know it is
DNA, it is double stranded, we know its length exactly, and we have the sequence data itself.
In this case, Seq-inst.seq-data contains the sequence data.

A segmented representation is very analogous to a virtual representation. We posit that a
continuous double stranded DNA sequence of a certain length exists, and pieces of it exist in
other Bioseqs, but there is no data in Seq-inst.seq-data. Such a case would be when we have
cloned and mapped a DNA fragment containing a large protein coding region, but have only
actually sequenced the regions immediately around the exons. The sequence of each exon is
an individual raw Bioseq in its own right. The regions between exons are virtual Bioseqs. The
segmented Bioseq uses Seq-inst.ext to hold a SEQUENCE OF Seq-loc. That is, the extension

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

is an ordered series of locations on OTHER Bioseqs, in this case the raw and virtual Bioseqs
representing the exons and introns. The segmented Bioseq contains data only by reference to
other Bioseqs. In order to retrieve the base at the first position in the segmented Bioseq, one
would go to the first Seq-loc in the extension, and return the appropriate base from the Bioseq
it points to.

A constructed Bioseq is used to describe an assembly or merge of other Bioseqs. It is analogous
to the raw representation. In fact, most raw Bioseqs were actually constructed from an assembly
of gel readings. However, the constructed representation class is really meant for tracking
higher level merging, such as when an expert in a particular organism or gene region may
construct a "typical" sequence from that region by merging available sequence data, often
published by different groups, using domain knowledge to resolve discrepancies between
reports or to select a typical allele. Seq-inst contains an optional Seq-hist object. Seq-hist
contains a field called "assembly" which is a SET OF Seq-align, or sequence alignments. The
alignments are used to record the history of how the various component Bioseqs used for the
merge are related to the final product. A constructed sequence DOES contain sequence data
in Seq-inst.seq-data, unlike a segmented sequence, because the component sequences may
overlap, or expert knowledge may have been used to determine the "correct" residue at any
position that is not captured in the original components. So Seq-hist.assembly is used to simply
record the relationship of the merge to the old Bioseqs, but does NOT describe how to generate
it from them.

A map is akin to a virtual Bioseq. For example, for a genetic map of E.coli, we might posit
that the E.coli chromosome is about 5 million base pairs long, DNA, double stranded, circular,
but we do not have the sequence data for it. However, we do know the positions of some genes
on this putative sequence. In this case, the Seq-inst.ext is a SEQUENCE OF Seq-feat, that is,
a feature table. For a genetic map, the feature table contains Gene-ref features. An ordered
restriction map would have a feature table containing Rsite-ref features. The feature table is
part of Seq-inst because, for a map, it is an essential part of instantiating the map Bioseq, not
merely annotation on a known sequence. In a sense, for a map, the annotation IS part of the
sequence. As an aside, note that we have given gene positions on the E.coli genetic map in
base pairs, while the standard E.coli map is numbered from 0.0 to 100.0 map units. Numbering
systems can be applied to a Bioseq as a descriptor or a feature. For E.coli, we would simply
apply the 0.0 - 100.0 floating point numbering system to the map Bioseq. Gene positions can
then be shown to the scientists in familiar map units, while the underlying software still treats
positions as large integers, just the same as with any other Bioseq.

Coordinates on ANY class of Bioseq are ALWAYS integer offsets. So the first residue in any
Bioseq is at position 0. The last residue of any Bioseq is in position (length - 1).

The consequence of this design is that one uses EXACTLY the same data object to describe
the location of a gene on an unsequenced restriction fragment, a fully sequenced piece of DNA,
a partially sequenced piece of DNA, a putative overview of a large genetic region, or a genetic
or physical map. Software to display, manipulate, or compare gene locations can work without
change on the full range of possible representations. Sequence and physical map data can be
easily integrated into a single, dynamically assembled view by creating a segmented sequence
which points alternatively to raw or constructed Bioseqs and parts of a map Bioseq. The
relationship between a genetic and physical map is simply an alignment between two Bioseqs
of representation class map, no different than the alignment between two sequences of class
raw generated by a database search program like BLAST or FASTA.

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Locations on Biological Sequences
A Seq-loc is an object which defines a location on a Bioseq. The smooth class hierarchy for
Seq-inst makes it possible to use the same Seq-loc to describe an interval on a genetic map as
that used to describe an interval on a sequenced molecule.

Seq-loc is itself a class hierarchy. A valid Seq-loc can be an interval, a point, a whole sequence,
a series of intervals, and so on.

Seq-loc ::= CHOICE {

null NULL ,

empty Seq-id ,

whole Seq-id ,

int Seq-interval ,

packed-int Packed-seqint ,

pnt Seq-point ,

packed-pnt Packed-seqpnt ,

mix Seq-loc-mix ,

equiv Seq-loc-equiv ,

bond Seq-bond ,

feat Feat-id }

Seq-loc.null indicates a region of unknown length for which no data exists. Such a location
may be used in a segmented sequence for the region between two sequenced fragments about
which nothing, not even length, is known.

All other Seq-loc types, except Seq-loc.feat, contain a Seq-id. This means they are independent
of context. This means that data objects describing information ABOUT Bioseqs can be created
and exchanged independently from the Bioseq itself. This encourages the development and
exchange of structured knowledge about sequence data from many directions and is an essential
goal of the data model.

Associating Annotation With Locations On Biological Sequences
Seq-annot, or sequence annotation, is a collection of information ABOUT a sequence, tied to
specific regions of Bioseqs through the use of Seq-loc's. A Bioseq can have many Seq-annot's
associated with it. This allows knowledge from a variety of sources to be collected in a single
place but still be attributed to the original sources. Currently there are three kinds of Seq-annot,
feature tables, alignments, and graphs.

Feature Tables—A feature table is a collection of Seq-feat, or sequence features. A Seq-feat
is designed to tie a Seq-loc together with a datablock, a block of specific data. Datablocks are
defined objects themselves, many of which are objects used in their own right in some other
context, such as publications (Pub) or references to organisms (Org-ref) or genes (Gene-ref).
Some datablocks, such as coding regions (CdRegion) make sense only in the context of a Seq-

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

loc. However, since by design there is no intention that one datablock need to have anything
in common with any other datablock, each can be tailored exactly to do a particular job. If a
change or addition is required to one datablock, no others are affected. In those cases where a
pre-existing object from another context is used as a datablock, any software that can use that
object can now operate on the feature as well. For example, a piece of code to display a
publication can operate on a publication from a bibliographic database or one use as a sequence
feature with no change.

Since the Seq-feat data structure itself and the Seq-loc used to attach it to the sequence are
common to all features, it is also possible to support a class of operations over all features
without regard to the different types of datablocks attached to them. So a function to determine
all features in a particular region of a Bioseq need not care what type of features they are.

A Seq-feat is bipolar in that it contains up to two Seq-loc's. Seq-feat.location indicates the
"source" and is the location similar to the single location in common feature table
implementations. Seq-feat.product is the "sink". A CdRegion feature would have its Seq-
feat.location on the DNA and its Seq-feat.product on the protein sequence produced. Used this
way it defines the process of translating a DNA sequence to a protein sequence. This establishes
in an explicit way the important relationship between nucleic acid and protein sequence
databases.

The presence of two Seq-loc's also allows a more complete representation of data conflicts or
exceptional biological circumstances. If an author presents a DNA sequence and its protein
product in a figure in a paper, it is possible to enter the DNA and protein sequences
independently, then confirm through the CdRegion feature that the DNA in fact translates to
that protein sequence. In an unfortunate number of published papers, the DNA presented does
not translate to the protein presented. This may be a signal that the database has made an error
of some sort, which can be caught early and corrected. Or the original paper may be in error.
In this case, the "conflict" flag can be set in CdRegion, but the protein sequence is not lost, and
retroactive work can be done to determine the source of the problem. It may also be the case
that a genomic sequence cannot be translated to a protein for a known biological reason, such
as RNA editing or suppressor tRNAs. In this case the "exception" flag can be set in Seq-feat
to indicate that the data are correct, but will not behave in the expected way.

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Sequence Alignments—A sequence alignment is essentially a correlation between Seq-
locs, often associated with some score. An alignment is most commonly between two
sequences, but it may be among many at once. In an alignment between two raw Bioseqs, a
certain amount of optimization can be done in the data structure based on the knowledge that
there is a one to one mapping between the residues of the sequences. So instead of recording
the start and stop in Bioseq A and the start and stop in Bioseq B, it is enough to record the start
in A and the start in B and the length of the aligned region. However if one is aligning a genetic
map Bioseq with a physical map Bioseq, then one will wish to allow the aligned regions to
distort relative one another to account for the differences from the different mapping
techniques. To accommodate this most general case, there is a Seq-align type which is purely
correlations between Seq-locs of any type, with no constraint that they cover exactly the same
number of residues.

A Seq-align is considered to be a SEQUENCE OF segments. Each segment is an unbroken
interval on a defined Bioseq, or a gap in that Bioseq. For example, let us look at the following
three dimensional alignment with 6 segments:

Seq-ids
id=100

AAGGCCTTTTAGAGATGATGATGATGATGA
id=200

AAGGCCTaTTAG.......GATGATGATGA
id=300

....CCTTTTAGAGATGATGAT....ATGA

| 1 | 2 | 3 | 4| 5 | 6 | Segments

Page 10

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The example above is a global alignment that is each segment sequentially maps a region of
each Bioseq to a region of the others. An alignment can also be of type "diags", which is just
a collection of segments with no implication about the logic of joining one segment to the next.
This is equivalent to the diagonal lines that are shown on a dot-matrix plot.

The example above illustrates the most general form of a Seq-align, Std-seg, where each
segment is purely a correlated set of Seq-loc. Two other forms of Seq-align allow denser
packing of data for when only raw Bioseqs are aligned. These are Dense-seg, for global
alignments, and Dense-diag for "diag" collections. The basic underlying model for these denser
types is very similar to that shown above, but the data structure itself is somewhat different.

Sequence Graph—The third annotation type is a graph on a sequence, Seq-graph. It is
basically a Seq-loc, over which to apply the graph, and a series of numbers representing values
of the graph along the sequence. A software tool which calculates base composition or
hydrophobic tendency might generate a Seq-graph. Additional fields in Seq-graph allow
specification of axis labels, setting of ranges covered, compression of the data relative to the
sequence, and so on.

Collections of Related Biological Sequences
It is often useful, even "natural", to package a group of sequences together. Some examples
are a segmented Bioseq and the Bioseqs that make up its parts, a DNA sequence and its
translated proteins, the separate chains of a multi-chain molecule, and so on. A Bioseq-set is
such a collection of Bioseqs.

Bioseq-set ::= SEQUENCE {

Page 11

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

id Object-id OPTIONAL ,

coll Dbtag OPTIONAL ,

level INTEGER OPTIONAL ,

class ENUMERATED {

not-set (0) ,

nuc-prot (1) ,

segset (2) ,

conset (3) ,

parts (4) ,

gibb (5) ,

gi (6) ,

genbank (7) ,

pir (8) ,

pub-set (9) ,

equiv (10) ,

swissprot (11) ,

pdb-entry (12) ,

other (255) } DEFAULT not-set ,

release VisibleString OPTIONAL ,

date Date OPTIONAL ,

descr Seq-descr OPTIONAL ,

seq-set SEQUENCE OF Seq-entry ,

annot SET OF Seq-annot OPTIONAL }

The basic structure of a Bioseq-set is very similar to that of a Bioseq. Instead of Bioseq.id,
there is a series of identifier and descriptive fields for the set. A Bioseq-set is only a convenient
way of packaging sequences so controlled, stable identifiers are less important for them than
they are for Bioseqs. After the first few fields the structure is exactly parallel to a Bioseq.

There are descriptors which describe aspects of the collection and the Bioseqs within the
collection. The general rule for descriptors in a Bioseq-set is that they apply to "all of everything
below". That is, a Bioseq-set of human sequences need have only one Org-ref descriptor for
"human" at the top level of the set, and it is applied to all Bioseqs within the set.

Page 12

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Then follows the equivalent of Seq-inst, that is the instantiation of the data. In this case, the
data is the chain of contained Bioseqs or Bioseq-sets. A Seq-entry is either a Bioseq or Bioseq-
set. Seq-entry's are very often used as arguments to display and analysis functions, since one
can move around either a single Bioseq or a collection of related Bioseqs in context just as
easily. This also makes a Bioseq-set recursive. That is, it may consist of collections of
collections.

Seq-entry ::= CHOICE {

seq Bioseq ,

set Bioseq-set }

Finally, a Bioseq-set may contain Seq-annot's. Generally one would put the Seq-annot's which
apply to more than one Bioseq in the Bioseq-set at this level. Examples would be CdRegion
features that point to DNA and protein Bioseqs, or Seq-align which align more than one Bioseq
with each other. However, since Seq-annot's always explicitly cite a Seq-id, it does not matter,
in terms of meaning, at what level they are put. This is in contrast to descriptors, where context
does matter.

Consequences of the Data Model
This data model has profound consequences for building sequence databases and for
researchers and software tools interacting with them. Assuming that Seq-ids point to stable
coordinate systems, it is easily possible to consider the whole set of data conforming to the
model as a distributed, active heterogeneous database. For example, let us suppose that two
raw Bioseqs with Seq-ids "A" and "B" are published in the scientific literature and appear in
the large public sequence databases. They are both genomic nucleic acid sequences from
human, each coding for a single protein.

One researcher is a specialist in transcription initiation. He finds additional experimental
information involving detailed work on initiation for the flanking region of Bioseq "A". He
can then submit a feature table with a TxInit feature in it to the database with his summarized
data. He need not contact the original author of "A", nor edit the original sequence entry for
"A" to do this. The database staff, who is not experts in transcription initiation, need not attempt
to annotate every transcription initiation paper in sufficient detail and accuracy to be of interest
to a specialist in the area. The researcher submitting the feature need not use any particular
software system or computer to participate, he need only submit a ASN.1 message which
conforms to the specification for a feature.

Another researcher is a medical geneticist who is interested in the medical consequences of
mutations in the gene on Bioseq "B". This individual can add annotation to "B" which is totally
different in content to that added by the transcription specialist (in fact, it is unlikely that either
follows the literature read by the other) and submit the data to the database in precisely the
same way.

A third group may be doing bulk sequencing in the region of the human chromosome where
"A" and "B" lie. They produce a third sequence, "C", which they discover by sequence
similarity and mapping data, overlaps "A" at one end and "B" at the other. This group can
submit not just the sequence of "C" but its relationship to "A" and "B" to the database and as
part of their publication.

The database now has the information from five different research groups, experts in different
fields, using different computer and software systems, and unaware, in many cases, of each

Page 13

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

other's work, to unambiguously pull together all this related information into an integrated high
level view through the use of the shared data model and the controlled Seq-ids on common
cited coordinate systems. This integration across disciplines and generation of high level views
of the data is continuously and automatically available to all users and can be updated
immediately on the arrival of new data without human intervention or interpretation by the
database staff. This moves scientific databases from the role of curators of scientific data to
the role of facilitators of discourse among researchers. It makes identification of potentially
fruitful connections across disciplines an automatic result of data entry, rather than of
painstaking analysis by a central group. It takes advantage of the growing rush of molecular
biology data, making its volume and diversity advantages rather than liabilities.

General Use Objects
The General Use Objects section describes the data objects defined in general.asn. They are a
miscellaneous collection of generally useful types.

Module Types
! Large text blocks - StringStore
! Date
! Identifying things - Object-id
! Identifying things -Dbtag

Page 14

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Identifying%2520Things:%2520Dbtag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/general/general.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Large%2520Text%2520Blocks:%2520StringStore
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#The%2520Date
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Identifying%2520Things:%2520Object-id

! Identifying people -Person-id
! Expressing uncertainty - Int-fuzz
! Creating your own objects - User-object

Introduction
Large Text Blocks: StringStore
The Date
Identifying Things: Object-id
Identifying Things: Dbtag
Identifying People: Person-id
Expressing Uncertainty with Fuzzy Integers: Int-fuzz
Creating Your Own Objects: User-object
ASN.1 Specification: general.asn
C Structures and Functions: objgen.h

Introduction
This section presents the data objects defined in general.asn and objgen.[ch]. They are a
miscellaneous collection of generally useful types.

Large Text Blocks: StringStore—A StringStore is defined as a VisibleString for ASN.1
encoding. This type is used to hold very long strings. It is simply a hint to the AsnLib functions
to store the incoming data in a ByteStore (see CoreLib chapter) rather than an array to avoid
overrunning allocation limits of some computers. OCTET STRINGs (a sequence of opaque
bytes) are always kept in ByteStore structures since the length of the object must be stored as
well (no terminating '\0' is possible). ByteStores have the advantage of segmenting the long
strings, which for nucleic acid data can get very long. The ByteStore will allow us to add data
buffering to disk for these large objects as it becomes necessary even on large computers.

The Date—ASN.1 has primitive types for recording dates but which require the time in
seconds as well. For scientific and bibliographic data, it is common that only the date, or even
just a part of the date (e.g. month and year) are available. Rather than use artificial zero values
for the more precise ASN.1 form, we have created a specialized Date type. Date is a CHOICE
of a simple, unparsed string or a structured Date-std. The string form is a fall-back for when
the input data is so poorly structured that it is impossible to reliably parse the date fields from
it. It should only be used as a last resort to accommodate old data, as it is impossible to compute
or index on.

When possible, the "std" form of the Date should be used. In this case year is an integer (e.g.
1992), month is an integer from 1-12 (where January is 1), and day is an integer from 1-31. A
string called "season" can be used, particularly for bibliographic citations (e.g. the "spring"
issue). When a range of months is given for an issue (e.g. "JuneJuly") it cannot be represented
directly. However, one would like to be able to index on integer months but still not lose the
range. This is accomplished by putting 6 in the "month" slot and "July" in the "season" slot.
The DatePrint() function will put them back together for display, but the issue can still be
indexed by month. Year is the only required field in a Date-std.

The "C" structure used for Date can accommodate both the representation of the CHOICE itself
(which kind of Date is this?) and the data from either CHOICE. It has a four byte array and a
CharPtr. The byte[0] indicates what kind of Date it is. If a "str" type, then the CharPtr points
to the string and the other three bytes in the array have no meaning. If a "std" type, then the
byte[1] is the year (minus 1900 to save space - the object loaders will add the 1900 back when

Page 15

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Identifying%2520People:%2520Person-id
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Expressing%2520Uncertainty%2520with%2520Fuzzy%2520Integers:%2520Int-fuzz
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Creating%2520Your%2520Own%2520Objects:%2520User-object
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#IntroductionIntroduc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Large_Text_Blocks_St
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#The_DateThe_Date
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Identifying_Things_O
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Identifying_Things_D
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Identifying_People_P
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Expressing_Uncertain
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/GENERAL.HTML#Creating_Your_Own_Ob

encoding into ASN.1), byte[2] is the month (or 0 if not given), and byte[3] is the day (or 0 if
not given). If the CharPtr is NULL, then the season is not given.

The object loaders contain a number of handy functions for working with Dates in addition to
the usual New(), Free(), AsnRead() and AsnWrite() functions. DateWrite() will fill a Date.std
with the function arguments. DateRead() will fill pointer arguments with the values from a
Date. DateCurr() will create and return a Date.std filled with the current date by accessing the
computer system. DateDup() will create a copy of a Date. DatePrint() will format a Date into
a display format into a buffer supplied by the caller. This buffer should normally be at least 30
bytes long. The format is e.g. "Jun 30, 1992".

DateMatch(a, b, all) will return 0 if Date a is the same as Date b, 1 if b is after a, -1 if b is before
a. It will return a 2 or -2 (for sorting) if they are different Date types (str and std) that could
not be compared. If all is equal to TRUE, then all fields that are set in one Date must be set
and must match in the other Date. If all is equal to FALSE, then only the fields set in both are
matched. Note that this function can only measure if one date is before another chronologically
if both are Date-std types. The string Date types can only be compared lexically (like strcmp
()).

Identifying Things: Object-id—An Object-id is a simple structure used to identify a data
object. It is just a CHOICE of an INTEGER or a VisibleString. It must always be used within
some defining context (e.g. see Dbtag below) in order to have some global meaning. It allows
flexibility in a host system's preference for identifying things by integers or strings.

The ObjectId "C" structure has a 4 byte integer slot and a CharPtr slot. If the CharPtr is NULL,
then the integer value is the identifier and the type is "int". If the CharPtr is not NULL, then
the Object-id is type "str" and the CharPtr is considered to point at the identifier.

There is an ObjectIdDup() function to make a copy of an ObjectId and an ObjectIdMatch()
function which returns TRUE if two ObjectIds are identical, FALSE if they are not.

Identifying Things: Dbtag—A Dbtag is an Object-id within the context of a database. The
database is just defined by a VisibleString. The strings identifying the database are not centrally
controlled, so it is possible that a conflict could occur. If there is a proliferation of Dbtags, then
a registry might be considered at NCBI. Dbtags provide a simple, general way for small
database providers to supply their own internal identifiers in a way which will, usually, be
globally unique as well, yet requires no official sanction. So, for example, identifiers for
features on sequences are not widely available at the present time. However, the Eukaryotic
Promotor Database (EPD) can be provided as a set of features on sequences. The internal key
to each EPD entry can be propagated as the Feature-id by using a Dbtag where "EPD" is the
"db" field and an integer is used in the Object-id, which is the same integer identifying the
entry in the normal EPD release.

As for ObjectIds, there are DbtagMatch() and DbtagDup() functions in the object loaders.

Identifying People: Person-id—Person-id provides an extremely flexible way to identify
people. There are four CHOICES from very explicit to completely unstructured. When one is
building a database, one should select the most structured form possible. However, when one
is processing data from other sources, one can only pick the most structured form possible,
given the input data.

The first Person-id CHOICE is a Dbtag. It would allow people to be identified by some formal
registry. For example, in the USA, it might be possible to identify people by Social Security

Page 16

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Number. Theoretically, one could then maintain a link to a person in database, even if they
changed their name. Dbtag would allow other registries, such as professional societies, to be
used as well. Frankly, this may be wishful thinking and possibly even socially inadvisable,
though from a database standpoint, it would be very useful to have some stable identifier for
people.

A Name-std Choice is the next most explicit form. It allows a structured, fielded name, making
indexing by last name, but disambiguation (of say, "Jones") by first name possible. This is the
best choice when the data is available and its use should be encouraged by those building new
databases wherever reasonable.

The last two choices are string types. MEDLINE stores names in strings in a structured way
(e.g. Jones JM). This means one can usually, but not always, parse out last names and can
generally build indexes on the assumption that the last name is first. Thus, it is worth
distinguishing this case from the pure string form, the last CHOICE. In a pure string, there is
no guarantees of any kind made about the structure of the name. It could be last name first,
first name first, comma after last name, periods between initials, etc. The string form should
be the CHOICE of last resort.

In the "C" structure, the first element indicates the type of the Person-id. The generic Pointer
then must be cast to the correct type given that knowledge. So, for a Person-id.dbtag the Pointer
is a DbtagPtr. For Person-id.name it is a NameStdPtr. For Person-id.ml or Person-id.str it is a
CharPtr.

Expressing Uncertainty with Fuzzy Integers: Int-fuzz—Lengths of biological
sequences and locations on them are expressed with integers. However, sometimes it is
desirable to be able to indicate some uncertainty about that length or location. Unfortunately,
most software cannot make good use of such uncertainties, though in most cases this is fine.
In order to provide both a simple, single integer view, as well as a more complex fuzzy view
when appropriate, we have adopted the following strategy. In the NCBI specifications, all
lengths and locations are always given by simple integers. If information about fuzziness is
appropriate, then an Int-fuzz is ADDED to the data. In this case, the simple integer can be
considered a "best guess" of the length or location. Thus simple software can ignore fuzziness,
while it is not lost to more sophisticated uses.

Fuzziness can take a variety of forms. It can be plus or minus some fixed value. It can be
somewhere in a range of values. It can be plus or minus a percentage of the best guess value.
It may also be certain boundary conditions (greater than the value, less than the value) or refer
to the bond BETWEEN residues of the biological sequence (bond to the right of this residue,
bond to the left of that residue).

Creating Your Own Objects: User-object—One of the strengths of ASN.1 is that it
requires a formal specification of data down to very detailed levels. This enforces clear
definitions of data which greatly facilitates exchange of information in useful ways between
different databases, software tools, and scientific enterprises. The problem with this approach
is that it makes it very difficult for end users to add their own objects to the specification or
enhance objects already in the specification. Certainly custom modules can be added to
accommodate specific groups needs, but the data from such custom modules cannot be
exchanged or passed through tools which adhere only to the common specification.

We have defined an object called a User-object, which can represent any class of simple,
structured, or tabular data in a completely structured way, but which can be defined in any way
that meets a user's needs. The User-object itself has a "class" tag which is a string used like the

Page 17

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

"db" string in Dbtag, to set the context in which this User-object is meaningful. The "class"
strings are not centrally controlled, so again it is possible to have a conflict, but unlikely unless
activity in this area becomes very great. Within a "class" one can define an object "type" by
either a string or an integer. Thus any particular endeavor can define a wide variety of different
types for their own use. The combination of "class" and "type" identifies the object to databases
and software that may understand and make use this particular User-object's structure and
properties. Yet, the generic definition means software that does not understand the purpose or
use of any User-object can still parse it, pass it though, or even print it out for a user to peruse.

The attributes of the User-object are contained in one or more User-fields. Each User-field has
a field label, which is either a string or an integer. It may contain any kind of data, strings, real
numbers, integers, arrays of anything, or even sub-fields or complete sub-objects. When arrays
and repeating fields are supplied, the optional "num" attribute of the User-field is used to tell
software how many elements to prepare to receive. Virtually any structured data type from the
simplest to the most complex can be built up from these elements.

The User-object is provided in a number of places in the public ASN.1 specifications to allow
users to added their own structured features to Feature-tables or their own custom extensions
to existing features. This allows new ideas to be tried out publicly, and allows software tools
to be written to accommodate them, without requiring consensus among scientists or constant
revisions to specifications. Those new ideas which time and experience indicate have become
important concepts in molecular biology can be "graduated" to real ASN.1 specifications in
the public scheme. A large body of structured data would presumably already exist in User-
objects of this type, and these could all be back fitted into the new specified type, allowing
data to "catch up" to the present specification. Those User-objects which do not turn out to be
generally useful or important remain as harmless historical artifacts. User-objects could also
be used for custom software to attach data only required for use by a particular tool to an
existing standard object without harming it for use by standard tools.

ASN.1 Specification: general.asn

--$Revision: 2.0 $
--**
--
-- NCBI General Data elements
-- by James Ostell, 1990
--
--**
NCBI-General DEFINITIONS ::=
BEGIN
EXPORTS Date, Person-id, Object-id, Dbtag, Int-fuzz, User-object;
-- StringStore is really a VisibleString. It is used to define very
-- long strings which may need to be stored by the receiving program
-- in special structures, such as a ByteStore, but it's just a hint.
-- AsnTool stores StringStores in ByteStore structures.
-- OCTET STRINGs are also stored in ByteStores by AsnTool
--
-- typedef struct bsunit { /* for building multiline strings */
 -- Nlm_Handle str; /* the string piece */
 -- Nlm_Int2 len_avail,
 -- len;
 -- struct bsunit PNTR next; } /* the next one */

Page 18

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

-- Nlm_BSUnit, PNTR Nlm_BSUnitPtr;
--
-- typedef struct bytestore {
 -- Nlm_Int4 seekptr, /* current position */
 -- totlen, /* total stored data length in bytes */
-- chain_offset; /* offset in ByteStore of first byte in curchain */
 -- Nlm_BSUnitPtr chain, /* chain of elements */
 -- curchain; /* the BSUnit containing seekptr */
-- } Nlm_ByteStore, PNTR Nlm_ByteStorePtr;
--
-- AsnTool incorporates this as a primitive type, so the definition
-- is here just for completness
--
-- StringStore ::= [APPLICATION 1] IMPLICIT OCTET STRING
--
-- Date is used to replace the (overly complex) UTCTtime, GeneralizedTime
-- of ASN.1
-- It stores only a date
--
Date ::= CHOICE {
 str VisibleString , -- for those unparsed dates
 std Date-std } -- use this if you can
Date-std ::= SEQUENCE { -- NOTE: this is NOT a unix tm struct
 year INTEGER , -- full year (including 1900)
 month INTEGER OPTIONAL , -- month (1-12)
 day INTEGER OPTIONAL , -- day of month (1-31)
 season VisibleString OPTIONAL } -- for "spring", "may-june", etc
-- Dbtag is generalized for tagging
-- eg. { "Social Security", str "023-79-8841" }
-- or { "member", id 8882224 }
Dbtag ::= SEQUENCE {
 db VisibleString , -- name of database or system
 tag Object-id } -- appropriate tag
-- Object-id can tag or name anything
--
Object-id ::= CHOICE {
 id INTEGER ,
 str VisibleString }
-- Person-id is to define a std element for people
--
Person-id ::= CHOICE {
 dbtag Dbtag , -- any defined database tag
 name Name-std , -- structured name
 ml VisibleString , -- MEDLINE name (semi-structured)
 -- eg. "Jones RM"
 str VisibleString } -- unstructured name
Name-std ::= SEQUENCE { -- Structured names
 last VisibleString ,
 first VisibleString OPTIONAL ,
 middle VisibleString OPTIONAL ,
 full VisibleString OPTIONAL , -- full name eg. "J. John Poop, Esq"

Page 19

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 initials VisibleString OPTIONAL, -- first + middle initials
 suffix VisibleString OPTIONAL , -- Jr, Sr, III
 title VisibleString OPTIONAL } -- Dr., Sister, etc
--**** Int-fuzz **
--*
--* uncertainties in integer values
Int-fuzz ::= CHOICE {
 p-m INTEGER , -- plus or minus fixed amount
 range SEQUENCE { -- max to min
 max INTEGER ,
 min INTEGER } ,
 pct INTEGER , -- % plus or minus (x10) 0-1000
 lim ENUMERATED { -- some limit value
 unk (0) , -- unknown
 gt (1) , -- greater than
 lt (2) , -- less than
 tr (3) , -- space to right of position
 tl (4) , -- space to left of position
 other (255) } } -- something else
--**** User-object **
--*
--* a general object for a user defined structured data item
--* used by Seq-feat and Seq-descr
User-object ::= SEQUENCE {
 class VisibleString OPTIONAL , -- endeavor which designed this object
 type Object-id , -- type of object within class
 data SEQUENCE OF User-field } -- the object itself
User-field ::= SEQUENCE {
 label Object-id , -- field label
 num INTEGER OPTIONAL , -- required for strs, ints, reals, oss
 data CHOICE { -- field contents
 str VisibleString ,
 int INTEGER ,
 real REAL ,
 bool BOOLEAN ,
 os OCTET STRING ,
 object User-object , -- for using other definitions
 strs SEQUENCE OF VisibleString ,
 ints SEQUENCE OF INTEGER ,
 reals SEQUENCE OF REAL ,
 oss SEQUENCE OF OCTET STRING ,
 fields SEQUENCE OF User-field ,
 objects SEQUENCE OF User-object } }
END

C Structures and Functions: objgen.h

/* objgen.h
* ===
*
* PUBLIC DOMAIN NOTICE

Page 20

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objgen.h
*
* Author: James Ostell
*
* Version Creation Date: 1/1/91
*
* $Revision: 2.1 $
*
* File Description: Object manager interface for module NCBI-General
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_General_
#define _NCBI_General_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/

*

Page 21

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* loader
*

/
extern Boolean GeneralAsnLoad PROTO((void));
/

*
* internal structures for NCBI-General objects
*

/
/

*
* Date, Date-std share the same structure
* any data[2] or data[3] values = 0 means not set or not present
* data [0] - CHOICE of date ,0=str, 1=std
* [1] - year (- 1900)
* [2] - month (1-12) optional
*
 [3] - day (1-31)
 optional
*

/
typedef struct date {
Uint1 data[4]; /* see box above */
CharPtr str;

/* str or season or NULL */
} NCBI_Date, PNTR NCBI_DatePtr;
#define DatePtr NCBI_DatePtr
NCBI_DatePtr DateNew PROTO((void));
NCBI_DatePtr DateFree PROTO((NCBI_DatePtr dp));
Boolean DateWrite PROTO((NCBI_DatePtr dp, Int2 year, Int2 month, Int2 day,
CharPtr season));
Boolean DateRead PROTO((NCBI_DatePtr dp, Int2Ptr year, Int2Ptr month, Int2Ptr
day, CharPtr season));
Boolean DatePrint PROTO((NCBI_DatePtr dp, CharPtr buf));
NCBI_DatePtr DateCurr PROTO((void));
NCBI_DatePtr DateDup PROTO((NCBI_DatePtr dp));
Boolean DateAsnWrite PROTO((NCBI_DatePtr dp, AsnIoPtr aip, AsnTypePtr atp));
NCBI_DatePtr DateAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
Int2 DateMatch PROTO((DatePtr a, DatePtr b, Boolean all));
/

*
* Object-id stuff
*

Page 22

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/
typedef struct objid {
Int4 id;
CharPtr str;
} ObjectId, PNTR ObjectIdPtr;
extern ObjectIdPtr ObjectIdNew PROTO((void));
extern ObjectIdPtr ObjectIdFree PROTO((ObjectIdPtr oid));
extern ObjectIdPtr ObjectIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean ObjectIdAsnWrite PROTO((ObjectIdPtr oid, AsnIoPtr aip,
AsnTypePtr atp));
extern Boolean ObjectIdMatch PROTO((ObjectIdPtr a, ObjectIdPtr b));
extern ObjectIdPtr ObjectIdDup PROTO((ObjectIdPtr oldid));
/

*
* DBtag stuff
*

/
typedef struct dbtag {
CharPtr db;
ObjectIdPtr tag;
} Dbtag, PNTR DbtagPtr;
extern DbtagPtr DbtagNew PROTO((void));
extern DbtagPtr DbtagFree PROTO((DbtagPtr dbt));
extern DbtagPtr DbtagAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean DbtagAsnWrite PROTO((DbtagPtr dbt, AsnIoPtr aip, AsnTypePtr
atp));
extern Boolean DbtagMatch PROTO((DbtagPtr a, DbtagPtr b));
extern DbtagPtr DbtagDup PROTO((DbtagPtr oldtag));
/

*
* Name-std
* names[0] = last
* [1] = first
* [2] = middle
* [3] = full
* [4] = initials
* [5] = suffix
* [6] = title
*

/
typedef struct namestd {
CharPtr names[7];
} NameStd, PNTR NameStdPtr;
extern NameStdPtr NameStdNew PROTO((void));
extern NameStdPtr NameStdFree PROTO((NameStdPtr nsp));
extern NameStdPtr NameStdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean NameStdAsnWrite PROTO((NameStdPtr nsp, AsnIoPtr aip,

Page 23

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

AsnTypePtr atp));
/

*
* Person-id
* choice = 0 = not set
* 1 = dbtag
* 2 = name
* 3 = ml
* 4 = str
*

/
typedef struct personid {
Uint1 choice; /* which CHOICE, see above */
Pointer data; /* points to appropriate data structure */
} PersonId, PNTR PersonIdPtr;
extern PersonIdPtr PersonIdNew PROTO((void));
extern PersonIdPtr PersonIdFree PROTO((PersonIdPtr pid));
extern PersonIdPtr PersonIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean PersonIdAsnWrite PROTO((PersonIdPtr pid, AsnIoPtr aip,
AsnTypePtr atp));
/

*
* Int-fuzz
*

/
typedef struct intfuzz {
Uint1 choice; /* 1=p-m, 2=range, 3=pct, 4=lim */
Int4 a, b; /* a=p-m,max,pct,orlim, b=min */
} IntFuzz, PNTR IntFuzzPtr;
extern IntFuzzPtr IntFuzzNew PROTO((void));
extern IntFuzzPtr IntFuzzFree PROTO((IntFuzzPtr ifp));
extern IntFuzzPtr IntFuzzAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean IntFuzzAsnWrite PROTO((IntFuzzPtr ifp, AsnIoPtr aip,
AsnTypePtr atp));
/

*
* User-field
* data is an DataVal where:
* choice asn1 data. =
 1 = str VisibleString , ptrvalue = CharPtr
 2 = int INTEGER , intvalue
 3 = real REAL , realvalue
 4 = bool BOOLEAN , boolvalue
 5 = os OCTET STRING , ptrvalue = ByteStorePtr
 6 = object User-object , ptrvalue = UserObjectPtr
 7 = strs SEQUENCE OF VisibleString , ptrvalue = CharPtr PNTR

Page 24

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 8 = ints SEQUENCE OF INTEGER , ptrvalue = Int4Ptr
 9 = reals SEQUENCE OF REAL , ptrvalue = FloatHiPtr
 10 = oss SEQUENCE OF OCTET STRING , ptrvalue = ByteStorePtr PNTR
 11 = fields SEQUENCE OF User-field , ptrvalue = UserFieldPtr
 12 = objects SEQUENCE OF User-object } } ptrvalue = UserObjectPtr
* User-object
*

/
typedef struct userfield {
 ObjectIdPtr label;
 Int4 num;
 Uint1 choice;
 DataVal data;
 struct userfield PNTR next;
} UserField, PNTR UserFieldPtr;
extern UserFieldPtr UserFieldNew PROTO((void));
extern UserFieldPtr UserFieldFree PROTO((UserFieldPtr ufp));
extern UserFieldPtr UserFieldAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean UserFieldAsnWrite PROTO((UserFieldPtr ufp, AsnIoPtr aip,
AsnTypePtr atp));
typedef struct userobj {
 CharPtr _class;
 ObjectIdPtr type;
 UserFieldPtr data;
 struct userobj PNTR next; /* for SEQUENCE OF User-object */
} UserObject, PNTR UserObjectPtr;
extern UserObjectPtr UserObjectNew PROTO((void));
extern UserObjectPtr UserObjectFree PROTO((UserObjectPtr uop));
extern UserObjectPtr UserObjectAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean UserObjectAsnWrite PROTO((UserObjectPtr uop, AsnIoPtr aip,
AsnTypePtr atp));
#ifdef __cplusplus
}
#endif
#endif

Bibliographic References
The Bibliographic References section documents types for storing publications of any sort and
collections of publications. The types are defined in biblio.asn and pub.asn modules.

Module Types
! Citation components:
! Affil
! Author-list
! Imprint
! Title
! Citing an article - Cit-art
! Citing a journal - Cit-jour

Page 25

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citing%2520a%2520Journal
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/biblio/biblio.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/pub/pub.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citation%2520Components:%2520Affiliation
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citation%2520Components:%2520Authors
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citation%2520Components:%2520Imprint
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citation%2520Components:%2520Title
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citing%2520an%2520Article

! Citing a book - Cit-book
! Citing proceedings - Cit-proc
! Citing a letter, manuscript, or thesis - Cit-let
! Citing directly submitted data - Cit-sub
! Citing a patent - Cit-pat
! Identifying a patent - Id-pat
! Special cases: unpublished, unparsed, or unusual - Cit-gen
! Accommodating any publication type - Pub
! Grouping different forms of citation for a single work - Pub-equiv
! Sets of citations - Pub-set

Content
! Introduction
! Citation Components: Affiliation
! Citation Components: Authors
! Citation Components: Imprint
! Citation Components: Title
! Citing an Article
! Citing a Journal
! Citing a Book
! Citing a Proceedings
! Citing a Letter, Manuscript, or Thesis
! Citing Directly Submitted Data
! Citing a Patent
! Identifying a Patent
! Citing an Article or Book which is In Press
! Special Cases: Unpublished, Unparsed, or Unusual
! Accommodating Any Publication Type
! Grouping Different Forms of Citation for a Single Work
! Sets of Citations
! Comparing Citations
! ASN.1 Specification: biblio.asn
! C Structures and Functions: objbibli.h
! ASN.1 Specification: pub.asn
! C Structures and Functions: objpub.h

Introduction—The published literature is an essential component of any scientific endeavor,
not just in molecular biology. The bibliographic component of the specification and the tools
which go with it may find wide use then, permitting reuse of software and databases in many
contexts. In addition, the fact that bibliographic citations appear in data from many sources,
makes this data extremely valuable in linking data items from different databases to each other
(i.e. indirectly through a shared literature citation) to build integrated views of complex data.

Page 26

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Sets%2520of%2520Citations
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citing%2520a%2520Book
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citing%2520a%2520Proceedings
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citing%2520a%2520Letter,%2520Manuscript,%2520or%2520Thesis
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citing%2520Directly%2520Submitted%2520Data
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Citing%2520a%2520Patent
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Identifying%2520a%2520Patent
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Special%2520Cases:%2520Unpublished,%2520Unparsed,%2520or%2520Unusual
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Accommodating%2520Any%2520Publication%2520Type
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIBLIO.HTML#Grouping%2520Different%2520Forms%2520of%2520Citation%2520for%2520a%2520Single%2520Work

For this reason, it is also important that database builders ensure that their literature component
contain sufficient information to permit this mapping. By conforming to the specification
below one can be assured that this will be the case.

Much of the following bibliographic specification was derived from the components
recommended in the American National Standard for Bibliographic References (ANSI
Z39.29-1977), and in interviews with professional librarians at the National Library of
Medicine. The recommendations were then relaxed somewhat (by making certain fields
OPTIONAL) to accommodate the less complete citation information available in current
biomedical databases. Thus, although a field may be OPTIONAL, a database builder should
still attempt to fill it, if it can reasonably be done.

In this chapter we also present a specification for the base class Pub, publications of any sort
and collections of publications. The MEDLINE specification has enough unique components
that it is discussed separately in another chapter.

Citation Components: Affiliation—Affiliation is effectively the institutional affiliation
of an author. Since it has the same fields needed to cite a publisher (of a book) it is reused in
that context as well, although in that case it is not precisely an "affiliation". Affil is a CHOICE
of two forms, a structured form which is preferred, or an unstructured string when that is all
that is available.

The structured form has a number of fields taken from the ANSI guidelines. "affil" is
institutional affiliation, such as "Harvard University". "div" is division within institution, such
as "Department of Molecular Biology". "city" is obvious. "sub" is a subdivision of a country.
In the United States, this would be the state. "country" is obvious. "street" has been added to
the specification (it is not included in ANSI) so that it is possible to produce a valid mailing
address.

Citation Components: Authors—Auth-list is the list of authors for the citation. It is a
SEQUENCE, not a SET, since the order of author names matters. The names can be
unstructured strings (the least desirable), semi-structured strings following the MEDLINE rules
(e.g. "Jones JM"), or fully structured Authors (most desirable). An Affil can be associated with
the whole list (typical of a scientific article). A more detailed discussion on the use of different
types of names can be found in the "Identifying People" section of the "General Use Objects"
chapter.

If fully structured Authors are used, each Author can have an individual Affil. The Author uses
Person-id (defined in general.asn) which can be an unstructured string or MEDLINE string, as
above, or a fielded name with the components broken out separately. The Author form also
allows specification of the role of individual authors in producing the citation. The primary
author(s) does not mean the "first" author, but rather that this author had a role in the original
writing or experimental work. A secondary author is a reviewer or editor of the article. It is
rare in a scientific work that a secondary author is ever mentioned by name. Authors may play
different roles in the work, compiling, editing, and translating. Again, in a scientific work, the
authors mentioned did none of these things, but were involved in the actual writing of the paper,
although it would not be unusual anymore for one author to be the patent assignee. For scientific
work, then, the main advantages of using the Author form are the use of fielded names and of
individual Affils. For a book, being able to indicate the editors vs. the authors is useful also.

Citation Components: Imprint—Imprint provides information about the physical form in
which the citation appeared, such as what volume and issue of a journal it was in. For the "date"
a structured Date is preferred. While "volume", "issue", and "pages" are commonly integers,

Page 27

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

there are many cases where they are not pure integers (e.g. pages xvi-xvii or issue 10A). Pages
is given as a single string to simplify input from different sources. The convention is first page
(hyphen) last page, or just page if it is on a single page. "section" may be relevant to a book or
proceedings. "pub" is an Affil used to give the publisher of a book. The Affil.affil field is used
to give the name of the publisher. "cprt" is the copyright date for a book. "part-sup" is for part
or supplement and is not part of ANSI, but is used by MEDLINE. "language" is for the original
language of the publication, which is also used by MEDLINE, but is not part of the ANSI
standard. "prepub" is not part of the ANSI standard, but was added by NCBI to accommodate
citations for as yet unpublished papers that can accompany data directly submitted by authors
to the database.

Citation Components: Title—A published work may have a number of Titles, each playing
a particular role in specifying the work. There is the title of a paper, the title of a book it appears
in, or the title of the journal, in which case it may come from a controlled list of serials. There
may also be an original title and a translated title. For these reasons, Title is a defined entity
rather than just a string, to allow the roles to be specified explicitly. Certain types of Title are
legal for an Article, but not for a Journal or a Book. Rather than make three overlapping
definitions, one for Article Titles, one for Journal Titles, and one for Book Titles, we have
made one Title type and just indicated in the comments of the specification whether a particular
form of Title is legal for an Article, Journal, or Book. Title is a SET OF because a work may
have more than one title (e.g. an original and a translated title, or an ISO journal title
abbreviation and an ISSN).

Title can be of a number of types. "name" is the full title of an article, or the full name of a
book or journal. "tsub" is a subordinate title (e.g. "Hemoglobin Binds Oxygen" might be a
primary title, while "Heme Groups in Biology: Part II" might be a subordinate title). "trans" is
the translated title. So for an English language database like MEDLINE which contains an
article originally published in French, the French title is "name" and the English version of it
is "trans".

"jta" is a journal title abbreviation. It is only valid for a journal name, obviously. "jta" does not
specify what kind of abbreviation it is, so it is the least useful of the journal designations
available and should only be used as a last resort. "iso-jta" is an International Standards
Organization (ISO) journal title abbreviation. This is the preferred form. A list of valid iso-
jta's is available from NCBI or the National Library of Medicine. "ml-jta" is a MEDLINE
journal title abbreviation. MEDLINE pre-dates the ISO effort, so it does not use iso-jta's.
"coden" is a six letter code for journals which is used by a number of groups, particularly in
Europe. "issn" is a code used by publishers to identify journals. To facilitate the use of
controlled vocabularies for journal titles, NCBI maintains a file of mappings between "name",
"iso-jta", "ml-jta", "coden", and "issn" where it is possible, and this file is available upon
request.

"abr" is strictly the abbreviated title of a book. "isbn" is similar to "issn" in that it is a publishers
abbreviation for a book. "isbn" is very useful, but one must be careful since it is used by
publishers to list books, and to a publisher a hard cover book is different from a paperback (and
get different "isbn"s) even if they are the same title.

Citing an Article—An article always occurs within some other published medium. It can be
an article in a journal or a chapter or section in a book or proceedings. Thus there are two
components to an article citation; a citation for the work it was published in and a citation for
the article within that work. Cit-art.title is the Title of the article and Cit-art.authors are the
authors of the article. The "from" field is used to indicate the medium the article was published
in, and reuses the standard definitions for citing a journal, book, or proceedings.

Page 28

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

In the C structure, CitArt.from gives the type of medium published in, and CitArt.fromptr must
be cast appropriately to CitJourPtr or CitBookPtr (proceedings uses the same structure as book).

Citing a Journal—Cit-jour is used to cite an issue of a journal, not an article within a journal
(see Cit-art, above). Cit-jour.title is the title of the journal, and Cit-jour.imp gives the date,
volume, issue of the journal. Cit-jour.imp also gives the pages of an article within the issue
when used as part of a Cit-art. This is not the purest possible split between article and journal,
book, or proceedings, but does have the practical advantage of putting all such physical medium
information together in a single common data structure. A controlled list of journal titles is
maintained by NCBI, and database builders are encouraged to use this list to facilitate exchange
and linking of data between databases.

Citing a Book—Cit-book is used to cite a whole book, not an article within a book (see Cit-
art, above). Cit-book.title is the title of this particular book. Cit-book.coll is used if the book
if part of a collection, or muti-volume set (e.g. "The Complete Works of Charles Darwin").
Cit-book.authors is for the authors or editors of the book itself (not necessarily of any particular
chapter). Cit-book.imp contains the publication information about the book. As with a Cit-art,
if the Cit-book is being used to cite a chapter in a book, the pages in given in Cit-book.imp.

In the C structure, CitBook is used for Cit-book, Cit-proc, and Cit-let, since they have most
fields in common. If CitBook.othertype is 0, it is just a Cit-book.

Citing a Proceedings—A proceedings is a book published as a result or byproduct of a
meeting. As such it contains all the same fields as a Cit-book and an additional block of
information describing the meeting. These extra fields are the meeting number (as a string to
accommodate things like "10A"), the date the meeting occurred, and an OPTIONAL Affil to
record the place of the meeting. The name of the organization or meeting is normally the book
title. Don't be confused by things like the Proceedings of the National Academy of Sciences,
USA, which is really a journal.

In the C structure, a CitBook is used, with CitBook.othertype set to 1. CitBook.otherdata
contains a ValNodePtr. The proceedings can have up to 3 ValNodes where the ValNode.choice
indicates the component of the Meeting information, and ValNode.data.ptrvalue contains a
pointer to the appropriate data as below:

* choice ASN.1 field Pointer type
* 1 number CharPtr
* 2 date DatePtr
* 3 place AffilPtr

There are separate CitProcAsnRead() and CitProcAsnWrite() functions. A proceedings reuses
the parent class CitBookNew() and CitBookFree() functions.

Citing a Letter, Manuscript, or Thesis—A letter, manuscript, or a thesis share most
components and so are grouped together under Citlet. They all require most of the attributes
of a book, and thus Citlet incorporates the Citbook structure. Unlike a normal book, they will
not have a copyright date. A letter or manuscript will not have a publisher, although a thesis
may. In addition, a manuscript may have a manuscript identifier (e.g. "Technical Report
X1134").

Page 29

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The CitBook C structure is reused for Citlet. The CitBook.othertype is 2. CitBook.let_type is
used to indicate if it is a letter, manuscript, or thesis. If it is a manuscript, then CitBook.otherdata
is a CharPtr which may be NULL, or point to a string with the manuscript-id.

Citing Directly Submitted Data—This form is used to cite the submission of data directly
to a database, independent of any publication(s) which may be associated with the data as well.
Authors (of the submission) and Date (in an Imprint) are required. The Affiliation of the
Authors should be filled in the Author-list. Optionally one may also record the medium in
which the submission was made.

Citing a Patent—A full patent citation, Cit-pat conveys not only enough information to
identify a patent (see below) but to characterize it somewhat as well. A patent has a title and
authors, the country in which the patent was issued, a document type and number, and the date
the patent was issued. Patents are grouped into classes based on the patent subject, and this
may be useful to know. In addition, when a patent is first filed it is issued an application number
(different from the document number assigned to the issued patent). For tracking purposes, or
issues of precedence, it is also helpful to know the application number and filing date.

The C structure, CitPat, is a straightforward mapping of the Cit-pat fields.

Identifying a Patent—When citing a patent, it may be sufficient to merely unambiguously
identify it, on the assumption that more extensive information will be available from some
other source, given the identifier. Id-pat thus contains fields only for the country in which the
patent was applied for, or issued in, then a CHOICE of the patent document number (if issued)
or the application number (if pending).

The C structure, IdPat, is a straightforward mapping the Id-pat fields.

Citing an Article or Book which is In Press—A number of the fields in Cit-art and Cit-
book are OPTIONAL, not only to allow incorporation of older, incomplete databases, but also
to allow partial information for works submitted, or in press. One simply fills in as many of
the fields in Cit-art or Cit-book as possible. One must also set the "pre-pub" flag in Imprint to
the appropriate status. That's it. Once the work is published, the remaining information is filled
in and the "pre-pub" flag is removed. NOTE: this does NOT apply to work which is
"unpublished" or "personal communication", or even "in preparation" because one knows
nothing about where or when (or if) it will ever be published. One must use a Cit-gen for this
(below).

Special Cases: Unpublished, Unparsed, or Unusual—A generic citation, Cit-gen, is
used to hold anything not fitting into the more usual bibliographic entities described above.
Cit-gen.cit is a string which can hold a unparsable citation (if you can parse it into a structured
type, you should). Sometimes it is possible to parse some things but not everything. In this
case, a number of fields, such as authors, journal, etc., which are similar to those in the
structured types, can be populated as much as possible, and the remainder of the unparsed string
can go in "cit".

Less standard citation types, such as a MEDLINE unique identifier, or the serial numbers used
in the GenBank flatfile can be accommodated by Cit-gen. An unpublished citation normally
has authors and date filled into the structured fields. Often a title is available as well (e.g. for
a talk or for a manuscript in preparation). The string "unpublished" can then appear in the "cit"
field.

Page 30

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Software developed to display or print a Cit-gen must be opportunistic about using whatever
information is available. Obviously it is not possible to assume that all Cit-gens can be
displayed in a uniform manner, but in practice at NCBI we have found they can generally be
made fairly regular.

Accommodating Any Publication Type—A Pub is the bibliographic object base class.
It can accommodate a citation of any kind defined in the bibliographic specification, the
MEDLINE specification, and more. It is very useful when one wishes to be able to associate
a bibliographic reference in a very general way with a software tool or data item, yet still
preserve the attributes specific for each class of citation. Pub is widely used for this purpose
in the NCBI specifications.

The C structures implement a Pub as a ValNode, where the choice gives the publication type
and, in most cases, data.ptrvalue is a pointer to the appropriate data structure (and must be cast
to the appropriate type for further use). The exception is for MEDLINE uid, which uses the
data.intvalue field. The values are listed in objpub.h.

Grouping Different Forms of Citation for a Single Work—In some cases a database
builder may wish to present more than one form of citation for the same bibliographic work.
For example, in a sequence entry from the NCBI Backbone database, it is useful to provide the
MEDLINE uid (for use as a link by other software tools), the Cit-art (for display to the user),
and a Cit-gen containing the internal NCBI Backbone identifier for this publication as the string
"pub_id = 188824" (for use in checking the database by in-house staff) for the same article.
The Pub-equiv provides this capacity. It is a SET OF Pub. Each element in the SET is an
equivalent citation for the same bibliographic work. Software can examine the SET and select
the form most appropriate to the job at hand.

A Pub-equiv is implemented as a linked list of ValNodes, where each ValNode is a Pub as
described above. NOTE: a Pub of type Pub-equiv is a ValNode whose choice indicates pub-
equiv and whose data.ptrvalue is the head of the linked list of ValNodes.

Sets of Citations—One often needs to collect a set of citations together. Unlike the Pub-
equiv (above), a Pub-set is a set of citations for DIFFERENT bibliographic works. It is a
CHOICE of types for a mixture of publication classes, or for a collection of the same publication
class.

A Pub-set is implemented as a ValNode, where the choice gives the type of the Pub-set and
data.ptrvalue points to a linked list of ValNodes. The ValNodes are necessary to create the
linked list. For convenience then, the choice of each ValNode is set appropriately for the type
of bibliographic object it holds. This is only technically necessary for Pub-set of type "pub",
but since it costs nothing all classes of Pub-set are done the same way.

Comparing Citations—Common question is whether two citations refer to same the
publication. Note that this does not necessarily mean they are identical. For example a Medline-
entry may refer to the same article as a Cit-art or a simple MEDLINE uid type of Pub. A series
of xxxMatch() functions make this determination. Like strcmp() they return 0 if the two
arguments refer to the same publication, 1 if the second argument comes after the first, or -1
if the first argument comes after the second. When possible, the ordering is based on some
rational attribute of that Pub type, such as MEDLINE uid order. However, particularly when
comparing different types of Pubs, the ordering is arbitrary, but unique. Thus the xxxMatch()
functions can be used to sort various kinds of Pubs in the same list, or to locate Pubs in such
an ordered list by binary search.

Page 31

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The most general function is PubMatch(a,b), which compares two Pubs of any type.
PubEquivMatch(a,b) compares two PubEquivs only, CitArtMatch(a,b) compares two CitArts
only, and so on.

ASN.1 Specification: biblio.asn

--$Revision: 1.1 $
--**
--
-- NCBI Bibliographic data elements
-- by James Ostell, 1990
--
-- Taken from the American National Standard for
-- Bibliographic References
-- ANSI Z39.29-1977
--
--**
NCBI-Biblio DEFINITIONS ::=
BEGIN
EXPORTS Cit-art, Cit-jour, Cit-book, Cit-pat, Cit-let, Id-pat, Cit-gen,

Cit-proc, Cit-sub;
IMPORTS Person-id, Date FROM NCBI-General;
 -- Citation Types
Cit-art ::= SEQUENCE { -- article in journal or book
 title Title OPTIONAL , -- title of paper (ANSI requires)
 authors Auth-list OPTIONAL , -- authors (ANSI requires)
 from CHOICE { -- journal or book
 journal Cit-jour ,
 book Cit-book ,
 proc Cit-proc } }
Cit-jour ::= SEQUENCE { -- Journal citation
 title Title , -- title of journal
 imp Imprint }
Cit-book ::= SEQUENCE { -- Book citation
 title Title , -- Title of book
 coll Title OPTIONAL , -- part of a collection
 authors Auth-list, -- authors
 imp Imprint }
Cit-proc ::= SEQUENCE { -- Meeting proceedings
 book Cit-book , -- citation to meeting
 meet Meeting } -- time and location of meeting

Cit-pat ::= SEQUENCE { -- patent citation
 title VisibleString ,
 authors Auth-list, -- authors
 country VisibleString , -- Patent Document Country
 doc-type VisibleString , -- Patent Document Type
 number VisibleString , -- Patent Document Number
 date-issue Date , -- Patent-Issue Date
 class VisibleString OPTIONAL , -- Patent Doc Class Code

Page 32

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 app-number VisibleString OPTIONAL , -- Patent Doc Appl Number
 app-date Date OPTIONAL } -- Patent Appl File Date
Id-pat ::= SEQUENCE { -- just to identify a patent
 country VisibleString , -- Patent Document Country
 id CHOICE {
 number VisibleString , -- Patent Document Number
 app-number VisibleString } } -- Patent Doc Appl Number
Cit-let ::= SEQUENCE { -- letter, thesis, or manuscript
 cit Cit-book , -- same fields as a book
 man-id VisibleString OPTIONAL , -- Manuscript identifier
 type ENUMERATED {
 manuscript (1) ,
 letter (2) ,
 thesis (3) } OPTIONAL }
 -- NOTE: this is just to cite a
 -- direct data submission, see NCBI-Submit
 -- for the form of a sequence submission
Cit-sub ::= SEQUENCE { -- citation for a direct submission
 authors Auth-list , -- not necessarily authors of the paper
 imp Imprint ,
 medium ENUMERATED { -- medium of submission
 paper (1) ,
 tape (2) ,
 floppy (3) ,
 email (4) ,
 other (255) } OPTIONAL }

Cit-gen ::= SEQUENCE { -- NOT from ANSI, this is a catchall
 cit VisibleString OPTIONAL , -- anything, not parsable
 authors Auth-list OPTIONAL ,
 muid INTEGER OPTIONAL , -- medline uid
 journal Title OPTIONAL ,
 volume VisibleString OPTIONAL ,
 issue VisibleString OPTIONAL ,
 pages VisibleString OPTIONAL ,
 date Date OPTIONAL ,
 serial-number INTEGER OPTIONAL , -- for GenBank style references
title VisibleString OPTIONAL } -- eg. cit="unpublished",title="title"

 -- Authorship Group
Auth-list ::= SEQUENCE {
 names CHOICE {
 std SEQUENCE OF Author , -- full citations
 ml SEQUENCE OF VisibleString , -- MEDLINE, semi-structured
 str SEQUENCE OF VisibleString } , -- free for all
 affil Affil OPTIONAL } -- author affiliation
Author ::= SEQUENCE {
 name Person-id , -- Author, Primary or Secondary
 level ENUMERATED {
 primary (1),

Page 33

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 secondary (2) } OPTIONAL ,
 role ENUMERATED { -- Author Role Indicator
 compiler (1),
 editor (2),
 patent-assignee (3),
 translator (4) } OPTIONAL ,
 affil Affil OPTIONAL ,
is-corr BOOLEAN OPTIONAL } -- TRUE if corressponding author
Affil ::= CHOICE {
 str VisibleString , -- unparsed string
 std SEQUENCE { -- std representation
 affil VisibleString OPTIONAL , -- Author Affiliation, Name
 div VisibleString OPTIONAL , -- Author Affiliation, Division
 city VisibleString OPTIONAL , -- Author Affiliation, City
 sub VisibleString OPTIONAL , -- Author Affiliation, County Sub
 country VisibleString OPTIONAL , -- Author Affiliation, Country
street VisibleString OPTIONAL }} -- street address, not ANSI
 -- Title Group
 -- Valid for = A = Analytic (Cit-art)
 -- J = Journals (Cit-jour)
 -- B = Book (Cit-book)
 -- Valid for:
Title ::= SET OF CHOICE {
 name VisibleString , -- Title, Anal,Coll,Mono AJB
 tsub VisibleString , -- Title, Subordinate A B
 trans VisibleString , -- Title, Translated AJB
 jta VisibleString , -- Title, Abbreviated J
 iso-jta VisibleString , -- specifically ISO jta J
 ml-jta VisibleString , -- specifically MEDLINE jta J
 coden VisibleString , -- a coden J
 issn VisibleString , -- ISSN J
 abr VisibleString , -- Title, Abbreviated B
 isbn VisibleString } -- ISBN B
Imprint ::= SEQUENCE { -- Imprint group
 date Date , -- date of publication
 volume VisibleString OPTIONAL ,
 issue VisibleString OPTIONAL ,
 pages VisibleString OPTIONAL ,
 section VisibleString OPTIONAL ,
 pub Affil OPTIONAL, -- publisher, required for book
 cprt Date OPTIONAL, -- copyright date, " " "
 part-sup VisibleString OPTIONAL , -- used in MEDLINE
 language VisibleString DEFAULT "ENG" , -- put here for simplicity
prepub ENUMERATED { -- for prepublication citaions

submitted (1) , -- submitted, not accepted

in-press (2) ,

-- accepted, not published

Page 34

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

other (255) } OPTIONAL }
Meeting ::= SEQUENCE {
 number VisibleString ,
 date Date ,
 place Affil OPTIONAL }

END

C Structures and Functions: objbibli.h

/* objbibli.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objbibli.h
*
* Author: James Ostell
*
* Version Creation Date: 1/1/91
*
* $Revision: 1.1 $
*
* File Description: Object manager interface for module NCBI-Biblio
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---

Page 35

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*
*
* ==
*/
#ifndef _NCBI_Biblio_
#define _NCBI_Biblio_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_General_
#include <objgen.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/

*
* loader
*

/
extern Boolean BiblioAsnLoad PROTO((void));
/

*
* Affil
*

/
typedef struct affil {
Uint1 choice; /* [1]=str,[2]=std */
CharPtr affil, /* also used for str */

div,

city,

sub,

country,

street;
} Affil, PNTR AffilPtr;
extern AffilPtr AffilNew PROTO((void));
extern AffilPtr AffilFree PROTO((AffilPtr afp));
extern AffilPtr AffilAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean AffilAsnWrite PROTO((AffilPtr afp, AsnIoPtr aip, AsnTypePtr
atp));
/

Page 36

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*
* AuthList
*

/
typedef struct authors {
Uint1 choice; /* [1]=std, [2]=ml, [3]=str (only on Cit-art,gen) */
ValNodePtr names; /* the SEQUENCE OF */
AffilPtr affil;
} AuthList, PNTR AuthListPtr;
extern AuthListPtr AuthListNew PROTO((void));
extern AuthListPtr AuthListFree PROTO((AuthListPtr asp));
extern AuthListPtr AuthListAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean AuthListAsnWrite PROTO((AuthListPtr afp, AsnIoPtr aip,
AsnTypePtr atp));
Int2 AuthListMatch PROTO((AuthListPtr a, AuthListPtr b, Boolean all));
/

*
* Author
*

/
typedef struct author {
PersonIdPtr name;
Uint1 lr[2]; /* level[0], role[1] as in spec. 0=not used */
Uint1 is_corr; /* corresponding author? 255=not set, 0=false, 1=true */
AffilPtr affil;
} Author, PNTR AuthorPtr;
extern AuthorPtr AuthorNew PROTO((void));
extern AuthorPtr AuthorFree PROTO((AuthorPtr ap));
extern AuthorPtr AuthorAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean AuthorAsnWrite PROTO((AuthorPtr ap, AsnIoPtr aip, AsnTypePtr
atp));
/

*
* Cit-art
*

/
typedef struct citart {
ValNodePtr title; /* choice[1]=name,[2]=tsub,[3]=trans */
AuthListPtr authors;
Uint1 from; /* [1]=journal,[2]=book,[3]=proc */
Pointer fromptr;
} CitArt, PNTR CitArtPtr;
extern CitArtPtr CitArtNew PROTO((void));
extern CitArtPtr CitArtFree PROTO((CitArtPtr cap));
extern CitArtPtr CitArtAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitArtAsnWrite PROTO((CitArtPtr cap, AsnIoPtr aip, AsnTypePtr

Page 37

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

atp));
Int2 CitArtMatch PROTO((CitArtPtr a, CitArtPtr b));
/

*
* Imprint
*

/
typedef struct imprint {
DatePtr date;
 CharPtr volume,
 issue,
 pages,
 section,
 part_sup,
 language;
 DatePtr cprt; /* copy right date (for books) */
 AffilPtr pub; /* publisher (for books) */
Uint1 prepub; /* 0=not set 1=submitted 2=in-press 255=other */
} Imprint, PNTR ImprintPtr;
extern ImprintPtr ImprintNew PROTO((void));
extern ImprintPtr ImprintFree PROTO((ImprintPtr cap));
extern ImprintPtr ImprintAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean ImprintAsnWrite PROTO((ImprintPtr cap, AsnIoPtr aip,
AsnTypePtr atp));
Int2 ImprintMatch PROTO((ImprintPtr a, ImprintPtr b, Boolean all));
/

*
* Cit-jour
*

/
typedef struct citjour {
ValNodePtr title; /* choice in order of spec, 1=name,2=trans,etc */
ImprintPtr imp;
} CitJour, PNTR CitJourPtr;
extern CitJourPtr CitJourNew PROTO((void));
extern CitJourPtr CitJourFree PROTO((CitJourPtr cjp));
extern CitJourPtr CitJourAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitJourAsnWrite PROTO((CitJourPtr cjp, AsnIoPtr aip,
AsnTypePtr atp));
Int2 CitJourMatch PROTO((CitJourPtr a, CitJourPtr b));
/

*
* Cit-book
*

/

Page 38

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

typedef struct citbook {
ValNodePtr title, /* choice in order of spec, 1=name, 2=tsub, etc */

 coll; /* ditto */
AuthListPtr authors;
ImprintPtr imp;
Uint1 othertype, /* 0=Cit-book, 1=Cit-proc, 2=Cit-let */

let_type; /* if Cit-let, 1=manuscript,2=letter,3=thesis */
Pointer otherdata; /* NULL, ValNodes, CharPtr man-id */
} CitBook, PNTR CitBookPtr;
extern CitBookPtr CitBookNew PROTO((void));
extern CitBookPtr CitBookFree PROTO((CitBookPtr cbp));
extern CitBookPtr CitBookAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitBookAsnWrite PROTO((CitBookPtr cbp, AsnIoPtr aip,
AsnTypePtr atp));
Int2 CitBookMatch PROTO((CitBookPtr a, CitBookPtr b));
/

*
* Cit-sub
*
Direct submission of data
*

/
typedef struct citsub {
AuthListPtr authors;
ImprintPtr imp;
Uint1 medium;
} CitSub, PNTR CitSubPtr;
extern CitSubPtr CitSubNew PROTO((void));
extern CitSubPtr CitSubFree PROTO((CitSubPtr cbp));
extern CitSubPtr CitSubAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitSubAsnWrite PROTO((CitSubPtr cbp, AsnIoPtr aip, AsnTypePtr
atp));
Int2 CitSubMatch PROTO((CitSubPtr a, CitSubPtr b));
/

*
* Cit-proc
* uses otherdata in Cit-book
* chain of ValNodes
* choice ident Pointer type
* 1 number CharPtr
* 2 date DatePtr
* 3 place AffilPtr
*

/

Page 39

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

extern CitBookPtr CitProcAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitProcAsnWrite PROTO((CitBookPtr cpp, AsnIoPtr aip,
AsnTypePtr atp));
/

*
* Cit-let
* uses otherdata in Cit-book as CharPtr for man-id
*

/
extern CitBookPtr CitLetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitLetAsnWrite PROTO((CitBookPtr cpp, AsnIoPtr aip, AsnTypePtr
atp));
/

*
* Cit-pat
*

/
typedef struct citpat {
CharPtr title;
AuthListPtr authors;
CharPtr country,

doc_type,

number;
DatePtr date_issue;
CharPtr _class,

app_number;
DatePtr app_date;
} CitPat, PNTR CitPatPtr;
extern CitPatPtr CitPatNew PROTO((void));
extern CitPatPtr CitPatFree PROTO((CitPatPtr cpp));
extern CitPatPtr CitPatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitPatAsnWrite PROTO((CitPatPtr cpp, AsnIoPtr aip, AsnTypePtr
atp));
/

*
* Id-pat
*

/
typedef struct idpat {
CharPtr country,

number,

Page 40

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 /** actually CHOICE of number or app_number */

app_number;
} IdPat, PNTR IdPatPtr;
extern IdPatPtr IdPatNew PROTO((void));
extern IdPatPtr IdPatFree PROTO((IdPatPtr ipp));
extern IdPatPtr IdPatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean IdPatAsnWrite PROTO((IdPatPtr ipp, AsnIoPtr aip, AsnTypePtr
atp));
extern Boolean IdPatMatch PROTO((IdPatPtr a, IdPatPtr b));
/

*
* Cit-gen
*

/
typedef struct cit_gen {
CharPtr cit;
AuthListPtr authors;
 Int4 muid; /* medline uid, -1 if not set */
 ValNodePtr journal; /* journal/book Title */
 CharPtr volume,
 issue,
 pages;
DatePtr date;
 Int2 serial_number; /* for GenBank style references (-1 = not used)
*/
CharPtr title; /* a specific title (in addition to cit or journal)
*/
} CitGen, PNTR CitGenPtr;
extern CitGenPtr CitGenNew PROTO((void));
extern CitGenPtr CitGenFree PROTO((CitGenPtr cgp));
extern CitGenPtr CitGenAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean CitGenAsnWrite PROTO((CitGenPtr cgp, AsnIoPtr aip, AsnTypePtr
atp));
Int2 CitGenMatch PROTO((CitGenPtr a, CitGenPtr b, Boolean all));
/

*
* Title
*

/
extern ValNodePtr TitleFree PROTO((ValNodePtr anp));
extern ValNodePtr TitleAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean TitleAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr
atp));

Page 41

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Int2 TitleMatch PROTO((ValNodePtr a, ValNodePtr b, Uint1 type));
#define Cit_title_name ((Uint1) 1)
#define Cit_title_tsub ((Uint1) 2)
#define Cit_title_trans ((Uint1) 3)
#define Cit_title_jta ((Uint1) 4)
#define Cit_title_iso_jta ((Uint1) 5)
#define Cit_title_ml_jta ((Uint1) 6)
#define Cit_title_coden ((Uint1) 7)
#define Cit_title_issn ((Uint1) 8)
#define Cit_title_abr ((Uint1) 9)
#define Cit_title_isbn ((Uint1) 10)
#ifdef __cplusplus
}
#endif
#endif

ASN.1 Specification: pub.asn

--$Revision: 1.1 $
--**
--
-- Publication common set
-- James Ostell, 1990
--
-- This is the base class definitions for Publications of all sorts
--
--** NCBI-
Pub DEFINITIONS ::= BEGIN EXPORTS Pub, Pub-set, Pub-equiv; IMPORTS Medline-
entry FROM NCBI-Medline
 Cit-art, Cit-jour, Cit-book, Cit-proc, Cit-pat, Id-pat, Cit-gen,
 Cit-let, Cit-sub FROM NCBI-Biblio; Pub ::= CHOICE {
 gen Cit-gen , -- general or generic unparsed
 sub Cit-sub , -- submission
 medline Medline-entry ,
 muid INTEGER , -- medline uid
 article Cit-art ,
 journal Cit-jour ,
 book Cit-book ,
 proc Cit-proc , -- proceedings of a meeting
 patent Cit-pat ,
 pat-id Id-pat , -- identify a patent
 man Cit-let , -- manuscript, thesis, or letter
 equiv Pub-equiv } -- to cite a variety of ways Pub-equiv ::= SET OF
Pub -- equivalent identifiers for same citation Pub-set ::= CHOICE {
 pub SET OF Pub ,
 medline SET OF Medline-entry ,
 article SET OF Cit-art ,
 journal SET OF Cit-jour ,
 book SET OF Cit-book ,
 proc SET OF Cit-proc , -- proceedings of a meeting
 patent SET OF Cit-pat } END

Page 42

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

C Structures and Functions: objpub.h

/* objpub.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objpub.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*
* $Revision: 1.1 $
*
* File Description: Object manager interface for module NCBI-Pub
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Pub_
#define _NCBI_Pub_
#ifndef _ASNTOOL_
#include <asn.h>
#endif

Page 43

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#ifndef _NCBI_Biblio_
#include <objbibli.h>
#endif
#ifndef _NCBI_Medline_
#include <objmedli.h>
#endif
#ifdef __cplusplus extern "C" {
#endif
/

*
* loader
*

/ extern Boolean PubAsnLoad PROTO((void));
/

*
* internal structures for NCBI-Pub objects
*

/
/

*
* Pub is a choice using an ValNode, most types in data.ptrvalue
* choice:
* 0 = not set
 1 = gen Cit-gen , -- general or generic unparsed
 2 = sub Cit-sub , -- submission
 3 = medline Medline-entry ,
 4 = muid INTEGER , -- medline uid (stored in data.intvalue)
 5 = article Cit-art ,
 6 = journal Cit-jour ,
 7 = book Cit-book ,
 8 = proc Cit-proc , -- proceedings of a meeting
 9 = patent Cit-pat ,
 10 = pat-id Id-pat , -- identify a patent
 11 = man Cit-let -- manuscript or letter
 12 = equiv Pub-equiv -- set of equivalent citation forms for 1 pub
*

/ Boolean PubAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr atp));
ValNodePtr PubAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); ValNodePtr
PubFree PROTO((ValNodePtr anp));
#define PUB_Gen 1
#define PUB_Sub 2
#define PUB_Medline 3
#define PUB_Muid 4
#define PUB_Article 5
#define PUB_Journal 6

Page 44

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#define PUB_Book 7
#define PUB_Proc 8
#define PUB_Patent 9
#define PUB_Pat_id 10
#define PUB_Man 11
#define PUB_Equiv 12
/****
* Pub and PubEquiv Matching functions (same citation, not same form)
* PubMatch() returns
*
0 = point to same citation
* 1,-1 = same pub type, but different
* 2,-2 = different put types, don't match
* PubEquivMatch() returns
*
0 = point to same citation
*
1,-1 = point to different citations
*****/ Int2 PubMatch PROTO((ValNodePtr a, ValNodePtr b)); Int2 PubEquivMatch
PROTO((ValNodePtr a, ValNodePtr b));
/

*
* PubSet is a choice using an ValNode, PubSet->data.ptrvalue is chain of
* Pubs (ValNodes) holding data for set for all types.
* PubSet->choice:
* 0 = not set
 1 = pub Pub -- set of real Pubs
 -- the rest are implemented as Pubs anyway
 3 = medline Medline-entry ,
 5 = article Cit-art ,
 6 = journal Cit-jour ,
 7 = book Cit-book ,
 8 = proc Cit-proc , -- proceedings of a meeting
 9 = patent Cit-pat ,
*

/ Boolean PubSetAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr
atp)); ValNodePtr PubSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
ValNodePtr PubSetFree PROTO((ValNodePtr anp));
/

*
* PubEquiv is just a chain of Pubs (ValNodes)
*

/ Boolean PubEquivAsnWrite PROTO((ValNodePtr anp, AsnIoPtr aip, AsnTypePtr
atp)); ValNodePtr PubEquivAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
ValNodePtr PubEquivFree PROTO((ValNodePtr anp));
#ifdef __cplusplus
}

Page 45

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#endif
#endif

MEDLINE Data
The "MEDLINE" section is an introduction to MEDLINE and the structure of a MEDLINE
record. It describes types defined in the medline.asn module.

Module Types
! Structure of a MEDLINE Entry - Medline-entry
! MeSH Index Terms - Medline-mesh
! Substance Records - Medline-rn
! Database Cross Reference Records - Medline-si
! Introduction
! Structure of a MEDLINE Entry
! MeSH Index Terms
! Substance Records
! Database Cross Reference Records
! Funding Identifiers
! Gene Symbols
! ASN.1 Specification: medline.asn
! C Structures and Functions: objmedli.h

Introduction—MEDLINE is the largest and oldest biomedical database in the world. It is
built at the National Library of Medicine (NLM), a part of NIH. At this writing it contains over
seven million citations from the scientific literature from over 3500 different journals.
MEDLINE is a bibliographic database. It contains citation information (e.g. title, authors,
journal, etc.). Many entries contain the abstract from the article. All articles are carefully
indexed by professionals according to formal guidelines in a variety of ways. All entries can
be uniquely identified by an integer key, the MEDLINE unique identifier (MEDLINE uid).

MEDLINE is a valuable resource in its own right. In addition, the MEDLINE uid can serve as
a valuable link between entries in factual databases. When NCBI processes a new molecular
biology factual database into the standardized format, we also normalize the bibliographic
citations and attempt to map them to MEDLINE. For the biomedical databases we have tried
thus far, we have succeeding in mapping most or all of the citations this way. From then on,
linkage to other data objects can be made simply and easily through the share MEDLINE uid.
The MEDLINE uid also allows movement from the data item to the world of scientific literature
in general and back.

Structure of a MEDLINE Entry—Each Medline-entry represents a single article from the
scientific literature. The MEDLINE uid is an INTEGER which uniquely identifies the entry.
If corrections are made to the contents of the entry, the uid is not changed. The MEDLINE uid
is the simplest and most reliable way to identify the entry.

The entry-month is the month and year in which the entry became part of the public view of
MEDLINE. It is not the same as the date the article was published. It is mostly useful for
tracking what is new since a previous query of MEDLINE.

Page 46

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/MEDLINE.HTML#Database%2520Cross%2520Reference%2520Records
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/MEDLINE.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/medline/medline.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/MEDLINE.HTML#Structure%2520of%2520a%2520MEDLINE%2520Entry
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/MEDLINE.HTML#MeSH%2520Index%2520Terms
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/MEDLINE.HTML#Substance%2520Records

The article citation itself is contained in a standard Cit-art, imported from the bibliographic
module, so will not be discussed further here. The entry often contains the abstract from the
article. The rest of the entry consists of various index terms, which will be discussed below.

The C implementation of a MedlineEntry is straightforward.

MeSH Index Terms—Medical Subject Heading (MeSH) terms are a tree of controlled
vocabulary maintained by the Library Operations division of NLM. The tree is arranged with
parent terms above more specialized terms within the same concept. An entry in MEDLINE
is indexed by the most specific MeSH term(s) available. Since the MeSH vocabulary is a tree,
one may then query on specific terms directly, or on general terms by including all the child
terms in the query as well.

A MeSH term may be qualified by one or more sub-headings. For example, the MeSH term
"insulin" may carry quite a different meaning if qualified by "clinical trials" versus being
qualified by "genetics".

A MeSH term or a sub-heading may be flagged as indicating the "main point" of the article.
Again the most specific form is used. If the main point of the article was about insulin and they
also discuss genetics, then the insulin MeSH term will be flagged but the genetics sub-heading
will not be. However, if the main point of the article was the genetics of insulin, then the sub-
heading genetics under the MeSH term insulin will be flagged but the MeSH term itself will
not be.

Substance Records—If an article has substantial discussion of recognizable chemical
compounds, they are indexed in the substance records. The record may contain only the name
of the compound, or it may contain the name and a Chemical Abstracts Service (CAS) registry
number or a Enzyme Commission (EC) number as appropriate.

Database Cross Reference Records—If an article cites an identifier recognized to be
from a known list of biomedical databases, the cross reference is given in this field and the key
for which database it was from. A typical example would be a GenBank accession number
citing in an article.

Funding Identifiers—If an id number from a grant or contract is cited in the article (usually
acknowledging support) it will appear in this field.

In the C structure, ValNodes are used to make a linked list of the CharPtrs to the strings.

Gene Symbols—As an experiment, Library Operations at the NLM is putting in mnemonic
symbols from articles, if they appear by form and usage to be gene symbols. Obviously such
symbols vary and are not always properly used, so this field must be approached with caution.
Nonetheless it can provide a route to a rich source of potentially relevant citations.

ASN.1 Specification: medline.asn

--$Revision: 2.0 $
--**
--
-- MEDLINE data definitions
-- James Ostell, 1990
--
--**

Page 47

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

NCBI-Medline DEFINITIONS ::=
BEGIN
EXPORTS Medline-entry;
IMPORTS Cit-art FROM NCBI-Biblio
 Date FROM NCBI-General;
 -- a MEDLINE entry
Medline-entry ::= SEQUENCE {
 uid INTEGER , -- MEDLINE UID
 em Date , -- Entry Month
 cit Cit-art , -- article citation
 abstract VisibleString OPTIONAL ,
 mesh SET OF Medline-mesh OPTIONAL ,
 substance SET OF Medline-rn OPTIONAL ,
 xref SET OF Medline-si OPTIONAL ,
 idnum SET OF VisibleString OPTIONAL , -- ID Number (grants, contracts)
 gene SET OF VisibleString OPTIONAL }
Medline-mesh ::= SEQUENCE {
 mp BOOLEAN DEFAULT FALSE , -- TRUE if main point (*)
 term VisibleString , -- the MeSH term
 qual SET OF Medline-qual OPTIONAL } -- qualifiers
Medline-qual ::= SEQUENCE {
 mp BOOLEAN DEFAULT FALSE , -- TRUE if main point
 subh VisibleString } -- the subheading
Medline-rn ::= SEQUENCE { -- medline substance records
 type ENUMERATED { -- type of record
 nameonly (0) ,
 cas (1) , -- CAS number
 ec (2) } , -- EC number
 cit VisibleString OPTIONAL , -- CAS or EC number if present
 name VisibleString } -- name (always present)
Medline-si ::= SEQUENCE { -- medline cross reference records
 type ENUMERATED { -- type of xref
 ddbj (1) , -- DNA Data Bank of Japan
 carbbank (2) , -- Carbohydrate Structure Database
 embl (3) , -- EMBL Data Library
 hdb (4) , -- Hybridoma Data Bank
 genbank (5) , -- GenBank
 hgml (6) , -- Human Gene Map Library
 mim (7) , -- Mendelian Inheritance in Man
 msd (8) , -- Microbial Strains Database
 pdb (9) , -- Protein Data Bank (Brookhaven)
 pir (10) , -- Protein Identification Resource
 prfseqdb (11) , -- Protein Research Foundation (Japan)
 psd (12) , -- Protein Sequence Database (Japan)
 swissprot (13) } , -- SwissProt
 cit VisibleString OPTIONAL } -- the citation/accession number
END

C Structures and Functions: objmedli.h

/* objmedli.h

Page 48

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objmedli.h
*
* Author: James Ostell
*
* Version Creation Date: 1/1/91
*
* $Revision: 2.0 $
*
* File Description: Object manager interface for module NCBI-Medline
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Medline_
#define _NCBI_Medline_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_General_
#include <objgen.h>
#endif

Page 49

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#ifndef _NCBI_Biblio_
#include <objbibli.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/

*
* loader
*

/
extern Boolean MedlineAsnLoad PROTO((void));
/

*
* Medline-mesh
*

/
typedef struct mesh {
 Boolean mp; /* main point */
 CharPtr term;
 ValNodePtr qual;
 struct mesh PNTR next;
 } MedlineMesh, PNTR MedlineMeshPtr;
extern MedlineMeshPtr MedlineMeshNew PROTO((void));
extern MedlineMeshPtr MedlineMeshFree PROTO((MedlineMeshPtr mmp));
extern MedlineMeshPtr MedlineMeshAsnRead PROTO((AsnIoPtr aip, AsnTypePtr
atp));
extern Boolean MedlineMeshAsnWrite PROTO((MedlineMeshPtr mmp, AsnIoPtr aip,
AsnTypePtr atp));
/

*
* Medline-rn
*

/
typedef struct rn {
 Uint1 type;
 CharPtr cit,
 name;
 struct rn PNTR next;
 } MedlineRn, PNTR MedlineRnPtr;
extern MedlineRnPtr MedlineRnNew PROTO((void));
extern MedlineRnPtr MedlineRnFree PROTO((MedlineRnPtr mrp));
extern MedlineRnPtr MedlineRnAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean MedlineRnAsnWrite PROTO((MedlineRnPtr mrp, AsnIoPtr aip,
AsnTypePtr atp));

Page 50

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/

*
* Medline-si
* ValNode used for structure
*

/
extern ValNodePtr MedlineSiAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
extern Boolean MedlineSiAsnWrite PROTO((ValNodePtr msp, AsnIoPtr aip,
AsnTypePtr atp));
/

*
* Medline-entry
*

/
typedef struct medline {
 Int4 uid;
 DatePtr em;
 CitArtPtr cit;
 CharPtr abstract;
 MedlineMeshPtr mesh;
 MedlineRnPtr substance;
 ValNodePtr xref;
 ValNodePtr idnum;
 ValNodePtr gene;
} MedlineEntry, PNTR MedlineEntryPtr;
extern MedlineEntryPtr MedlineEntryNew PROTO((void));
extern MedlineEntryPtr MedlineEntryFree PROTO((MedlineEntryPtr mep));
extern MedlineEntryPtr MedlineEntryAsnRead PROTO((AsnIoPtr aip, AsnTypePtr
atp));
extern Boolean MedlineEntryAsnWrite PROTO((MedlineEntryPtr mep, AsnIoPtr aip,
AsnTypePtr atp));
#ifdef __cplusplus
}
#endif

Biological Sequences
The Biological Sequences section describes types used to represent biological data. These types
are defined in the seq.asn, seqblock.asn, and seqcode.asn modules.

Module Types
! Biological sequence - Bioseq
! Annotating the Bioseq - Seq-annot
! Describing the Bioseq and placing it in context - Seq-descr
! Instantiating the Bioseq - Seq-inst
! History of a Seq-inst - Seq-hist

Page 51

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Seq-hist:%2520History%2520of%2520a%2520Seq-inst
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq/seq.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqblock/seqblock.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqcode/seqcode.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Bioseq:%2520the%2520Biological%2520Sequence
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Seq-annot:%2520Annotating%2520the%2520Bioseq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Seq-descr:%2520Describing%2520the%2520Bioseq%2520and%2520Placing%2520It%2520In%2520Context
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Seq-inst:%2520Instantiating%2520the%2520Bioseq

! Encoding the sequence data itself - Seq-data
! Tables of sequence codes
! Mapping between different sequence alphabets - Seq-map-table
! Publication describing a Bioseq - Pubdesc
! Applying a numbering system to a Bioseq - Numbering

C++ Implementation Notes
In the C++ Toolkit some new methods are defined in the classes generated from the ASN.1
specifications. These classes and methods are listed below. Many utility functions for working
with Bioseqs and sequence data are defined in the CSeqportUtil class.
! CBioseq:
! CBioseq(CSeq_loc, string) - constructs a new delta sequence from the Seq-loc. The

string argument may be used to specify local Seq-id text for the new Bioseq.
! GetParentEntry - returns Seq-entry containing the Bioseq.
! GetLabel - returns the Bioseq label.
! GetFirstId - returns the first element from the Bioseq's Id list or null.
! IsNa - true if the Bioseq is a nucleotide.
! IsAa - true if the Bioseq is a protein.
! CSeq_annot:
! AddName - adds or replaces annotation descriptor of type name.
! AddTitle, SetTitle - adds or replaces annotation descriptor of type title.
! AddComment - adds annotation descriptor of type comment.
! SetCreateDate, SetUpdateDate - add or set annotation create/update time.
! AddUserObject - add a user-object descriptor.
! CSeq_data - adds constructors to create Seq-data objects from a string or a vector of

chars.
! CSeq_inst - defines IsNa/IsAa methods to check sequence type.
! CSeqdesc - defines GetLabel method.
! Introduction
! Bioseq: the Biological Sequence
! Seq-id: Identifying the Bioseq
! Seq-annot: Annotating the Bioseq
! Seq-descr: Describing the Bioseq and Placing It In Context
! Seq-inst: Instantiating the Bioseq
! Seq-hist: History of a Seq-inst
! Seq-data: Encoding the Sequence Data Itself
! Tables of Sequence Codes
! Mapping Between Different Sequence Alphabets
! Data and Tools for Sequence Alphabets
! Pubdesc: Publication Describing a Bioseq
! Numbering: Applying a Numbering System to a Bioseq

Page 52

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqdesc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Seq-data:%2520Encoding%2520the%2520Sequence%2520Data%2520Itself
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Tables%2520of%2520Sequence%2520Codes
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Mapping%2520Between%2520Different%2520Sequence%2520Alphabets
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Pubdesc:%2520Publication%2520Describing%2520a%2520Bioseq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML#Numbering:%2520Applying%2520a%2520Numbering%2520System%2520to%2520a%2520Bioseq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqportUtil
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_data
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_inst

! ASN.1 Specification: seq.asn
! ASN.1 Specification: seqblock.asn
! ASN.1 Specification: seqcode.asn
! C Structures and Functions: objseq.h
! C Structures and Functions: objpubd.h
! C Structures and Functions: objblock.h
! C Structures and Functions: objcode.h

Introduction—A biological sequence is a single, continuous molecule of nucleic acid or
protein. It can be thought of as a multiple inheritance class hierarchy. One hierarchy is that of
the underlying molecule type: DNA, RNA, or protein. The other hierarchy is the way the
underlying biological sequence is represented by the data structure. It could be a physical or
genetic map, an actual sequence of amino acids or nucleic acids, or some more complicated
data structure building a composite view from other entries. An overview of this data model
has been presented previously, in the Data Model chapter. The overview will not be repeated
here so if you have not read that chapter, do so now. This chapter will concern itself with the
details of the specification and representation of biological sequence data.

Bioseq: the Biological Sequence—A Bioseq represents a single, continuous molecule
of nucleic acid or protein. It can be anything from a band on a gel to a complete chromosome.
It can be a genetic or physical map. All Bioseqs have more common properties than differences.
All Bioseqs must have at least one identifier, a Seq-id (i.e. Bioseqs must be citable). Seq-ids
are discussed in detail in the chapter Sequence Ids and Locations. All Bioseqs represent an
integer coordinate system (even maps). All positions on Bioseqs are given by offsets from the
first residue, and thus fall in the range from zero to (length - 1). All Bioseqs may have specific
descriptive data elements (descriptors) and/or annotations such as feature tables, alignments,
or graphs associated with them.

The differences in Bioseqs arise primarily from the way they are instantiated (represented).
Different data elements are required to represent a map than are required to represent a sequence
of residues.

The C structure for a Bioseq has pointers for a linked list of Seq-ids, a linked list of Seq-descr,
and a linked list of Seq-annot, mapping quite directly from the ASN.1. However, since a Seq-
inst is always required for a Bioseq, those fields have been incorporated into the Bioseq itself.
There are SeqInstAsnRead() and SeqInstAsnWrite() as separate functions, but they take a
pointer to a Bioseq.

A number of #defines are provided in objseq.h for the representation classes, molecule types,
and types of sequence encoding used in the Bioseq C structure. Also the macros ISA_na() and
ISA_aa() are provided to split Bioseqs into the two major molecule classes. A Bioseq.length
equal to -1 means the length is unknown and will not appear in the ASN.1. When actual
sequence data is present, Bioseq.seq_data holds the pointer to it. Bioseq.seq_data_type contains
a value indicating the type of sequence encoding used (and thus the pointer type to cast
Bioseq.seq_data to). Sequence encoding is discussed in more detail below.

Seq-id: Identifying the Bioseq—Every Bioseq MUST have at least one Seq-id, or
sequence identifier. This means a Bioseq is always citable. You can refer to it by a label of
some sort. This is a crucial property for different software tools or different scientists to be
able to talk about the same thing. There is a wide range of Seq-ids and they are used in different
ways. They are discussed in more detail in the Sequence Ids and Locations chapter.

Page 53

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Seq-annot: Annotating the Bioseq—A Seq-annot is a self-contained package of
sequence annotations, or information that refers to specific locations on specific Bioseqs. Every
Seq-annot can have an Object-id for local use by software, a Dbtag for globally identifying the
source of the Seq-annot, and/or a name and description for display and use by a human. These
describe the whole package of annotations and make it attributable to a source, independent of
the source of the Bioseq.

A Seq-annot may contain a feature table, a set of sequence alignments, or a set of graphs of
attributes along the sequence. These are described in detail in the Sequence Annotation chapter.

A Bioseq may have many Seq-annots. This means it is possible for one Bioseq to have feature
tables from several different sources, or a feature table and set of alignments. A collection of
sequences (see Sets Of Bioseqs) can have Seq-annots as well. Finally, a Seq-annot can stand
alone, not directly attached to anything. This is because each element in the Seq-annot has
specific references to locations on Bioseqs so the information is very explicitly associated with
Bioseqs, not implicitly associated by attachment. This property makes possible the exchange
of information about Bioseqs as naturally as the exchange of the Bioseqs themselves, be it
among software tools or between scientists or as contributions to public databases.

Seq-descr: Describing the Bioseq and Placing It In Context—A Seq-descr is meant
to describe a Bioseq (or set of Bioseqs.. see Sets Of Bioseqs) and place it in a biological and/
or bibliographic context. Seq-descrs apply to the whole Bioseq. Some Seq-descr classes appear
also as features, when used to describe a specific part of a Bioseq. But anything appearing at
the Seq-descr level applies to the whole thing.

The C implementation uses a linked list of ValNodes, where the ValNode.choice indicates
what kind of Seq-descr this is, and ValNode.data contains either an integer or pointer depending
on the type of descriptor. The file objseq.h lists the choices and data types and is summarize
in the following table. Under Value is the value of ValNode.choice. Type gives an indication
of the data stored in ValNode.data. If "i", then an integer is stored in valnode->data.intvalue.
Otherwise a pointer is stored in valnode->data.ptrvalue and the datatype of the pointer is given.
The file objseq.h also has a series of #defines for Value below constructed by prefixing
"Seq_descr_" to the Name below and replacing any hyphens (-) in the ASN.1 name with
underline (_) to make it legal C (e.g. #define Seq_descr_mol_type 1).

Seq-descr

Value Name Type Explanation

1 mol-type i role of molecule in life

2 modif ValNodePtr modifying keywords of mol-type

3 method i protein sequencing method used

4 name CharPtr a commonly used name (e.g. "SV40")

5 title CharPtr a descriptive title or definition

6 org OrgRefPtr (single) organism from which mol comes

7 comment CharPtr descriptive comment (may have many)

8 num NumberingPtr a numbering system for whole Bioseq

9 maploc DbtagPtr a map location from a mapping database

10 pir PirBlockPtr PIR specific data

11 genbank GBBlockPtr GenBank flatfile specific data

Page 54

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

12 pub PubdescPtr Publication citation and descriptive info from pub

13 region CharPtr name of genome region (e.g. B-globin cluster)

14 user UserObjectPtr user defined data object for any purpose

15 sp SPBlockPtr SWISSPROT specific data

16 neighbors LinkSetPtr ids of pre-calculated similar sequences

17 embl EMBLBlockPtr EMBL specific data

18 create-date DatePtr date entry was created by source database

19 update-date DatePtr date entry last updated by source database

20 prf PrfBlockPtr PRF specific data

21 pdb PdbBlockPtr PDB specific data

22 het CharPtr heterogen: non-Bioseq atom/molecule

mol-type: The Molecule Type: A Seq-descr.mol-type is of type GIBB-mol. It is derived from
the molecule information used in the GenInfo BackBone database. It indicates the biological
role of the Bioseq in life. It can be genomic (including organelle genomes). It can be a
transcription product such as pre-mRNA, mRNA, rRNA, tRNA, snRNA (small nuclear RNA),
or scRNA (small cytoplasmic RNA). All amino acid sequences are peptides. No distinction is
made at this level about the level of processing of the peptide (but see Prot-ref in the Sequence
Annotations chapter). The type other-genetic is provided for "other genetic material" such a B
chromosomes or F factors that are not normal genomic material but are also not transcription
products. The type genomic-mRNA is provided to describe sequences presented in figures in
papers in which the author has combined genomic flanking sequence with cDNA sequence.
Since such a figure often does not accurately reflect either the sequence of the mRNA or the
sequence of genome, this practice should be discouraged.

Since GIBB-mol is an ENUMERATED type, the ValNode for the Seq-descr simply places the
enumerated value in ValNode.data.intvalue.

modif: Modifying Our Assumptions About a Bioseq: A GIBB-mod began as a GenInfo
BackBone component and was found to be of general utility. A GIBB-mod is meant to modify
the assumptions one might make about a Bioseq. If a GIBB-mod is not present, it does not
mean it does not apply, only that it is part of a reasonable assumption already. For example, a
Bioseq with GIBB-mol = genomic would be assumed to be DNA, to be chromosomal, and to
be partial (complete genome sequences are still rare). If GIBB-mod = mitochondrial and GIBB-
mod = complete are both present in Seq-descr, then we know this is a complete mitochondrial
genome. Even though GIBB-mod = DNA is not present we can still assume it is DNA.

The modifier concept permits a lot of flexibility. So a peptide with GIBB-mod = mitochondrial
is a mitochondrial protein. There is no implication that it is from a mitochondrial gene, only
that it functions in the mitochondrion. The assumption is that peptide sequences are complete,
so GIBB-mod = complete is not necessary for most proteins, but GIBB-mod = partial is
important information for some. A list of brief explanations of GIBB-mod values follows:

GIBB-mod

Value Name Explanation

0 dna molecule is DNA in life

Page 55

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

1 rna molecule is RNA in life

2 extrachrom molecule is extrachromosomal

3 plasmid molecule is or is from a plasmid

4 mitochondrial molecule is from mitochondrion

5 chloroplast molecule is from chloroplast

6 kinetoplast molecule is from kinetoplast

7 cyanelle molecule is from cyanelle

8 synthetic molecule was synthesized artificially

9 recombinant molecule was formed by recombination

10 partial not a complete sequence for molecule

11 complete sequence covers complete molecule

12 mutagen molecule subjected to mutagenesis

13 natmut molecule is a naturally occurring mutant

14 transposon molecule is a transposon

15 insertion-seq molecule is an insertion sequence

16 no-left partial molecule is missing left end
5' end for nucleic acid, NH3 end for peptide

17 no-right partial molecule is missing right end
3' end for nucleic acid, COOH end for peptide

18 macronuclear molecule is from macronucleus

19 proviral molecule is an integrated provirus

20 est molecule is an expressed sequence tag

Seq-descr.modif is defined as a SET OF GIBB-mod, so it must be implemented as a chain, not
as a single value. The ValNode representing a Seq-descr.modif then has ValNode.choice =
Seq_descr_modif and a ValNode.data.ptrvalue is the head of a chain of ValNodes. Each
member of that chain has a ValNode.data.intvalue set to represent a single GIBB-mod
according to the table above.

method: Protein Sequencing Method: The method Seq-descr gives the method used to obtain
a protein sequence. The values for a GIBB-method are also stored in the C structure as integer
values mapping directly from the ASN.1 ENUMERATED type. They are:

GIBB-method

Value Name Explanation

1 concept-trans conceptual translation

2 seq-pept peptide itself was sequenced

3 both conceptual translation with partial peptide sequencing

4 seq-pept-overlap peptides sequenced, fragments ordered by overlap

5 seq-pept-homol peptides sequenced, fragments ordered by homology

6 concept-trans-a conceptual translation, provided by author of sequence

Page 56

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

name: A Descriptive Name: A sequence name is very different from a sequence identifier. A
Seq-id uniquely identifies a specific Bioseq. A Seq-id may be no more than an integer and will
not necessarily convey any biological or descriptive information in itself. A name is not
guaranteed to uniquely identify a single Bioseq, but if used with caution, can be a very useful
tool to identify the best current entry for a biological entity. For example, we may wish to
associate the name "SV40" with a single Bioseq for the complete genome of SV40. Let us
suppose this Bioseq has the Seq-id 10. Then it is discovered that there were errors in the original
Bioseq designated 10, and it is replaced by a new Bioseq from a curator with Seq-id 15. The
name "SV40" can be moved to Seq-id 15 now. If a biologist wishes to see the "best" or "most
typical" sequence of the SV40 genome, she would retrieve on the name "SV40". At an earlier
point in time she would get Bioseq 10. At a later point she would get Bioseq 15. Note that her
query is always answered in the context of best current data. On the other hand, if she had done
a sequence analysis on Bioseq 10 and wanted to compare results, she would cite Seq-id 10, not
the name "SV40", since her results apply to the specific Bioseq, 10, not necessarily to the "best"
or "most typical" entry for the virus at the moment.

title: A Descriptive Title: A title is a brief, generally one line, description of an entry. It is
extremely useful when presenting lists of Bioseqs returned from a query or search. This is the
same as the familiar GenBank flatfile DEFINITION line.

Because of the utility of such terse summaries, NCBI has been experimenting with
algorithmically generated titles which try to pack as much information as possible into a single
line in a regular and readable format. You will see titles of this form appearing on entries
produced by the NCBI journal scanning component of GenBank.

DEFINITION atp6=F0-ATPase subunit 6 {RNA edited} [Brassica napus=rapeseed,
 mRNA Mitochondrial, 905 nt]
DEFINITION mprA=metalloprotease, mprR=regulatory protein [Streptomyces
 coelicolor, Muller DSM3030, Genomic, 3 genes, 2040 nt]
DEFINITION pelBC gene cluster: pelB=pectate lyase isozyme B, pelC=pectate
 lyase isozyme C [Erwinia chrysanthemi, 3937, Genomic, 2481 nt]
DEFINITION glycoprotein J...glycoprotein I [simian herpes B virus SHBV,
 prototypic B virus, Genomic, 3 genes, 2652 nt]
DEFINITION glycoprotein B, gB [human herpesvirus-6 HHV6, GS, Peptide, 830
 aa]
DEFINITION {pseudogene} RESA-2=ring-infected erythrocyte surface antigen 2
 [Plasmodium falciparum, FCR3, Genomic, 3195 nt]
DEFINITION microtubule-binding protein tau {exons 4A, 6, 8 and 13/14}
[human,
 Genomic, 954 nt, segment 1 of 4]
DEFINITION CAD protein carbamylphosphate synthetase domain {5' end} [Syrian
 hamsters, cell line 165-28, mRNA Partial, 553 nt]
DEFINITION HLA-DPB1 (SSK1)=MHC class II antigen [human, Genomic, 288 nt]

Gene and protein names come first. If both gene name and protein name are know they are
linked with "=". If more than two genes are on a Bioseq then the first and last gene are given,
separated by "...". A region name, if available, will precede the gene names. Extra comments
will appear in {}. Organism, strain names, and molecule type and modifier appear in [] at the
end. Note that the whole definition is constructed from structured information in the ASN.1
data structure by software. It is not composed by hand, but is instead a brief, machine generated
summary of the entry based on data within the entry. We therefore discourage attempts to

Page 57

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

machine parse this line. It may change, but the underlying structured data will not. Software
should always be designed to process the structured data.

org: What Organism Did this Come From?: If the whole Bioseq comes from a single
organism (the usual case). See the Feature Table chapter for a detailed description of the Org-
ref (organism reference) data structure.

comment: Commentary Text: A comment that applies to the whole Bioseq may go here. A
comment may contain many sentences or paragraphs. A Bioseq may have many comments.

num: Applying a Numbering System to a Bioseq: One may apply a custom numbering
system over the full length of the Bioseq with this Seqdescr. See the section on Numbering
later in this chapter for a detailed description of the possible forms this can take. To report the
numbering system used in a particular publication, the Pubdesc Seq-descr has its own
Numbering slot.

maploc: Map Location: The map location given here is a Dbtag, to be able to cite a map
location given by a map database to this Bioseq (e.g. "GDB", "4q21"). It is not necessarily the
map location published by the author of the Bioseq. A map location published by the author
would be part of a Pubdesc Seq-descr.

pdb: PDB Data: NCBI produces ASN.1 encoded entries from data provided by many different
sources. Almost all of the data items from these widely differing sources are mapped into the
common ASN.1 specifications described in this document. However, in all cases a small
number of elements are unique to a particular data source, or cannot be unambiguously mapped
into the common ASN.1 specification. Rather than lose such elements, they are carried in small
data structures unique to each data source. These are specified in seqblock.asn and objblock.h.

genbank: GenBank Flatfile Specific Data: A number of data items unique to the GenBank
flatfile format do not map readily to the common ASN.1 specification. These fields are partially
populated by NCBI for Bioseqs derived from other sources than GenBank to permit the
production of valid GenBank flatfile entries from those Bioseqs. Other fields are populated to
preserve information coming from older GenBank entries.

pub: Description of a Publication: This Seq-descr is used both to cite a particular
bibliographic source and to carry additional information about the Bioseq as it appeared in that
publication, such as the numbering system to use, the figure it appeared in, a map location
given by the author in that paper, and so. See the section on the Pubdesc later in this chapter
for a more detailed description of this data type.

region: Name of a Genomic Region: A region of genome often has a name which is a
commonly understood description for the Bioseq, such as "B-globin cluster".

user: A User-defined Structured Object: This is a place holder for software or databases to
add their own structured datatypes to Bioseqs without corrupting the common specification or
disabling the automatic ASN.1 syntax checking. A User-object can also be used as a feature.
See the chapter on General User Objects for a detailed explanation of User-objects.

Page 58

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

neighbors: Bioseqs Related by Sequence Similarity: NCBI computes a list of "neighbors",
or closely related Bioseqs based on sequence similarity for use in the Entrez service. This
descriptor is so that such context setting information could be included in a Bioseq itself, if
desired.

create-date: This is the date a Bioseq was created for the first time. It is normally supplied by
the source database. It may not be present when not normally distributed by the source database.

update-date: This is the date of the last update to a Bioseq by the source database. For several
source databases this is the only date provided with an entry. The nature of the last update done
is generally not available in computer readable (or any) form.

het: Heterogen: A "heterogen" is a non-biopolymer atom or molecule associated with Bioseqs
from PDB. When a heterogen appears at the Seq-descr level, it means it was resolved in the
crystal structure but is not associated with specific residues of the Bioseq. Heterogens which
are associated with specific residues of the Bioseq are attached as features.

Seq-inst: Instantiating the Bioseq—Seq-inst.mol gives the physical type of the Bioseq
in the living organism. If it is not certain if the Bioseq is DNA (dna) or RNA (rna), then (na)
can be used to indicate just "nucleic acid". A protein is always (aa) or "amino acid". The values
"not-set" or "other" are provided for internal use by editing and authoring tools, but should not
be found on a finished Bioseq being sent to an analytical tool or database.

The representation class to which the Bioseq belongs is encoded in Seq-inst.repr. The values
"not-set" or "other" are provided for internal use by editing and authoring tools, but should not
be found on a finished Bioseq being sent to an analytical tool or database. The Data Model
chapter discusses the representation class hierarchy in general. Specific details follow below.

Seq-inst: Virtual Bioseq: A "virtual" Bioseq is one in which we know the type of molecule,
and possibly its length, topology, and/or strandedness, but for which we do not have sequence
data. It is not unusual to have some uncertainty about the length of a virtual Bioseq, so Seq-
inst.fuzz may be used. The fields Seq-inst.seq-data and Seq-inst.ext are not appropriate for a
virtual Bioseq.

Seq-inst: Raw Bioseq: A "raw" Bioseq does have sequence data, so Seq-inst.length must be
set and there should be no Seq-inst.fuzz associated with it. Seq-inst.seq-data must be filled in
with the sequence itself and a Seq-data encoding must be selected which is appropriate to Seq-
inst.mol. The topology and strandedness may or may not be available. Seq-inst.ext is not
appropriate.

Seq-inst: Segmented Bioseq: A segmented ("seg") Bioseq has all the properties of a virtual
Bioseq, except that Seq-hist.ext of type Seq-ext.seg must be used to indicate the pieces of other
Bioseqs to assemble to make the segmented Bioseq. A Seq-ext.seg is defined as a SEQUENCE
OF Seq-loc, or a series of locations on other Bioseqs, taken in order.

For example, a segmented Bioseq (called "X") has a SEQUENCE OF Seq-loc which are an
interval from position 11 to 20 on Bioseq "A" followed by an interval from position 6 to 15 on
Bioseq "B". So "X" is a Bioseq with no internal gaps which is 20 residues long (no Seq-
inst.fuzz). The first residue of "X" is the residue found at position 11 in "A". To obtain this
residue, software must retrieve Bioseq "A" and examine the residue at "A" position 11. The
segmented Bioseq contains no sequence data itself, only pointers to where to get the sequence
data and what pieces to assemble in what order.

Page 59

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The type of segmented Bioseq described above might be used to represent the putative mRNA
by simply pointing to the exons on two pieces of genomic sequence. Suppose however, that
we had only sequenced around the exons on the genomic sequence, but wanted to represent
the putative complete genomic sequence. Let us assume that Bioseq "A" is the genomic
sequence of the first exon and some small amount of flanking DNA and that Bioseq "B" is the
genomic sequence around the second exon. Further, we may know from mapping that the exons
are separated by about two kilobases of DNA. We can represent the genomic region by creating
a segmented sequence in which the first location is all of Bioseq "A". The second location will
be all of a virtual Bioseq (call it "C") whose length is two thousand and which has a Seq-
inst.fuzz representing whatever uncertainty we may have about the exact length of the
intervening genomic sequence. The third location will be all of Bioseq "B". If "A" is 100 base
pairs long and "B" is 200 base pairs, then the segmented entry is 2300 base pairs long
("A"+"C"+"B") and has the same Seq-inst.fuzz as "C" to express the uncertainty of the overall
length.

A variation of the case above is when one has no idea at all what the length of the intervening
genomic region is. A segmented Bioseq can also represent this case. The Seq-inst.ext location
chain would be first all of "A", then a Seq-loc of type "null", then all of "B". The "null" indicates
that there is no available information here. The length of the segmented Bioseq is just the sum
of the length of "A" and the length of "B", and Seq-inst.fuzz is set to indicate the real length
is greater-than the length given. The "null" location does not add to the overall length of the
segmented Bioseq and is ignored in determining the integer value of a location on the
segmented Bioseq itself. If "A" is 100 base pairs long and "B" is 50 base pairs long, then
position 0 on the segmented Bioseq is equivalent to the first residue of "A" and position 100
on the segmented Bioseq is equivalent to the first residue of "B", despite the intervening "null"
location indicating the gap of unknown length. Utility functions such as the SeqPort (described
in the Sequence Utilities chapter) can be configured to signal when crossing such boundaries,
or to ignore them.

The Bioseqs referenced by a segmented Bioseq should always be from the same Seq-inst.mol
class as the segmented Bioseq, but may well come from a mixture of Seq-inst.repr classes (as
for example the mixture of virtual and raw Bioseq references used to describe sequenced and
unsequenced genomic regions above). Other reasonable mixtures might be raw and map (see
below) Bioseqs to describe a region which is fully mapped and partially sequenced, or even a
mixture of virtual, raw, and map Bioseqs for a partially mapped and partially sequenced region.
The "character" of any region of a segmented Bioseq is always taken from the underlying
Bioseq to which it points in that region. However, a segmented Bioseq can have its own
annotations. Things like feature tables are not automatically propagated to the segmented
Bioseq.

Seq-inst: Reference Bioseq: A reference Bioseq is effectively a segmented Bioseq with only
one pointer location. It behaves exactly like a segmented Bioseq in taking its data and
"character" from the Bioseq to which it points. Its purpose is not to construct a new Bioseq
from others like a segmented Bioseq, but to refer to an existing Bioseq. It could be used to
provide a convenient handle to a frequently used region of a larger Bioseq. Or it could be used
to develop a customized, personally annotated view of a Bioseq in a public database without
losing the "live" link to the public sequence.

In the first example, software would want to be able to use the Seq-loc to gather up annotations
and descriptors for the region and display them to user with corrections to align them
appropriately to the sub region. In this form, a scientist my refer to the "lac region" by name,
and analyze or annotate it as if it were a separate Bioseq, but each retrieve starts with a fresh
copy of the underlying Bioseq and annotations, so corrections or additions made to the

Page 60

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

underlying Bioseq in the public database will be immediately visible to the scientist, without
either having to always look at the whole Bioseq or losing any additional annotations the
scientist may have made on the region themselves.

In the second example, software would not propagate annotations or descriptors from the
underlying Bioseq by default (because presumably the scientist prefers his own view to the
public one) but the connection to the underlying Bioseq is not lost. Thus the public annotations
are available on demand and any new annotations added by the scientist share the public
coordinate system and can be compared with those done by others.

Seq-inst: Constructed Bioseq: A constructed (const) Bioseq inherits all the attributes of a
raw Bioseq. It is used to represent a Bioseq which has been constructed by assembling other
Bioseqs. In this case the component Bioseqs normally overlap each other and there may be
considerable redundancy of component Bioseqs. A constructed Bioseq is often also called a
"contig" or a "merge".

Most raw Bioseqs in the public databases were constructed by merging overlapping gel or
sequencer readings of a few hundred base pairs each. While the const Bioseq data structure
can easily accommodate this information, the const Bioseq data type was not really intended
for this purpose. It was intended to represent higher level merges of public sequence data and
private data, such as when a number of sequence entries from different authors are found to
overlap or be contained in each other. In this case a view of the larger sequence region can be
constructed by merging the components. The relationship of the merge to the component
Bioseqs is preserved in the constructed Bioseq, but it is clear that the constructed Bioseq is a
"better" or "more complete" view of the overall region, and could replace the component
Bioseqs in some views of the sequence database. In this way an author can submit a data
structure to the database which in this author's opinion supersedes his own or other scientist's
database entries, without the database actually dropping the other author's entries (who may
not necessarily agree with the author submitting the constructed Bioseq).

The constructed Bioseq is like a raw, rather than a segmented, Bioseq because Seq-inst.seq-
data must be present. The sequence itself is part of the constructed Bioseq. This is because the
component Bioseqs may overlap in a number of ways, and expert knowledge or voting rules
may have been applied to determine the "correct" or "best" residue from the overlapping
regions. The Seq-inst.seq-data contains the sequence which is the final result of such a process.

Seq-inst.ext is not used for the constructed Bioseq. The relationship of the merged sequence
to its component Bioseqs is stored in Seq-inst.hist, the history of the Bioseq (described in more
detail below). Seq-hist.assembly contains alignments of the constructed Bioseq with its
component Bioseqs. Any Bioseq can have a Seq-hist.assembly. A raw Bioseq may use this to
show its relationship to its gel readings. The constructed Bioseq is special in that its Seq-
hist.assembly shows how a high level view was constructed from other pieces. The sequence
in a constructed Bioseq is only posited to exist. However, since it is constructed from data by
possibly many different laboratories, it may never have been sequenced in its entirety from a
single biological source.

Seq-inst: Typical or Consensus Bioseq: A consensus (consen) Bioseq is used to represent a
pattern typical of a sequence region or family of sequences. There is no assertion that even one
sequence exists that is exactly like this one, or even that the Bioseq is a best guess at what a
real sequence region looks like. Instead it summarizes attributes of an aligned collection of real
sequences. It could be a "typical" ferredoxin made by aligning ferredoxin sequences from many
organisms and producing a protein sequence which is by some measure "central" to the group.
By using the NCBIpaa encoding for the protein, which permits a probability to be assigned to

Page 61

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

each position that any of the standard amino acids occurs there, one can create a "weight matrix"
or "profile" to define the sequence.

While a consensus Bioseq can represent a frequency profile (including the probability that any
amino acid can occur at a position, a type of gap penalty), it cannot represent a regular
expression per se. That is because all Bioseqs represent fixed integer coordinate systems. This
property is essential for attaching feature tables or expressing alignments. There is no clear
way to attach a fixed coordinate system to a regular expression, while one can approximate
allowing weighted gaps in specific regions with a frequency profile. Since the consensus Bioseq
is like any other, information can be attached to it through a feature table and alignments of
the consensus pattern to other Bioseqs can be represented like any other alignment (although
it may be computed a special way). Through the alignment, annotated features on the pattern
can be related to matching regions of the aligned sequence in a straightforward way.

Seq-hist.assembly can be used in a consensus Bioseq to record the sequence regions used to
construct the pattern and their relationships with it. While Seq-hist.assembly for a constructed
Bioseq indicates the relationship with Bioseqs which are meant to be superseded by the
constructed Bioseq, the consensus Bioseq does not in any way replace the Bioseqs in its Seq-
hist.assembly. Rather it is a summary of common features among them, not a "better" or "more
complete" version of them.

Seq-inst: Map Bioseqs: A map Bioseq inherits all the properties of a virtual Bioseq. For a
consensus genetic map of E.coli, we can posit that the chromosome is DNA, circular, double-
stranded, and about 5 million base pairs long. Given this coordinate system, we estimate the
positions of genes on it based on genetic evidence. That is, we build a feature table with Gene-
ref features on it (explained in more detail in the Feature Table chapter). Thus, a map Bioseq
is a virtual Bioseq with a Seq-inst.ext which is a feature table. In this case the feature table is
an essential part of instantiating the Bioseq, not simply an annotation on the Bioseq. This is
not to say a map Bioseq cannot have a feature table in the usual sense as well. It can. It can
also be used in alignments, displays, or by any software that can process or store Bioseqs. This
is the great strength of this approach. A genetic or physical map is just another Bioseq and can
be stored or analyzed right along with other more typical Bioseqs.

It is understood that within a particular physical or genetic mapping research project more data
will have to be present than the map Bioseq can represent. But the same is true for a big
sequencing project. The Bioseq is an object for reporting the result of such projects to others
in a way that preserves most or all the information of use to workers outside the particular
research group. It also preserves enough information to be useful to software tools within the
project, such as display tools or analysis tools which were written by others.

A number of attributes of Bioseqs can make such a generic representation more "natural" to a
particular research community. For the E.coli map example, above, no E.coli geneticist thinks
of the positions of genes in base pairs (yet). So a Num-ref annotation (see Seq-descr, below)
can be attached to the Bioseq, which provides information to convert the internal integer
coordinate system of the map Bioseq to "minutes", the floating point numbers from 0.0 to 100.0
that E.coli gene positions are traditionally given in. Seq-loc objects which the Gene-ref features
use to indicate their position can represent uncertainty, and thus give some idea of the accuracy
of the mapping in a simple way. This representation cannot store order information directly
(e.g. B and C are after A and before D, but we don't know the absolute distance and we don't
know the relative order of B and C), which would need to be stored in a genetic mapping
research database. However, a reasonable enough presentation can be made of this situation
using locations and uncertainties to be very useful for a wide variety of purposes. As more
sequence and physical map information become available, such uncertainties in gene position,

Page 62

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

at least for the "typical" chromosome, will gradually be resolved and will then map very will
to such a generic model.

A physical map Bioseq has similar strengths and weaknesses as the genetic map Bioseq. It can
represent an ordered map (such as an ordered restriction map) very well and easily. For some
contig building approaches, ordering information is essential to the process of building the
physical map and would have to be stored and processed separately by the map building
research group. However, the map Bioseq serves very well as a vehicle for periodic reports of
the group's best view of the physical map for consumption by the scientific public. The map
Bioseq data structure maps quite well to the figures such groups publish to summarize their
work. The map Bioseq is an electronic summary that can be integrated with other data and
software tools.

Seq-hist: History of a Seq-inst—Seq-hist is literally the history of the Seq-inst part of a
Bioseq. It does not track changes in annotation at all. However, since the coordinate system
provided by the Seq-inst is the critical element for tying annotations and alignments done at
various times by various people into a single consistent database, this is the most important
element to track.

While Seq-hist can use any valid Seq-id, in practice NCBI will use the best available Seq-id
in the Seq-hist. For this purpose, the Seq-id most tightly linked to the exact sequence itself is
best. See the Seq-id discussion.

Seq-hist.assembly has been mentioned above. It is a SET OF Seq-align which show the
relationship of this Bioseq to any older components that might be merged into it. The Bioseqs
included in the assembly are those from which this Bioseq was made or is meant to supersede.
The Bioseqs in the assembly need not all be from the author, but could come from anywhere.
Assembly just sets the Bioseq in context.

Seq-hist.replaces makes an editorial statement using a Seq-hist-rec. As of a certain date, this
Bioseq should replace the following Bioseqs. Databases at NCBI interpret this in a very specific
way. Seq-ids in Seq-hist.replaces, which are owned by the owner of the Bioseq, are taken from
the public view of the database. The author has told us to replace them with this one. If the
author does not own some of them, it is taken as advice that the older entries may be obsolete,
but they are not removed from the public view.

Seq-hist.replaced-by is a forward pointer. It means this Bioseq was replaced by the following
Seq-id(s) on a certain date. In the case described above, that an author tells NCBI that a new
Bioseq replaces some of his old ones, not only is the backward pointer (Seq-hist.replaces)
provided by the author in the database, but NCBI will update the Seq-hist.replaced-by forward
pointer when the old Bioseq is removed from public view. Since such old entries are still
available for specific retrieval by the public, if a scientist does have annotation pointing to the
old entry, the new entry can be explicitly located. Conversely, the older versions of a Bioseq
can easily be located as well. Note that Seq-hist.replaced-by points only one generation forward
and Seq-hist.replaces points only one generation back. This makes Bioseqs with a Seq-hist a
doubly linked list over its revision history. This is very different from GenBank/EMBL/DDBJ
secondary accession numbers, which only indicate "some relationship" between entries. When
that relationship happens to be the replacement relationship, they still carry all accession
numbers in the secondary accessions, not just the last ones, so reconstructing the entry history
is impossible, even in a very general way.

Another fate which may await a Bioseq is that it is completely withdrawn. This is relatively
rare but does happen. Seq-hist.deleted can either be set to just TRUE, or the date of the deletion

Page 63

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

event can be entered (preferred). In the SeqHist C structure, slots for both the deleted boolean
and deleted date are present. If the deleted date is present, the ASN.1 will have the Date
CHOICE for Seq-hist.deleted, else if the deleted boolean is TRUE the ASN.1 will have the
BOOLEAN form.

Seq-data: Encoding the Sequence Data Itself—In the case of a raw or constructed
Bioseq, the sequence data itself is stored in Seq-inst.seq-data, which is the data type Seq-data.
Seq-data is a CHOICE of different ways of encoding the data, allowing selection of the optimal
type for the case in hand. Both nucleic acid and amino acid encoding are given as CHOICEs
of Seq-data rather than further subclassing first. But it is still not reasonable to encode a Bioseq
of Seq-inst.mol of "aa" using a nucleic acid Seq-data type.

In the C structures all types of Seq-data are stored in ByteStores in Bioseq.seq_data. The
encoding is given by the value of Bioseq.seq_data_type. The file objseq.h contains a series of
#defines for the values of Bioseq.seq_data_type. These #defines map exactly to the ASN.1
Seq-code-type described below.

The ASN.1 module seqcode.asn and C header objcode.h define tables for recording the allowed
values for the various sequence encoding and the ways to display or map between codes. This
permits useful information about the allowed encoding to be stored as ASN.1 data and read
into a program at runtime. NCBI uses the text file seqcode.prt and the binary version of that,
seqcode.val, with its software tools. Some of the data from this file is presented in tables in the
following discussion of the different sequence encoding. The "value" is the internal numerical
value of a residue in the C code. The "symbol" is a one letter or multi-letter symbol to be used
in display to a human. The "name" is a descriptive name for the residue. Other data in
seqcode.prt will be discussed in the section on seqcode.asn itself.

IUPACaa: The IUPAC-IUB Encoding of Amino Acids: A set of one letter abbreviations
for amino acids were suggested by the IUPAC-IUB Commission on Biochemical
Nomenclature, published in J. Biol. Chem. (1968) 243: 3557-3559. It is very widely used in
both printed and electronic forms of protein sequence, and many computer programs have been
written to analyze data in this form internally (that is the actual ASCII value of the one letter
code is used internally). To support such approaches, the IUPACaa encoding represents each
amino acid internally as the ASCII value of its external one letter symbol. Note that this symbol
is UPPER CASE. One may choose to display the value as lower case to a user for readability,
but the data itself must be the UPPER CASE value.

In the NCBI C code implementation, the values are stored one value per byte.

IUPACaa

Value Symbol Name

65 A Alanine

66 B Asp or Asn

67 C Cysteine

68 D Aspartic Acid

69 E Glutamic Acid

70 F Phenylalanine

71 G Glycine

72 H Histidine

Page 64

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

73 I Isoleucine

74 J Leu or Ile

75 K Lysine

76 L Leucine

77 M Methionine

78 N Asparagine

79 O Pyrrolysine

80 P Proline

81 Q Glutamine

82 R Arginine

83 S Serine

84 T Threoine

86 V Valine

87 W Tryptophan

88 X Undetermined or atypical

89 Y Tyrosine

90 Z Glu or Gln

NCBIeaa: Extended IUPAC Encoding of Amino Acids: The official IUPAC amino acid
code has some limitations. One is the lack of symbols for termination, gap, or selenocysteine.
Such extensions to the IUPAC codes are also commonly used by sequence analysis software.
NCBI has created such a code which is simply the IUPACaa code above extended with the
additional symbols.

In the NCBI C code implementation, the values are stored one value per byte.

NCBIeaa

Value Symbol Name

42 * Termination

45 - Gap

65 A Alanine

66 B Asp or Asn

67 C Cysteine

68 D Aspartic Acid

69 E Glutamic Acid

70 F Phenylalanine

71 G Glycine

72 H Histidine

73 I Isoleucine

74 J Leu or Ile

Page 65

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

75 K Lysine

76 L Leucine

77 M Methionine

78 N Asparagine

79 O Pyrrolysine

80 P Proline

81 Q Glutamine

82 R Arginine

83 S Serine

84 T Threoine

85 U Selenocysteine

86 V Valine

87 W Tryptophan

88 X Undetermined or atypical

89 Y Tyrosine

90 Z Glu or Gln

NCBIstdaa: A Simple Sequential Code for Amino Acids: It is often very useful to separate
the external symbol for a residue from its internal representation as a data value. For amino
acids NCBI has devised a simple continuous set of values that encompasses the set of "standard"
amino acids also represented by the NCBIeaa code above. A continuous set of values means
that compact arrays can be used in computer software to look up attributes for residues simply
and easily by using the value as an index into the array. The only significance of any particular
mapping of a value to an amino acid is that zero is used for gap and the official IUPAC amino
acids come first in the list. In general, we recommend the use of this encoding for standard
amino acid sequences.

In the NCBI C code implementation, the values are stored one value per byte.

NCBIstdaa

Value Symbol Name

0 - Gap

1 A Alanine

2 B Asp or Asn

3 C Cysteine

4 D Aspartic Acid

5 E Glutamic Acid

6 F Phenylalanine

7 G Glycine

8 H Histidine

9 I Isoleucine

Page 66

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

10 K Lysine

11 L Leucine

12 M Methionine

13 N Asparagine

14 P Proline

15 Q Glutamine

16 R Arginine

17 S Serine

18 T Threoine

19 V Valine

20 W Tryptophan

21 X Undetermined or atypical

22 Y Tyrosine

23 Z Glu or Gln

24 U Selenocysteine

25 * Termination

26 O Pyrrolysine

27 J Leu or Ile

NCBI8aa: An Encoding for Modified Amino Acids: Post-translational modifications can
introduce a number of non-standard or modified amino acids into biological molecules. The
NCBI8aa code will be used to represent up to 250 possible amino acids by using the remaining
coding space in the NCBIstdaa code. That is, for the first 26 values, NCBI8aa will be identical
to NCBIstdaa. The remaining 224 values will be used for the most commonly encountered
modified amino acids. Only the first 250 values will be used to signify amino acids, leaving
values in the range of 250-255 to be used for software control codes. Obviously there are a
very large number of possible modified amino acids, especially if one takes protein engineering
into account. However, the intent here is to only represent commonly found biological forms.
This encoding is not yet available since decisions about what amino acids to include not all
have been made yet.

IUPAC3aa: A 3 Letter Display Code for Amino Acids: The IUPAC3aa code uses exactly
the same values as NCBIstdaa. The only difference is the symbol is the three letters instead of
the one letter code. This code is purely for display. As such it does not appear as a valid CHOICE
in Seq-data for encoding actual sequence data. However, it does appear in the seqcode.asn
specification and is stored in seqcode.val. The symbols follow the IUPAC-IUB
recommendations for three letter codes where possible.

IUPAC3aa

Value Symbol Name

0 --- Gap

1 Ala Alanine

2 Asx Asp or Asn

Page 67

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 Cys Cysteine

4 Asp Aspartic Acid

5 Glu Glutamic Acid

6 Phe Phenylalanine

7 Gly Glycine

8 His Histidine

9 Ile Isoleucine

10 Lys Lysine

11 Leu Leucine

12 Met Methionine

13 Asn Asparagine

14 Pro Proline

15 Gln Glutamine

16 Arg Arginine

17 Ser Serine

18 Thr Threoine

19 Val Valine

20 Trp Tryptophan

21 Xxx Undetermined or atypical

22 Tyr Tyrosine

23 Glx Glu or Gln

24 Sec Selenocysteine

25 Ter Termination

26 Pyl Pyrrolysine

27 Xle Leu or Ile

NCBIpaa: A Profile Style Encoding for Amino Acids: The NCBIpaa encoding is designed
to accommodate a frequency profile describing a protein motif or family in a form which is
consistent with the sequences in a Bioseq. Each position in the sequence is defined by 30 values.
Each of the 30 values represents the probability that a particular amino acid (or gap, termination,
etc.) will occur at that position. One can consider each set of 30 values an array. The amino
acid for each cell of the 30 value array corresponds to the NCBIstdaa index scheme. This means
that currently only the first 26 array elements will ever have a meaningful value. The remaining
4 cells are available for possible future additions to NCBIstdaa. Each cell represents the
probability that the amino acid defined by the NCBIstdaa index to that cell will appear at that
position in the motif or protein. The probability is encoded as an 8-bit value from 0-255
corresponding to a probability from 0.0 to 1.0 by interpolation.

This type of encoding would presumably never appear except in a Bioseq of type "consensus".
In the C code implementation these amino acids are encoded at 30 bytes per amino acid in a
simple linear order. That is, the first 30 bytes are the first amino acid, the second 30 the next
amino acid, and so on.

Page 68

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

IUPACna: The IUPAC-IUB Encoding for Nucleic Acids: Like the IUPACaa codes the
IUPACna codes are single letters for nucleic acids and the value is the same as the ASCII value
of the recommended IUPAC letter. The IUPAC recommendations for nucleic acid codes also
include letters to represent all possible ambiguities at a single position in the sequence except
a gap. To make the values non-redundant, U is considered the same as T. Whether a sequence
actually contains U or T is easily determined from Seq-inst.mol. Since some software tools are
designed to work directly on the ASCII representation of the IUPAC letters, this representation
is provided. Note that the ASCII values correspond to the UPPER CASE letters. Using values
corresponding to lower case letters in Seq-data is an error. For display to a user, any readable
case or font is appropriate.

The C implementation encodes one value for a nucleic acid residue per byte.

IUPACna

Value Symbol Name

65 A Adenine

66 B G or T or C

67 C Cytosine

68 D G or A or T

71 G Guanine

72 H A or C or T

75 K G or T

77 M A or C

78 N A or G or C or T

82 R G or A

83 S G or C

84 T Thymine

86 V G or C or A

87 W A or T

89 Y T or C

NCBI4na: A Four Bit Encoding of Nucleic Acids: It is possible to represent the same set of
nucleic acid and ambiguities with a four bit code, where one bit corresponds to each possible
base and where more than one bit is set to represent ambiguity. The particular encoding used
for NCBI4na is the same as that used on the GenBank Floppy Disk Format. A four bit encoding
has several advantages over the direct mapping of the ASCII IUPAC codes. One can represent
"no base" as 0000. One can match various ambiguous or unambiguous bases by a simple AND.
For example, in NCBI4na 0001=A, 0010=C, 0100=G, 1000=T/U. Adenine (0001) then
matches Purine (0101) by the AND method. Finally, it is possible to store the sequence in half
the space by storing two bases per byte. This is done both in the ASN.1 encoding and in the
NCBI C software implementation. Utility functions (see SeqPort()) allow the developer to
ignore the complexities of storage while taking advantage of the greater packing. Since nucleic
acid sequences can be very long, this is a real savings.

NCBI4na

Page 69

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Value Symbol Name

0 - Gap

1 A Adenine

2 C Cytosine

3 M A or C

4 G Guanine

5 R G or A

6 S G or C

7 V G or C or A

8 T Thymine/Uracil

9 W A or T

10 Y T or C

11 H A or C or T

12 K G or T

13 D G or A or T

14 B G or T or C

15 N A or G or C or T

NCBI2na: A Two Bit Encoding for Nucleic Acids: If no ambiguous bases are present in a
nucleic acid sequence it can be completely encoded using only two bits per base. This allows
encoding into ASN.1 or storage in the NCBI C implementation with a four fold savings in
space. As with the four bit packing, the NCBI C utility SeqPort() allows the programmer to
ignore the complexities introduced by the packing. The two bit encoding selected is the same
as that proposed for the GenBank CDROM.

NCBI2na

Value Symbol Name

0 A Adenine

1 C Cytosine

2 G Guanine

3 T Thymine/Uracil

NCBI8na: An Eight Bit Sequential Encoding for Modified Nucleic Acids: The first 16
values of NCBI8na are identical with those of NCBI4na. The remaining possible 234 values
will be used for common, biologically occurring modified bases such as those found in tRNAs.
This full encoding is still being determined at the time of this writing. Only the first 250 values
will be used, leaving values in the range of 250-255 to be used as control codes in software.

NCBIpna: A Frequency Profile Encoding for Nucleic Acids: Frequency profiles have been
used to describe motifs and signals in nucleic acids. This can be encoded by using five bytes
per sequence position. The first four bytes are used to express the probability that particular
bases occur at that position, in the order A, C, G, T as in the NCBI2na encoding. The fifth

Page 70

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

position encodes the probability that a base occurs there at all. Each byte has a value from
0-255 corresponding to a probability from 0.0-1.0.

The sequence is encoded as a simple linear sequence of bytes where the first five bytes code
for the first position, the next five for the second position, and so on. Typically the NCBIpna
notation would only be found on a Bioseq of type consensus. However, one can imagine other
uses for such an encoding, for example to represent knowledge about low resolution sequence
data in an easily computable form.

Tables of Sequence Codes—Various sequence alphabets can be stored in tables of type
Seq-code-table, defined in seqcode.asn. An enumerated type, Seq-code-type is used as a key
to each table. Each code can be thought of as a square table essentially like those presented
above in describing each alphabet. Each "residue" of the code has a numerical one-byte value
used to represent that residue both in ASN.1 data and in internal C structures. The information
necessary to display the value is given by the "symbol". A symbol can be in a one-letter series
(e.g. A,G,C,T) or more than one letter (e.g. Met, Leu, etc.). The symbol gives a human readable
representation that corresponds to each numerical residue value. A name, or explanatory string,
is also associated with each.

So, the NCBI2na code above would be coded into a Seq-code-table very simply as:

{ -- NCBI2na

code ncbi2na ,

num 4 , -- continuous 0-3

one-letter TRUE , -- all one letter codes

table {

{ symbol "A", name "Adenine" },

{ symbol "C", name "Cytosine" },

{ symbol "G", name "Guanine" },

{ symbol "T", name "Thymine/Uracil"}

} , -- end of table

comps { -- complements

3,

2,

1,

0

}

} ,

Page 71

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The table has 4 rows (with values 0-3) with one letter symbols. If we wished to represent a
code with values which do not start at 0 (such as the IUPAC codes) then we would set the
OPTIONAL "start-at" element to the value for the first row in the table.

In the case of nucleic acid codes, the Seq-code-table also has rows for indexes to complement
the values represented in the table. In the example above, the complement of 0 ("A") is 3 ("T").

Mapping Between Different Sequence Alphabets—A Seq-map-table provides a
mapping from the values of one alphabet to the values of another, very like the way
complements are mapped above. A Seq-map-table has two Seq-code-types, one giving the
alphabet to map from and the other the alphabet to map to. The Seq-map-table has the same
number of rows and the same "start-at" value as the Seq-code-table for the alphabet it maps
FROM. This makes the mapping a simple array lookup using the value of a residue of the
FROM alphabet and subtracting "start-at". Remember that alphabets are not created equal and
mapping from a bigger alphabet to a smaller may result in loss of information.

Data and Tools for Sequence Alphabets—NCBI provides a collection of Seq-code-
tables and Seq-map-tables together in a Seq-code-set as part of the software toolbox. The file
is called seqcode.prt (text form) or seqcode.val (binary ASN.1 used by the software). The
function SeqCodeSetLoad() will check your NCBI configuration file looking for the path to
"DATA", then read seqcode.val into memory using SeqCodeSetAsnRead(). A local static
pointer to the loaded SeqCodes is kept in the SeqCode module, and thus need not be kept by
the caller. Additional functions use the static pointer to provide access to the codes.
SeqCodeTableFind() will return the appropriate SeqCodeTablePtr given a valid sequence code,
and SeqMapTableFind() will return the appropriate SeqMapTablePtr given a code to map from
and a code to map to. The SeqPort functions use these functions to provide a view of a sequence
in any requested alphabet by mapping residues on demand. See the chapter on Writing
Sequence Software.

Pubdesc: Publication Describing a Bioseq—A Pubdesc is a data structure used to
record how a particular publication described a Bioseq. It contains the citation itself as a Pub-
equiv (see the Bibliographic References chapter) so that equivalent forms of the citation (e.g.
a MEDLINE uid and a Cit-Art) can all be accommodated in a single data structure. Then a
number of additional fields allow a more complete description of what was presented in the
publication. These extra fields are generally only filled in for entries produced by the NCBI
journal scanning component of GenBank, also known as the Backbone database. This
information is not generally available in data from any other database yet.

Pubdesc.name is the name given the sequence in the publication, usually in the figure.
Pubdesc.fig gives the figure the Bioseq appeared in so a scientist can locate it in the paper.
Pubdesc.num preserves the numbering system used by the author (see Numbering below).
Pubdesc.numexc, if TRUE, indicates that a "numbering exception" was found (i.e. the author's
numbering did not agree with the number of residues in the sequence). This usually indicates
an error in the preparation of the figure. If Pubdesc.poly-a is TRUE, then a poly-A tract was
indicated for the Bioseq in the figure, but was not explicitly preserved in the sequence itself
(e.g. ...AGAATTTCT (Poly-A)). Pubdesc.maploc is the map location for this sequence as
given by the author in this paper. Pubdesc.seq-raw allows the presentation of the sequence
exactly as typed from the figure. This is never used now. Pubdesc.align-group, if present,
indicates the Bioseq was presented in a group aligned with other Bioseqs. The align-group
value is an arbitrary integer. Other Bioseqs from the same publication which are part of the
same alignment will have the same align-group number.

Page 72

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Pubdesc.comment is simply a free text comment associated with this publication. SWISSPROT
entries may also have this field filled.

Numbering: Applying a Numbering System to a Bioseq—Internally, locations on
Bioseqs are ALWAYS integer offsets in the range 0 to (length - 1). However, it is often helpful
to display some other numbering system. The Numbering data structure supports a variety of
numbering styles and conventions. In the ASN.1 specification, it is simply a CHOICE of the
four possible types. When a Numbering object is supplied as a Seq-descr, then it applies to the
complete length of the Bioseq. A Numbering object can also be a feature, in which case it only
applies to the interval defined by the feature's location.

Num-cont: A Continuous Integer Numbering System: The most widely used numbering
system for sequences is some form of a continuous integer numbering. Num-cont.refnum is
the number to assign to the first residue in the Bioseq. If Num-cont.has-zero is TRUE, the
numbering system uses zero. When biologists start numbering with a negative number, it is
quite common for them to skip zero, going directly from -1 to +1, so the DEFAULT for has-
zero is FALSE. This only reflects common usage, not any recommendation in terms of
convention. Any useful software tool should support both conventions, since they are both
used in the literature. Finally, the most common numbering systems are ascending; however
descending numbering systems are encountered from time to time, so Num-cont.ascending
would then be set to FALSE.

Num-real: A Real Number Numbering Scheme: Genetic maps may use real numbers as
"map units" since they treat the chromosome as a continuous coordinate system, instead of a
discrete, integer coordinate system of base pairs. Thus a Bioseq of type "map" which may use
an underlying integer coordinate system from 0 to 5 million may be best presented to user in
the familiar 0.0 to 100.0 map units. Num-real supports a simply linear equation specifying the
relationship:

map units = (Num-real.a + base_pair_position) + Num-real.b

in this example. Since such numbering systems generally have their own units (e.g. "map units",
"centisomes", "centimorgans", etc), Num-real.units provides a string for labeling the display.

Num-enum: An Enumerated Numbering Scheme: Occasionally biologists do not use a
continuous numbering system at all. Crystallographers and immunologists, for example, who
do extensive studies on one or a few sequences, may name the individual residues in the
sequence as they fit them into a theoretical framework. So one might see residues numbered ...
"10" "11" "12" "12A" "12B" "12C" "13" "14" ... To accommodate this sort of scheme the
"name" of each residue must be explicitly given by a string, since there is no anticipating any
convention that may be used. The Num-enum.num gives the number of residue names (which
should agree with the number of residues in the Bioseq, in the case of use as a Seq-descr),
followed by the names as strings.

Num-ref: Numbering by Reference to Another Bioseq: Two types of references are allowed.
The "sources" references are meant to apply the numbering system of constituent Bioseqs to
a segmented Bioseq. This is useful for seeing the mapping from the parts to the whole.

The "aligns" reference requires that the Num-ref-aligns alignment be filled in with an alignment
of the target Bioseq with one or more pieces of other Bioseqs. The numbering will come from
the aligned pieces.

Page 73

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Numbering: C Structures and Utility Functions: A Numbering object is implemented in C
simply as a ValNode, where ValNode.choice is given by a series of #defines in objpubd.h and
ValNode.ptrvalue is a pointer to the appropriate data structure for the Numbering type.

In sequtil.h (see the Sequence Utilities chapter) a number of functions are defined which
convert from internal to display numbering systems and vice versa. These functions make the
use of fairly complex numbering systems fairly straightforward.

ASN.1 Specification: seq.asn

--$Revision: 2.1 $
--**
--
-- NCBI Sequence elements
-- by James Ostell, 1990
--
--**
NCBI-Sequence DEFINITIONS ::= BEGIN EXPORTS Bioseq, Seq-annot, Pubdesc, Seq-
descr, Numbering, Heterogen; IMPORTS Date, Int-fuzz, Dbtag, Object-id, User-
object FROM NCBI-General
 Seq-align FROM NCBI-Seqalign
 Seq-feat FROM NCBI-Seqfeat
 Seq-graph FROM NCBI-Seqres
 Pub-equiv FROM NCBI-Pub
 Org-ref FROM NCBI-Organism
 Seq-id, Seq-loc FROM NCBI-Seqloc
 Link-set FROM NCBI-Access

GB-block FROM GenBank-General

PIR-block FROM PIR-General
 EMBL-block FROM EMBL-General

SP-block FROM SP-General

PRF-block FROM PRF-General

PDB-block FROM PDB-General;
--*** Sequence ********************************
--* Bioseq ::= SEQUENCE {
 id SET OF Seq-id , -- equivalent identifiers
 descr Seq-descr OPTIONAL , -- descriptors
 inst Seq-inst , -- the sequence data
 annot SET OF Seq-annot OPTIONAL }
--*** Descriptors *****************************
--* Seq-descr ::= SET OF CHOICE {
 mol-type GIBB-mol , -- type of molecule
 modif SET OF GIBB-mod , -- modifiers
 method GIBB-method , -- sequencing method
 name VisibleString , -- a name for this sequence
 title VisibleString , -- a title for this sequence

Page 74

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 org Org-ref , -- if all from one organism
 comment VisibleString , -- a more extensive comment
 num Numbering , -- a numbering system
 maploc Dbtag , -- map location of this sequence
 pir PIR-block , -- PIR specific info
 genbank GB-block , -- GenBank specific info
 pub Pubdesc , -- a reference to the publication
 region VisibleString , -- overall region (globin locus)
 user User-object , -- user defined object
sp SP-block , -- SWISSPROT specific info
 neighbors Link-set , -- neighboring information
 embl EMBL-block , -- EMBL specific information
create-date Date , -- date entry first created/released
update-date Date , -- date of last update
prf PRF-block ,

 -- PRF specific information
pdb PDB-block , -- PDB specific information
het Heterogen } -- cofactor, etc associated but not bound GIBB-
mol ::= ENUMERATED { -- type of molecule represented
 unknown (0) ,
 genomic (1) ,
 pre-mRNA (2) ,
 mRNA (3) ,
 rRNA (4) ,
 tRNA (5) ,
 snRNA (6) ,
 scRNA (7) ,
 peptide (8) ,
other-genetic (9) , -- other genetic material
genomic-mRNA (10) , -- reported a mix of genomic and cdna sequence
 other (255) }
 GIBB-mod ::= ENUMERATED { -- GenInfo Backbone modifiers
 dna (0) ,
 rna (1) ,
 extrachrom (2) ,
 plasmid (3) ,
 mitochondrial (4) ,
 chloroplast (5) ,
 kinetoplast (6) ,
 cyanelle (7) ,
 synthetic (8) ,
 recombinant (9) ,
 partial (10) ,
 complete (11) ,
 mutagen (12) , -- subject of mutagenesis ?
 natmut (13) , -- natural mutant ?
 transposon (14) ,
 insertion-seq (15) ,

Page 75

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

no-left (16) , -- missing left end (5' for na, NH2 for aa)
no-right (17) , -- missing right end (3' or COOH)
macronuclear (18) ,
proviral (19) ,
est (20) , -- expressed sequence tag
 other (255) } GIBB-method ::= ENUMERATED { -- sequencing methods
 concept-trans (1) , -- conceptual translation
 seq-pept (2) , -- peptide was sequenced
 both (3) , -- concept transl. w/ partial pept. seq.
seq-pept-overlap (4) , -- sequenced peptide, ordered by overlap
seq-pept-homol (5) , -- sequenced peptide, ordered by homology
concept-trans-a (6) , -- conceptual transl. supplied by author
 other (255) }
 Numbering ::= CHOICE { -- any display numbering system
 cont Num-cont , -- continuous numbering
 enum Num-enum , -- enumerated names for residues
 ref Num-ref , -- by reference to another sequence
 real Num-real } -- supports mapping to a float system
 Num-cont ::= SEQUENCE { -- continuous display numbering system
 refnum INTEGER DEFAULT 1, -- number assigned to first residue
 has-zero BOOLEAN DEFAULT FALSE , -- 0 used?
 ascending BOOLEAN DEFAULT TRUE } -- ascending numbers? Num-enum ::=
SEQUENCE { -- any tags to residues
 num INTEGER , -- number of tags to follow
 names SEQUENCE OF VisibleString } -- the tags Num-ref ::= SEQUENCE
{ -- by reference to other sequences
 type ENUMERATED { -- type of reference
 not-set (0) ,
 sources (1) , -- by segmented or const seq sources
 aligns (2) } , -- by alignments given below
 aligns Seq-align OPTIONAL } Num-real ::= SEQUENCE { -- mapping
to floating point system
 a REAL , -- from an integer system used by Bioseq
 b REAL , -- position = (a * int_position) + b
 units VisibleString OPTIONAL } Pubdesc ::= SEQUENCE { -- how
sequence presented in pub
 pub Pub-equiv , -- the citation(s)
 name VisibleString OPTIONAL , -- name used in paper
 fig VisibleString OPTIONAL , -- figure in paper
 num Numbering OPTIONAL , -- numbering from paper
 numexc BOOLEAN OPTIONAL , -- numbering problem with paper
 poly-a BOOLEAN OPTIONAL , -- poly A tail indicated in figure?
 maploc VisibleString OPTIONAL , -- map location reported in paper
 seq-raw StringStore OPTIONAL , -- original sequence from paper
 align-group INTEGER OPTIONAL , -- this seq aligned with others in paper
comment VisibleString OPTIONAL }-- any comment on this pub in context
Heterogen ::= VisibleString -- cofactor, prosthetic group, inibitor,
etc
--*** Instances of sequences *******************************
--* Seq-inst ::= SEQUENCE { -- the sequence data itself
 repr ENUMERATED { -- representation class

Page 76

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 not-set (0) , -- empty
 virtual (1) , -- no seq data
 raw (2) , -- continuous sequence
 seg (3) , -- segmented sequence
 const (4) , -- constructed sequence
 ref (5) , -- reference to another sequence
 consen (6) , -- consensus sequence or pattern
 map (7) , -- ordered map (genetic, restriction)
 other (255) } ,
 mol ENUMERATED { -- molecule class in living organism
 not-set (0) , -- > cdna = rna
 dna (1) ,
 rna (2) ,
 aa (3) ,
 na (4) , -- just a nucleic acid
 other (255) } ,
 length INTEGER OPTIONAL , -- length of sequence in residues
 fuzz Int-fuzz OPTIONAL , -- length uncertainty
 topology ENUMERATED { -- topology of molecule
 not-set (0) ,
 linear (1) ,
 circular (2) ,
 tandem (3) , -- some part of tandem repeat
 other (255) } DEFAULT linear ,
 strand ENUMERATED { -- strandedness in living organism
 not-set (0) ,
 ss (1) , -- single strand
 ds (2) , -- double strand
 mixed (3) ,
 other (255) } OPTIONAL , -- default ds for DNA, ss for RNA, pept
 seq-data Seq-data OPTIONAL , -- the sequence
 ext Seq-ext OPTIONAL , -- extensions for special types
hist Seq-hist OPTIONAL } -- sequence history
--*** Sequence Extensions **********************************
--* for representing more complex types
--* const type uses Seq-hist.assembly Seq-ext ::= CHOICE {
 seg Seg-ext , -- segmented sequences
 ref Ref-ext , -- hot link to another sequence (a view)
 map Map-ext } -- ordered map of markers Seg-ext ::= SEQUENCE OF Seq-
loc Ref-ext ::= Seq-loc Map-ext ::= SEQUENCE OF Seq-feat
--*** Sequence History Record ***********************************
--** assembly = records how seq was assembled from others
--** replaces = records sequences made obsolete by this one
--** replaced-by = this seq is made obsolete by another(s) Seq-hist ::=
SEQUENCE {
assembly SET OF Seq-align OPTIONAL ,-- how was this assembled?
replaces Seq-hist-rec OPTIONAL , -- seq makes these seqs obsolete
replaced-by Seq-hist-rec OPTIONAL , -- these seqs make this one obsolete
deleted CHOICE {

bool BOOLEAN ,

Page 77

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

date Date } OPTIONAL } Seq-hist-rec ::= SEQUENCE {
date Date OPTIONAL ,
ids SET OF Seq-id }

--*** Various internal sequence representations ************
--* all are controlled, fixed length forms Seq-data ::= CHOICE
{ -- sequence representations
 iupacna IUPACna , -- IUPAC 1 letter nuc acid code
 iupacaa IUPACaa , -- IUPAC 1 letter amino acid code
 ncbi2na NCBI2na , -- 2 bit nucleic acid code
 ncbi4na NCBI4na , -- 4 bit nucleic acid code
 ncbi8na NCBI8na , -- 8 bit extended nucleic acid code
 ncbipna NCBIpna , -- nucleic acid probabilities
 ncbi8aa NCBI8aa , -- 8 bit extended amino acid codes
 ncbieaa NCBIeaa , -- extended ASCII 1 letter aa codes
 ncbipaa NCBIpaa , -- amino acid probabilities
 ncbistdaa NCBIstdaa } -- consecutive codes for std aas IUPACna ::=
StringStore -- IUPAC 1 letter codes, no spaces IUPACaa ::=
StringStore -- IUPAC 1 letter codes, no spaces NCBI2na ::= OCTET
STRING -- 00=A, 01=C, 10=G, 11=T NCBI4na ::= OCTET STRING -- 1 bit
each for agct
 -- 0001=A, 0010=C, 0100=G, 1000=T/U
 -- 0101=Purine, 1010=Pyrimidine, etc NCBI8na ::=
OCTET STRING -- for modified nucleic acids NCBIpna ::= OCTET STRING
-- 5 octets/base, prob for a,c,g,t,n
 -- probabilities are coded 0-255 = 0.0-1.0
NCBI8aa ::= OCTET STRING -- for modified amino acids NCBIeaa ::=
StringStore -- ASCII extended 1 letter aa codes
 -- IUPAC codes + U=selenocysteine NCBIpaa ::=
OCTET STRING -- 25 octets/aa, prob for IUPAC aas in order:
 -- A-Y,B,Z,X,(ter),anything
 -- probabilities are coded 0-255 = 0.0-1.0
NCBIstdaa ::= OCTET STRING -- codes 0-25, 1 per byte
--*** Sequence Annotation *************************************
--* Seq-annot ::= SEQUENCE {
 id Object-id OPTIONAL ,
 db Dbtag OPTIONAL ,
 name VisibleString OPTIONAL ,
 desc VisibleString OPTIONAL ,
 data CHOICE {
 ftable SET OF Seq-feat ,
 align SET OF Seq-align ,
 graph SET OF Seq-graph } } END

ASN.1 Specification: seqblock.asn

--$Revision: 2.0 $
--***
--
-- EMBL specific data

Page 78

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

-- This block of specifications was developed by Reiner Fuchs of EMBL
--
--*** EMBL-
General DEFINITIONS ::= BEGIN EXPORTS EMBL-dbname, EMBL-xref, EMBL-block;
IMPORTS Date, Object-id FROM NCBI-General; EMBL-dbname ::= CHOICE {
code ENUMERATED {

embl(0),

genbank(1),

ddbj(2),

geninfo(3),

medline(4),

swissprot(5),

pir(6),

pdb(7),

epd(8),

ecd(9),

tfd(10),

flybase(11),

prosite(12),

enzyme(13),

mim(14),

ecoseq(15),

hiv(16) },
name
VisibleString } EMBL-xref ::= SEQUENCE {
dbname EMBL-dbname,
id SEQUENCE OF Object-id } EMBL-block ::= SEQUENCE {
class ENUMERATED {

not-set(0),

standard(1),

unannotated(2),

Page 79

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

other(255) } DEFAULT standard,
div ENUMERATED {

fun(0),

inv(1),

mam(2),

org(3),

phg(4),

pln(5),

pri(6),

pro(7),

rod(8),

syn(9),

una(10),

vrl(11),

vrt(12) } OPTIONAL,
creation-date Date,
update-date Date,
extra-acc SEQUENCE OF VisibleString OPTIONAL,
keywords SEQUENCE OF VisibleString OPTIONAL,
xref SEQUENCE OF EMBL-xref OPTIONAL } END
--***
--
-- SWISSPROT specific data
-- This block of specifications was developed by Mark Cavanaugh of
--

NCBI working with Amos Bairoch of SWISSPROT
--
--*** SP-
General DEFINITIONS ::= BEGIN EXPORTS SP-block; IMPORTS Date, Dbtag FROM NCBI-
General

Seq-id FROM NCBI-SeqLoc; SP-block ::= SEQUENCE { -- SWISSPROT specific
descriptions
class ENUMERATED {

not-set (0) ,

Page 80

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

standard (1) , -- conforms to all SWISSPROT checks

prelim (2) , -- only seq and biblio checked

other (255) } ,
extra-acc SET OF VisibleString OPTIONAL , -- old SWISSPROT ids
imeth BOOLEAN DEFAULT FALSE , -- seq known to start with Met
plasnm SET OF VisibleString OPTIONAL, -- plasmid names carrying gene
seqref SET OF Seq-id OPTIONAL, -- xref to other sequences
dbref SET OF Dbtag OPTIONAL , -- xref to non-sequence dbases
keywords SET OF VisibleString OPTIONAL , -- keywords
created Date OPTIONAL ,

-- creation date
sequpd Date OPTIONAL ,

-- sequence update
annotupd Date OPTIONAL }

-- annotation update END
--***
--
-- PIR specific data
-- This block of specifications was developed by Jim Ostell of
--

NCBI
--
--*** PIR-
General DEFINITIONS ::= BEGIN EXPORTS PIR-block; IMPORTS Seq-id FROM NCBI-
SeqLoc; PIR-block ::= SEQUENCE { -- PIR specific descriptions
 had-punct BOOLEAN OPTIONAL , -- had punctuation in sequence ?
 host VisibleString OPTIONAL ,
 source VisibleString OPTIONAL , -- source line
 summary VisibleString OPTIONAL ,
 genetic VisibleString OPTIONAL ,
 includes VisibleString OPTIONAL ,
 placement VisibleString OPTIONAL ,
 superfamily VisibleString OPTIONAL ,
 keywords SEQUENCE OF VisibleString OPTIONAL ,
 cross-reference VisibleString OPTIONAL ,
 date VisibleString OPTIONAL ,
seq-raw VisibleString OPTIONAL , -- seq with punctuation
seqref SET OF Seq-id OPTIONAL } -- xref to other sequences END
--***
--
-- GenBank specific data
-- This block of specifications was developed by Jim Ostell of

Page 81

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

--

NCBI
--
--***
GenBank-General DEFINITIONS ::= BEGIN EXPORTS GB-block; IMPORTS Date FROM
NCBI-General; GB-block ::= SEQUENCE { -- GenBank specific
descriptions
 extra-accessions SEQUENCE OF VisibleString OPTIONAL ,
 source VisibleString OPTIONAL , -- source line
 keywords SEQUENCE OF VisibleString OPTIONAL ,
 origin VisibleString OPTIONAL,
 date VisibleString OPTIONAL , -- old form Entry Date
 entry-date Date OPTIONAL , -- replaces date
 div VisibleString OPTIONAL , -- GenBank division
 taxonomy VisibleString OPTIONAL } -- continuation line of organism END
--**
-- PRF specific definition
-- PRF is a protein sequence database crated and maintained by
-- Protein Research Foundation, Minoo-city, Osaka, Japan.
--
-- Written by A.Ogiwara, Inst.Chem.Res. (Dr.Kanehisa's Lab),
-- Kyoto Univ., Japan
--
--** PRF-
General DEFINITIONS ::= BEGIN EXPORTS PRF-block; PRF-block ::= SEQUENCE {
 extra-src PRF-ExtraSrc OPTIONAL,
 keywords SEQUENCE OF VisibleString OPTIONAL
} PRF-ExtraSrc ::= SEQUENCE {
 host VisibleString OPTIONAL,
 part VisibleString OPTIONAL,
 state VisibleString OPTIONAL,
 strain VisibleString OPTIONAL,
 taxon VisibleString OPTIONAL
} END
--***
--
-- PDB specific data
-- This block of specifications was developed by Jim Ostell and
--

Steve Bryant of NCBI
--
--*** PDB-
General DEFINITIONS ::= BEGIN EXPORTS PDB-block; IMPORTS Date FROM NCBI-
General; PDB-block ::= SEQUENCE { -- PDB specific descriptions
deposition Date , -- deposition date month,year
class VisibleString ,
compound SEQUENCE OF VisibleString ,
source SEQUENCE OF VisibleString ,
exp-method VisibleString OPTIONAL , -- present if NOT X-ray diffraction

Page 82

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

replace PDB-replace OPTIONAL } -- replacement history PDB-replace ::= SEQUENCE
{
date Date ,
ids SEQUENCE OF VisibleString } -- entry ids replace by this one END

ASN.1 Specification: seqcode.asn

--$Revision: 2.0 $
-- ***
--
-- These are code and conversion tables for NCBI sequence codes
-- ASN.1 for the sequences themselves are define in seq.asn
--
-- Seq-map-table and Seq-code-table REQUIRE that codes start with 0
-- and increase continuously. So IUPAC codes, which are upper case
-- letters will always have 65 0 cells before the codes begin. This
-- allows all codes to do indexed lookups for things
--
-- Valid names for code tables are:
-- IUPACna
-- IUPACaa
-- IUPACeaa
-- IUPACaa3 3 letter amino acid codes : parallels IUPACeaa
-- display only, not a data exchange type
-- NCBI2na
-- NCBI4na
-- NCBI8na
-- NCBI8aa
-- NCBIstdaa
-- probability types map to IUPAC types for display as characters NCBI-
SeqCode DEFINITIONS ::= BEGIN EXPORTS Seq-code-table, Seq-map-table, Seq-code-
set; Seq-code-type ::= ENUMERATED { -- sequence representations
 iupacna (1) , -- IUPAC 1 letter nuc acid code
 iupacaa (2) , -- IUPAC 1 letter amino acid code
 ncbi2na (3) , -- 2 bit nucleic acid code
 ncbi4na (4) , -- 4 bit nucleic acid code
 ncbi8na (5) , -- 8 bit extended nucleic acid code
 ncbipna (6) , -- nucleic acid probabilities
 ncbi8aa (7) , -- 8 bit extended amino acid codes
 ncbieaa (8) , -- extended ASCII 1 letter aa codes
 ncbipaa (9) , -- amino acid probabilities
 iupacaa3 (10) , -- 3 letter code only for display
 ncbistdaa (11) } -- consecutive codes for std aas, 0-25 Seq-map-
table ::= SEQUENCE { -- for tables of sequence mappings
 from Seq-code-type , -- code to map from
 to Seq-code-type , -- code to map to
 num INTEGER , -- number of rows in table
 start-at INTEGER DEFAULT 0 , -- index offset of first element
 table SEQUENCE OF INTEGER } -- table of values, in from-to order Seq-code-
table ::= SEQUENCE { -- for names of coded values
 code Seq-code-type , -- name of code

Page 83

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 num INTEGER , -- number of rows in table
 one-letter BOOLEAN , -- symbol is ALWAYS 1 letter?
 start-at INTEGER DEFAULT 0 , -- index offset of first element
 table SEQUENCE OF
 SEQUENCE {
 symbol VisibleString , -- the printed symbol or letter
 name VisibleString } , -- an explanatory name or string
 comps SEQUENCE OF INTEGER OPTIONAL } -- pointers to complement nuc acid
Seq-code-set ::= SEQUENCE { -- for distribution
 codes SET OF Seq-code-table OPTIONAL ,
 maps SET OF Seq-map-table OPTIONAL } END

C Structures and Functions: objseq.h

/* objseq.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objseq.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*
* $Revision: 2.0 $
*
* File Description: Object manager interface for module NCBI-Seq
*
* Modifications:
* --

Page 84

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Seq_
#define _NCBI_Seq_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_General_
#include <objgen.h>
#endif
#ifndef _NCBI_Seqloc_
#include <objloc.h>
#endif
#ifndef _NCBI_Pub_
#include <objpub.h>
#endif
#ifndef _NCBI_Seqalign_
#include <objalign.h>
#endif
#ifndef _NCBI_Pubdesc_
#include <objpubd.h> /* separated out to avoid typedef order problems */
#endif
#ifndef _NCBI_Seqfeat_
#include <objfeat.h> /* include organism for now */
#endif
#ifndef _NCBI_Seqres_
#include <objres.h>
#endif
#ifndef _NCBI_Access_
#include <objacces.h>
#endif
#ifndef _NCBI_SeqBlock_
#include <objblock.h>
#endif
#ifndef _NCBI_SeqCode_
#include <objcode.h>
#endif
#ifdef __cplusplus extern "C" {
#endif
/

*
* loader
*

/ extern Boolean SeqAsnLoad PROTO((void));

Page 85

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/

*
* internal structures for NCBI-Seq objects
*

/
/

*
* SeqAnnot - Sequence annotations
*

/ typedef struct seqannot {
 ObjectIdPtr id;
 DbtagPtr db;
 CharPtr name,
 desc;
 Uint1 type; /* 1=ftable, 2=align, 3=graph */
 Pointer data;
 struct seqannot PNTR next;
} SeqAnnot, PNTR SeqAnnotPtr; SeqAnnotPtr SeqAnnotNew PROTO((void)); Boolean
SeqAnnotAsnWrite PROTO((SeqAnnotPtr sap, AsnIoPtr aip, AsnTypePtr atp));
SeqAnnotPtr SeqAnnotAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqAnnotPtr SeqAnnotFree PROTO((SeqAnnotPtr sap));
/

*
* Sets of SeqAnnots
*

/ Boolean SeqAnnotSetAsnWrite PROTO((SeqAnnotPtr sap, AsnIoPtr aip,
AsnTypePtr set, AsnTypePtr element)); SeqAnnotPtr SeqAnnotSetAsnRead PROTO
((AsnIoPtr aip, AsnTypePtr set, AsnTypePtr element));
/

*
* SeqHist
*

/ typedef struct seqhist {
SeqAlignPtr assembly;
DatePtr replace_date;
SeqIdPtr replace_ids;
DatePtr replaced_by_date;
SeqIdPtr replaced_by_ids;
Boolean deleted;
DatePtr deleted_date;
} SeqHist, PNTR SeqHistPtr; SeqHistPtr SeqHistNew PROTO((void)); Boolean
SeqHistAsnWrite PROTO((SeqHistPtr shp, AsnIoPtr aip, AsnTypePtr atp));
SeqHistPtr SeqHistAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); SeqHistPtr

Page 86

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

SeqHistFree PROTO((SeqHistPtr shp));
/

*
* Bioseq.
* Inst is incorporated within Bioseq for efficiency
* seq_data_type
* 0 = not set
* 1 = IUPACna
* 2 = IUPACaa
* 3 = NCBI2na
* 4 = NCBI4na
* 5 = NCBI8na
* 6 = NCBIpna
* 7 = NCBI8aa
* 8 = NCBIeaa
* 9 = NCBIpaa
* 11 = NCBIstdaa
* seq_ext_type
* 0 = none
* 1 = seg-ext
* 2 = ref-ext
* 3 = map-ext
*

/
#define Seq_code_iupacna 1
#define Seq_code_iupacaa 2
#define Seq_code_ncbi2na 3
#define Seq_code_ncbi4na 4
#define Seq_code_ncbi8na 5
#define Seq_code_ncbipna 6
#define Seq_code_ncbi8aa 7
#define Seq_code_ncbieaa 8
#define Seq_code_ncbipaa 9
#define Seq_code_iupacaa3 10
#define Seq_code_ncbistdaa 11
#define Seq_repr_virtual 1
#define Seq_repr_raw 2
#define Seq_repr_seg 3
#define Seq_repr_const 4
#define Seq_repr_ref 5
#define Seq_repr_consen 6
#define Seq_repr_map 7
#define Seq_repr_other 255
#define Seq_mol_dna 1
#define Seq_mol_rna 2
#define Seq_mol_aa 3
#define Seq_mol_na 4
#define Seq_mol_other 255
#define ISA_na(x) ((x==1)||(x==2)||(x==4))

Page 87

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#define ISA_aa(x) (x == 3) typedef struct bioseq {
 SeqIdPtr id; /* Seq-ids */
 ValNodePtr descr; /* Seq-descr */
 Uint1 repr,
 mol;
 Int4 length; /* -1 if not set */
 IntFuzzPtr fuzz;
 Uint1 topology,
 strand,
 seq_data_type, /* as in Seq_code_type above */
 seq_ext_type;
 ByteStorePtr seq_data;
 Pointer seq_ext;
 SeqAnnotPtr annot;
SeqHistPtr hist;
} Bioseq, PNTR BioseqPtr; BioseqPtr BioseqNew PROTO((void)); Boolean
BioseqAsnWrite PROTO((BioseqPtr bsp, AsnIoPtr aip, AsnTypePtr atp));
BioseqPtr BioseqAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); BioseqPtr
BioseqFree PROTO((BioseqPtr bsp)); Boolean BioseqInstAsnWrite PROTO
((BioseqPtr bsp, AsnIoPtr aip, AsnTypePtr orig)); Boolean BioseqInstAsnRead
PROTO((BioseqPtr bsp, AsnIoPtr aip, AsnTypePtr orig)); BioseqPtr PNTR
BioseqInMem PROTO((Int2Ptr numptr));
/

*
* Initialize bioseq and seqcode tables and default numbering
*

/ Boolean BioseqLoad PROTO((void));
/

*
* BioseqAsnRead Options
*

/ typedef struct op_objseq {
SeqIdPtr sip; /* seq id to find */
Boolean found_it; /* set to TRUE when BioseqAsnRead matches sip */
Boolean load_by_id; /* if TRUE, load only if sip matches */
} Op_objseq, PNTR Op_objseqPtr;
/* types for AsnIoOption OP_NCBIOBJSEQ */
#define BIOSEQ_CHECK_ID 1 /* match Op_objseq.sip */
/

*
* SeqDescr uses an ValNode with choice =
 1 = * mol-type GIBB-mol , -- type of molecule
 2 = ** modif SET OF GIBB-mod , -- modifiers
 3 = * method GIBB-method , -- sequencing method
 4 = name VisibleString , -- a name for this sequence
 5 = title VisibleString , -- a title for this sequence

Page 88

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 6 = org Org-ref , -- if all from one organism
 7 = comment VisibleString , -- a more extensive comment
 8 = num Numbering , -- a numbering system
 9 = maploc Dbtag , -- map location of this sequence
 10 = pir PIR-block , -- PIR specific info
 11 = genbank GB-block , -- GenBank specific info
 12 = pub Pubdesc -- a reference to the publication
 13 = region VisibleString -- name for this region of sequence
 14 = user UserObject -- user structured data object
 15 = sp SP-block -- SWISSPROT specific info
 16 = neighbors Entrez-link -- links to sequence neighbors
17 = embl EMBL-block -- EMBL specific info
18 = create-date Date -- date entry created
19 = update-date Date -- date of last update
20 = prf PRF-block

 -- PRF specific information
21 = pdb PDB-block -- PDB specific information
22 = het Heterogen -- cofactor, etc associated but not bound
 types with * use data.intvalue. Other use data.ptrvalue
 ** uses a chain of ValNodes which use data.intvalue for enumerated type
*

/
#define Seq_descr_mol_type 1
#define Seq_descr_modif 2
#define Seq_descr_method 3
#define Seq_descr_name 4
#define Seq_descr_title 5
#define Seq_descr_org 6
#define Seq_descr_comment 7
#define Seq_descr_num 8
#define Seq_descr_maploc 9
#define Seq_descr_pir 10
#define Seq_descr_genbank 11
#define Seq_descr_pub 12
#define Seq_descr_region 13
#define Seq_descr_user 14
#define Seq_descr_sp 15
#define Seq_descr_neighbors 16
#define Seq_descr_embl 17
#define Seq_descr_create_date 18
#define Seq_descr_update_date 19
#define Seq_descr_prf 20
#define Seq_descr_pdb 21
#define Seq_descr_het 22 Boolean SeqDescrAsnWrite PROTO((ValNodePtr anp,
AsnIoPtr aip, AsnTypePtr atp)); ValNodePtr SeqDescrAsnRead PROTO((AsnIoPtr
aip, AsnTypePtr atp)); ValNodePtr SeqDescrFree PROTO((ValNodePtr anp));
/

Page 89

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*
* Pubdesc and Numbering types defined in objpubd.h
*

/
#ifdef __cplusplus
}
#endif
#endif

C Structures and Functions: objpubd.h

/* objpubd.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objpubd.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*
* $Revision: 2.0 $
*
* File Description: Object manager interface for type Pubdesc from
* NCBI-Sequence. This is separate to avoid typedef
* order problems with NCBI-Sequence and NCBI-Seqfeat
* which both reference Pubdesc
*

Page 90

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Numbering and Heterogen have now also been added
*

for the same reason. Heterogen is just a string,
*

so no special typedefs are required.
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Pubdesc_
#define _NCBI_Pubdesc_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifdef __cplusplus extern "C" {
#endif
/

*
* Pubdesc
*

/ typedef struct pd {
 ValNodePtr pub; /* points to Pub-equiv */
 CharPtr name,
 fig;
 ValNodePtr num; /* points to Numbering */
 Boolean numexc,
 poly_a;
 Uint1 align_group; /* 0 = not part of a group */
 CharPtr maploc,
 seq_raw,

comment;
} Pubdesc, PNTR PubdescPtr; PubdescPtr PubdescNew PROTO((void)); Boolean
PubdescAsnWrite PROTO((PubdescPtr pdp, AsnIoPtr aip, AsnTypePtr atp));

Page 91

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

PubdescPtr PubdescAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); PubdescPtr
PubdescFree PROTO((PubdescPtr pdp)); typedef ValNodePtr NumberingPtr;
/

*
* Numbering uses an ValNode with choice =
 1 = cont Num-cont , -- continuous numbering
 2 = enum Num-enum , -- enumerated names for residues
 3 = ref Num-ref, type 1 sources -- by reference to another sequence
 4 = ref Num-ref, type 2 aligns (SeqAlign in data.ptrvalue)
 5 = real Num-real -- for maps etc
*

/
#define Numbering_cont 1
#define Numbering_enum 2
#define Numbering_ref_source 3
#define Numbering_ref_align 4
#define Numbering_real 5 Boolean NumberingAsnWrite PROTO((NumberingPtr anp,
AsnIoPtr aip, AsnTypePtr atp)); NumberingPtr NumberingAsnRead PROTO((AsnIoPtr
aip, AsnTypePtr atp)); NumberingPtr NumberingFree PROTO((NumberingPtr anp));
/

*
* NumCont - continuous numbering system
*

/ typedef struct numcont {
 Int4 refnum;
 Boolean has_zero,
 ascending;
} NumCont, PNTR NumContPtr; NumContPtr NumContNew PROTO((void)); Boolean
NumContAsnWrite PROTO((NumContPtr ncp, AsnIoPtr aip, AsnTypePtr atp));
NumContPtr NumContAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); NumContPtr
NumContFree PROTO((NumContPtr ncp));
/

*
* NumEnum - enumerated numbering system
*

/ typedef struct numenum {
 Int4 num; /* number of names */
 CharPtr buf; /* a buffer for the names */
 CharPtr PNTR names; /* array of pointers to names */
} NumEnum, PNTR NumEnumPtr; NumEnumPtr NumEnumNew PROTO((void)); Boolean
NumEnumAsnWrite PROTO((NumEnumPtr nep, AsnIoPtr aip, AsnTypePtr atp));
NumEnumPtr NumEnumAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); NumEnumPtr
NumEnumFree PROTO((NumEnumPtr nep));
/

Page 92

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*
* NumReal - float type numbering system
*

/ typedef struct numreal {
 FloatHi a, b; /* number in "units" = ax + b */
 CharPtr units;
} NumReal, PNTR NumRealPtr; NumRealPtr NumRealNew PROTO((void)); Boolean
NumRealAsnWrite PROTO((NumRealPtr ncp, AsnIoPtr aip, AsnTypePtr atp));
NumRealPtr NumRealAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); NumRealPtr
NumRealFree PROTO((NumRealPtr ncp));
#ifdef __cplusplus
}
#endif
#endif

C Structures and Functions: objblock.h

/* objblock.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objblock.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*
* $Revision: 2.0 $
*

Page 93

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* File Description: Object manager for module GenBank-General,
*

EMBL-General, PIR-General, SWISSPROT-General
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_SeqBlock_
#define _NCBI_SeqBlock_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_General_
#include <objgen.h>
#endif
#ifndef _NCBI_Seqloc_
#include <objloc.h>
#endif
#ifdef __cplusplus extern "C" {
#endif
/

*
* loader
*

/ extern Boolean SeqBlockAsnLoad PROTO((void));
/

*
* PirBlock - PIR specific data elements
*

/ typedef struct pirblock {
 Boolean had_punct;
 CharPtr host,
 source,
 summary,
 genetic,
 includes,
 placement,

Page 94

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 superfamily,
 cross_reference,
 date,
 seq_raw;
 ValNodePtr keywords;
 SeqIdPtr seqref;
} PirBlock, PNTR PirBlockPtr; PirBlockPtr PirBlockNew PROTO((void)); Boolean
PirBlockAsnWrite PROTO((PirBlockPtr pbp, AsnIoPtr aip, AsnTypePtr atp));
PirBlockPtr PirBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
PirBlockPtr PirBlockFree PROTO((PirBlockPtr pbp));
/

*
* GBBlock - GenBank specific data elements
*

/ typedef struct gbblock {
 ValNodePtr extra_accessions,
 keywords;
 CharPtr source,
 origin,
 date,
 div,
 taxonomy;
 DatePtr entry_date;
} GBBlock, PNTR GBBlockPtr; GBBlockPtr GBBlockNew PROTO((void)); Boolean
GBBlockAsnWrite PROTO((GBBlockPtr gbp, AsnIoPtr aip, AsnTypePtr atp));
GBBlockPtr GBBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); GBBlockPtr
GBBlockFree PROTO((GBBlockPtr gbp));
/

*
* SPBlock - SWISSPROT specific data elements
*

/ typedef struct spblock {
 Uint1 _class;
 ValNodePtr extra_acc;
 Boolean imeth;
 ValNodePtr plasnm;
 SeqIdPtr seqref;
 ValNodePtr dbref;
 ValNodePtr keywords;
NCBI_DatePtr created,

sequpd,

annotupd;
} SPBlock, PNTR SPBlockPtr; SPBlockPtr SPBlockNew PROTO((void)); Boolean
SPBlockAsnWrite PROTO((SPBlockPtr sbp, AsnIoPtr aip, AsnTypePtr atp));
SPBlockPtr SPBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp)); SPBlockPtr

Page 95

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

SPBlockFree PROTO((SPBlockPtr sbp));
/

*
* EMBLBlock - EMBL specific data elements
*

/ typedef struct emblxref {
Uint1 _class;

CharPtr name;

/* NULL if class used */
ValNodePtr id; /* ValNode->data.ptrvalue is an ObjectIdPtr */
struct emblxref PNTR next;
} EMBLXref, PNTR EMBLXrefPtr; typedef struct emblblock {
 Uint1 _class,

div; /* 255 = not set */
NCBI_DatePtr creation_date ,

update_date;
 ValNodePtr extra_acc;
 ValNodePtr keywords;
EMBLXrefPtr xref;
} EMBLBlock, PNTR EMBLBlockPtr; EMBLBlockPtr EMBLBlockNew PROTO((void));
Boolean EMBLBlockAsnWrite PROTO((EMBLBlockPtr ebp, AsnIoPtr aip, AsnTypePtr
atp)); EMBLBlockPtr EMBLBlockAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
EMBLBlockPtr EMBLBlockFree PROTO((EMBLBlockPtr ebp));
/

*
*
PRF-Block
- PRF specific data emements
*

by A.Ogiwara

/ typedef struct prfextsrc {
CharPtr

host;
CharPtr

part;
CharPtr

Page 96

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

state;
CharPtr

strain;
CharPtr

taxon;
} PrfExtSrc, PNTR PrfExtSrcPtr; typedef struct prfblock {
PrfExtSrcPtr
extra_src;
ValNodePtr
keywords;
} PrfBlock, PNTR PrfBlockPtr; PrfBlockPtr
PrfBlockNew
PROTO((void)); Boolean

PrfBlockAsnWrite
PROTO((PrfBlockPtr pbp, AsnIoPtr aip,

AsnTypePtr atp)); PrfBlockPtr
PrfBlockAsnRead
PROTO((AsnIoPtr aip, AsnTypePtr atp)); PrfBlockPtr
PrfBlockFree
PROTO((PrfBlockPtr pbp));
/

*
*
PDB-Block
- PDB specific data emements
*

/ typedef struct pdbreplace {
DatePtr date;
ValNodePtr ids;
} PdbRep, PNTR PdbRepPtr; typedef struct pdbblock {
DatePtr deposition ;
CharPtr class ;
ValNodePtr compound ;
ValNodePtr source ;
CharPtr exp_method ;
PdbRepPtr replace;
} PdbBlock, PNTR PdbBlockPtr; PdbBlockPtr
PdbBlockNew
PROTO((void)); Boolean

Page 97

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

PdbBlockAsnWrite
PROTO((PdbBlockPtr pdbp, AsnIoPtr aip,

AsnTypePtr atp)); PdbBlockPtr
PdbBlockAsnRead
PROTO((AsnIoPtr aip, AsnTypePtr atp)); PdbBlockPtr
PdbBlockFree
PROTO((PdbBlockPtr pdbp));
#ifdef __cplusplus
}
#endif
#endif

C Structures and Functions: objcode.h

/* objcode.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objcode.h
*
* Author: James Ostell
*
* Version Creation Date: 8/10/92
*
* $Revision: 2.0 $

Page 98

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*
* File Description: Object manager interface for module NCBI-SeqCode
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_SeqCode_
#define _NCBI_SeqCode_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifdef __cplusplus extern "C" {
#endif
/

*
* loader
*

/ extern Boolean SeqCodeAsnLoad PROTO((void));
/

*
* SeqMapTable - Table from mapping sequence codes to each other
* Codes ALWAYS start from 0 and increase continuously
* IUPAC has 65 empty rows
*

/ typedef struct seqmaptable {
 Uint1 from, /* as ENUMERATED in Seq-code-type */
 to;
 Uint1 num;
 Uint1 start_at;
 Uint1Ptr table;
 struct seqmaptable PNTR next;
} SeqMapTable, PNTR SeqMapTablePtr; SeqMapTablePtr SeqMapTableNew PROTO
((void)); Boolean SeqMapTableAsnWrite PROTO((SeqMapTablePtr smp, AsnIoPtr
aip, AsnTypePtr atp)); SeqMapTablePtr SeqMapTableAsnRead PROTO((AsnIoPtr aip,
AsnTypePtr atp)); SeqMapTablePtr SeqMapTableFree PROTO((SeqMapTablePtr smp));
SeqMapTablePtr SeqMapTableFind PROTO((Uint1 to, Uint1 from));
/

*
* SeqCodeTable - Table of sequence codes
* in code order, starting with 0 and increasing continuously

Page 99

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*

/ typedef struct seqcodetable {
 Uint1 code; /* as ENUMERATED in Seq-code-type */
 Uint1 num; /* number of codes */
 Boolean one_letter; /* one letter codes? */
 Uint1 start_at; /* index offset of first code */
 CharPtr letters; /* one letter codes */
 CharPtr PNTR symbols; /* multi-length codes */
 CharPtr PNTR names; /* explanatory names */
 Uint1Ptr comps; /* maps to complements */
 struct seqcodetable PNTR next;
} SeqCodeTable, PNTR SeqCodeTablePtr; SeqCodeTablePtr SeqCodeTableNew PROTO
((void)); Boolean SeqCodeTableAsnWrite PROTO((SeqCodeTablePtr scp, AsnIoPtr
aip, AsnTypePtr atp)); SeqCodeTablePtr SeqCodeTableAsnRead PROTO((AsnIoPtr
aip, AsnTypePtr atp)); SeqCodeTablePtr SeqCodeTableFree PROTO
((SeqCodeTablePtr scp)); SeqCodeTablePtr SeqCodeTableFind PROTO((Uint1
code));
/

*
* SeqCodeSet - Set of sequence codes and maps
*

/ typedef struct seqcodeset {
 SeqCodeTablePtr codes;
 SeqMapTablePtr maps;
} SeqCodeSet, PNTR SeqCodeSetPtr; SeqCodeSetPtr SeqCodeSetNew PROTO((void));
Boolean SeqCodeSetAsnWrite PROTO((SeqCodeSetPtr ssp, AsnIoPtr aip, AsnTypePtr
atp)); SeqCodeSetPtr SeqCodeSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqCodeSetPtr SeqCodeSetFree PROTO((SeqCodeSetPtr ssp));
/

*
* SeqCodeSetLoad()
* loads the standard sequence codes from "seqcode.val" in "data"
*

/ SeqCodeSetPtr SeqCodeSetLoad PROTO((void));
#ifdef __cplusplus
}
#endif
#endif

Collection of Sequences
The Collection of Sequences section describes the types used to organize multiple Bioseqs into
tree structures. The types are located in the seqset.asn module.

Module Types
! Seq-entry

Page 100

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML#Seq-entry:%2520The%2520Sequence%2520Entry
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqset/seqset.asn

! Bioseq-set

C++ Implementation Notes
The C++ Toolkit adds GetLabel methods in both CBioseq_set and CSeq_entry classes. The
CSeq_entry class also defines several methods for accessing the Seq-entry tree structure:
Parentize, GetParentEntry, etc.
! Introduction
! Seq-entry: The Sequence Entry
! Bioseq-set: A Set Of Seq-entrys
! Bioseq-sets are Convenient Packages
! ASN.1 Specification: seqset.asn
! C Structures and Functions: objsset.h

Introduction—A biological sequence is often most appropriately stored in the context of
other, related sequences. Such a collection might have a biological basis (e.g. a nucleic acid
and its translated proteins, or the chains of an enzyme complex) or some other basis (e.g. a
release of GenBank, or the sequences published in an article). The Bioseq-set provides a
framework for collections of sequences.

Seq-entry: The Sequence Entry—Sometimes a sequence is not part of a collection (e.g.
a single annotated protein). Thus a sequence entry could be either a single Bioseq or a collection
of them. A Seq-entry is an entity which represents this choice. A great deal of NCBI software
is designed to accept a Seq-entry as the primary unit of data. This is the most powerful and
flexible object to use as a target software development in general.

Bioseq-set: A Set Of Seq-entrys—A Bioseq-set contains a convenient collection of Seq-
entrys. It can have descriptors and annotations just like a single Bioseq (see Biological
Sequences). It can have identifiers for the set, although these are less thoroughly controlled
than Seq-ids at this time. Since the "heart" of a Bioseq-set is a collection of Seq-entrys, which
themselves are either a Bioseq or a Bioseq-set, a Bioseq-set can recursively contain other sets.
This recursive property makes for a very rich data structure, and a necessary one for biological
sequence data, but presents new challenges for software to manipulate and display it. We will
discuss some guidelines for building and using Bioseq-sets below, based on the NCBI
experience to date.

id: local identifier for this set: The id field just contains an integer or string to identify this
set for internal use by a software system or database. This is useful for building collections of
sequences for temporary use, but still be able to cite them.

coll: global identifier for this set: The coll field is a Dbtag, which will accept a string to
identify a source database and a string or integer as an identifier within that database. This
semi-controlled form provides a global identifier for the set of sequences in a simple way.

level: nesting level of set: Since Bioseq-sets are recursive, the level integer was conceived as
way of explicit indicating the nesting level. In practice we have found this to be little or no use
and recommend it be ignored and eventually removed.

class: classification of sets: The class field is an attempt to classify sets of sequences that may
be widely used. There are a number which are just releases of well known databases and others
which represent biological groupings.

Page 101

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_entry
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML#Bioseq-set:%2520A%2520Set%2520Of%2520Seq-entrys
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq_set

Bioseq-set classes

Value ASN.1 name Explanation

0 not-set not determined

1 nuc-prot a nucleic acid and the proteins from its coding regions

2 segset a segmented Bioseq and the Bioseqs it is made from

3 conset a constructed Bioseq and the Bioseqs it was assembled from

4 parts a set cotained within a segset or conset holding the Bioseqs which are the components of the segmented or constructed
Bioseq

5 gibb GenInfo Backbone entries (NCBI Journal Scanning Database)

6 gi GenInfo entries (NCBI ID Database)

7 genbank GenBank entries

8 pir PIR entries

9 pub-set all the Seq-entrys from a single publication

10 equiv a set of equivalent representations of the same sequence (e.g. a genetic map Bioseq and a physical map Bioseq for the
same chromosome)

11 swissprot SWISSPROT entries

12 pdb-entry all the Bioseqs associated with a single PDB structure

255 other new type. Usually Bioseq-set.release will have an explanatory string

release: an explanatory string: This is just a free text field which can contain a human
readable description of the set. Often used to show which release of GenBank, for example.

date: This is a date associated with the creation of this set.

descr: Seq-descr for this set: Just like a Bioseq, a Bioseq-set can have Seq-descr (see
Biological Sequences) which set it in a biological or bibliographic context, or confer a title or
a name. The rule for descriptors at the set level is that they apply to "all of everything below".
So if an Org-ref is given at the set level, it means that every Bioseq in the set comes from that
organism. If this is not true, then Org-ref would not appear on the set, but different Org-refs
would occur on lower level members.

For any Bioseq in arbitrarily deeply nested Bioseq-sets, one should be able to collect all Bioseq-
set.descr from all higher level Bioseq-sets that contain the Bioseq, and move them to the Bioseq.
If this process introduces any confusion or contradiction, then the set level descriptor has been
incorrectly used.

The only exception to this is the title and name types, which often refer to the set level on which
they are placed (a nuc-prot may have the title "Adh gene and ADH protein", while the Bioseqs
have the titles "Adh gene" and "ADH protein". The gain in code sharing by using exactly the
same Seq-descr for Bioseq or Bioseq-set seemed to outweigh the price of this one exception
to the rule.

To simplify access to elements like this that depend on a set context, a series of BioseqContext
() functions are provided in utilities which allow easy access to all relevant descriptors starting
with a specific Bioseq and moving up the levels in the set.

Page 102

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

seq-set: the sequences and sets within the Bioseq-set: The seq-set field contains a
SEQUENCE OF Seq-entry which represent the contents of the Bioseq-set. As mentioned
above, these may be nested internally to any level. Although there is no guarantee that members
of a set will come in any particular order, NCBI finds the following conventions useful and
natural.

For sets of entries from specific databases, each Seq-entry is the "natural" size of an entry from
those databases. Thus GenBank will contain a set of Seq-entry which will be a mixture of
Bioseq (just a nucleic acid, no coding regions), seg-set (segmented nucleic acid, no coding
regions), or nuc-prot (nucleic acid (as Bioseq or seg-set) and proteins from the translated coding
regions). PDB will contain a mixture of Bioseq (single chain structures) or pdb-entry (multi-
chain structures).

A segset, representing a segmented sequence combines the segmented Bioseq with the set of
the Bioseqs that make it up.

segset (Bioseq-set) contains

segmented sequence (Bioseq)

parts (Bioseq-set) contains

first piece (Bioseq)

second piece (Bioseq

etc

A consset has the same layout as a segset, except the top level Bioseq is constructured rather
than segmented.

A nuc-prot set gives the nucleic acid and its protein products at the same levels.

nuc-prot (Bioseq-set) contains

nucleic acid (Bioseq)

protein1 (Bioseq)

protein2 (Bioseq)

etc.

A nuc-prot set where the nucleic acid is segmented simply replaces the nucleic acid Bioseq
with a seg-set.

nuc-prot (Bioseq-set) contains

nucleic acid segset (Bioseq-set) contains

segmented sequence (Bioseq)

parts (Bioseq-set) contains

first piece (Bioseq)

Page 103

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

second piece (Bioseq

etc

protein1 (Bioseq)

protein2 (Bioseq)

etc.

annot: Seq-annots for the set: A Bioseq-set can have Seq-annots just like a Bioseq can.
Because all forms of Seq-annot use explicit ids for the Bioseqs they reference, there is no
dependence on context. Any Seq-annot can appear at any level of nesting in the set (or even
stand alone) without any loss of information.

However, as a convention, NCBI puts the Seq-annot at the nesting level of the set that contains
all the Bioseqs referenced by it, if possible. So if a feature applies just to one Bioseq, it goes
in the Bioseq.annot itself. If it applies to all the members of a segmented set, it goes in Bioseq-
set.annot of the segset. If, like a coding region, it points to both nucleic acid and protein
sequences, it goes in the Bioseq-set.annot of the nuc-prot set.

The utilities include BioseqContextGetSeqFeat() which provides a convenient way of getting
all the features that apply to a particular Bioseq in a set, not matter where in the nesting they
occur.

Bioseq-sets are Convenient Packages—Remember that Bioseq-sets are just convenient
ways to package Bioseqs and associated annotations. But Bioseqs may appear in various
contexts and software should always be prepared to deal with them that way. A segmented
Bioseq may not appear as part of a segset and a Bioseq with coding regions may not appear as
part of a nuc-prot set. In both cases the elements making up the segmented Bioseq and the
Bioseqs involved in the coding regions all use Seq-locs, which explicit reference Seq-ids. So
they are not dependent on context. NCBI packages Bioseqs in sets for convenience, so all the
closely related elements can be retrieved together. But this is only a convenience, not a
requirement of the specification. The same caveat applies to the ordering conventions within
a set, described above.

ASN.1 Specification: seqset.asn

--$Revision: 2.1 $
--**
--
-- NCBI Sequence Collections
-- by James Ostell, 1990
--
--**
NCBI-Seqset DEFINITIONS ::=
BEGIN
EXPORTS Bioseq-set, Seq-entry;
IMPORTS Bioseq, Seq-annot, Seq-descr FROM NCBI-Sequence
 Object-id, Dbtag, Date FROM NCBI-General;
--*** Sequence Collections ********************************
--*
Bioseq-set ::= SEQUENCE { -- just a collection

Page 104

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 id Object-id OPTIONAL ,
 coll Dbtag OPTIONAL , -- to identify a collection
 level INTEGER OPTIONAL , -- nesting level
 class ENUMERATED {
 not-set (0) ,
 nuc-prot (1) , -- nuc acid and coded proteins
 segset (2) , -- segmented sequence + parts
 conset (3) , -- constructed sequence + parts
 parts (4) , -- parts for 2 or 3
 gibb (5) , -- geninfo backbone
 gi (6) , -- geninfo
 genbank (7) , -- converted genbank
 pir (8) , -- converted pir
 pub-set (9) , -- all the seqs from a single publication
 equiv (10) , -- a set of equivalent maps or seqs

swissprot (11) , -- converted SWISSPROT

pdb-entry (12) , -- a complete PDB entry
 other (255) } DEFAULT not-set ,
 release VisibleString OPTIONAL ,
 date Date OPTIONAL ,
 descr Seq-descr OPTIONAL ,
 seq-set SEQUENCE OF Seq-entry ,
 annot SET OF Seq-annot OPTIONAL }
Seq-entry ::= CHOICE {
 seq Bioseq ,
 set Bioseq-set }
END

C Structures and Functions: objsset.h

/* objsset.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular

Page 105

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objsset.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*
* $Revision: 2.0 $
*
* File Description: Object manager interface for module NCBI-Seqset
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Seqset_
#define _NCBI_Seqset_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_General_
#include <objgen.h>
#endif
#ifndef _NCBI_Seq_
#include <objseq.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
typedef ValNodePtr SeqEntryPtr;
/

*
* loader
*

/
extern Boolean SeqSetAsnLoad PROTO((void));
/

*

Page 106

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* internal structures for NCBI-Seqset objects
*

/
/

*
* BioseqSet - a collection of sequences
*

/
typedef struct seqset {
 ObjectIdPtr id;
 DbtagPtr coll;
 Int2 level; /* set to INT2_MIN (ncbilcl.h) for not used */
 Uint1 _class;
 CharPtr release;
 DatePtr date;
 ValNodePtr descr;
 SeqEntryPtr seq_set;
 SeqAnnotPtr annot;
} BioseqSet, PNTR BioseqSetPtr;
BioseqSetPtr BioseqSetNew PROTO((void));
Boolean BioseqSetAsnWrite PROTO((BioseqSetPtr bsp, AsnIoPtr aip, AsnTypePtr
atp));
BioseqSetPtr BioseqSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
BioseqSetPtr BioseqSetFree PROTO((BioseqSetPtr bsp));
/

*
* SeqEntry - implemented as an ValNode
* choice:
* 1 = Bioseq
* 2 = Bioseq-set
*

/
SeqEntryPtr SeqEntryNew PROTO((void));
Boolean SeqEntryAsnWrite PROTO((SeqEntryPtr sep, AsnIoPtr aip, AsnTypePtr
atp));
SeqEntryPtr SeqEntryAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqEntryPtr SeqEntryFree PROTO((SeqEntryPtr sep));
SeqEntryPtr PNTR SeqEntryInMem PROTO((Int2Ptr numptr));
/

*
* Options for SeqEntryAsnRead()
*

/
SeqEntryPtr SeqEntryAsnGet PROTO((AsnIoPtr aip, AsnTypePtr atp, SeqIdPtr sip,

Page 107

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Int2 retcode));
#define SEQENTRY_OPTION_MAX_COMPLEX 1 /* option type to use with
OP_NCBIOBJSSET */
 /* values for retcode, implemented with AsnIoOptions */
#define SEQENTRY_READ_BIOSEQ 1 /* read only Bioseq identified by sip */
#define SEQENTRY_READ_SEG_SET 2 /* read any seg-set it may be part of */
#define SEQENTRY_READ_NUC_PROT 3 /* read any nuc-prot set it may be in */
#define SEQENTRY_READ_PUB_SET 4 /* read pub-set it may be part of */
typedef struct objsset_option {
SeqIdPtr sip; /* seq-id to find */
Int2 retcode; /* type of set/seq to return */
Boolean in_right_set;
Uint1 working_on_set; /* 2, if in first set of retcode type */
 /* 1, if found Bioseq, but not right set */
 /* 0, if Bioseq not yet found */
} Op_objsset, PNTR Op_objssetPtr;
#define IS_Bioseq(a) (a->choice == 1)
#define IS_Bioseq_set(a) (a->choice == 2)
/

*
* loader for ObjSeqSet and Sequence Codes
*

/
extern Boolean SeqEntryLoad PROTO((void));
#ifdef __cplusplus
}
#endif
#endif

Sequence Locations and Identifiers
The Sequence Locations and Identifiers section contains documentation for types used to
identify Bioseqs and describe locations on them. These types are defined in the seqloc.asn
module.

Module Types
! Identifying sequences - Seq-id
! Seq-id subtypes
! Location on a Bioseq - Seq-loc

C++ Implementation Notes
In the C++ Toolkit, many utility functions and classes are added to the module to simplify
usage of Seq-id and Seq-loc objects.

CSeq_loc and some of the subtypes (Seq-interval, Seq-loc-mix etc.) add the following methods
to their base classes:
! Constructors to simplify creation of simple Seq-loc objects.

Page 108

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_loc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqloc/seqloc.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML#Seq-id:%2520Identifying%2520Sequences
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML#Seq-id:%2520Semantics%2520of%2520Use
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML#Seq-loc:%2520Locations%2520on%2520a%2520Bioseq

! GetTotalRange - returns range, covering the whole Seq-loc. If the Seq-loc refers
multiple Bioseqs, exception is thrown.

! IsReverseStrand - returns true if all ranges in the Seq-loc have reverse strand.
! GetStart, GetEnd - return start and stop positions of the Seq-loc. This may be different

from GetTotalRange if the related Bioseq is circular or if the order of ranges in the
Seq-loc is non-standard.

! GetCircularLength - returns length of the Seq-loc. If the sequence length is provided,
the method checks whether the Seq-loc is circular and calculates the correct length,
even if the location crosses a sequence start.

! CheckId - checks whether the Seq-loc refers to only one Seq-id and returns it;
otherwise, it sends an exception.

! Compare - compares two Seq-locs if they are defined on the same bioseq.
! Add - adds a sub-location to the existing one.

Beside these methods, a new class CSeq_loc_CI is defined in Seq_loc.hpp, which provides
simplified access to individual ranges of any Seq-loc, regardless of its real type and structure.

CSeq_id adds the following methods to its base class:
! Constructors to simplify creation of Seq-ids from primitive types (string, int). Some

of these constructors auto-detect the type of the Seq-id from its string representation.
! IdentifyAccession - deduces Seq-id information from a bare accession.
! Match, Compare - compare Seq-ids.
! GetTextseq_Id - checks whether the Seq-id subtype is Textseq-id compatible and

returns its value.
! Several methods for serializing Seq-id or getting its string representation.
! GetSeq_idByType, FindGi, FindTextseq_id - nonmember template functions to find

Seq-id of a particular type in a container.
IsForward, IsReverse, SameOrientation, Reverse functions (Na_strand.hpp) provide the ability
to compare or manipulate Na-strand values.
! Introduction
! Seq-id: Identifying Sequences
! Seq-id: Semantics of Use
! Seq-id: The C Implementation
! NCBI ID Database: Imposing Stable Seq-ids
! Seq-loc: Locations on a Bioseq
! Seq-loc: The C Implementation
! ASN.1 Specification: seqloc.asn
! C Structures and Functions: objloc.h

Introduction—As described in the Biological Sequences chapter, a Bioseq always has at least
one identifier. This means that any valid biological sequence can be referenced by using this
identifier. However, all identifiers are not created equal. They may differ in their basic structure
(e.g. a GenBank accession number is required to have an uppercase letter followed by exactly
five digits while the NCBI GenInfo Id uses a simple integer identifier). They also differ in how
they are used (e.g. the sequence identified by the GenBank accession number may change from

Page 109

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seqloc/Na_strand.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_loc

release to release while the sequence identified by the NCBI GenInfo Id will always be exactly
the same sequence).

Locations of regions on Bioseqs are always given as integer offsets, also described in the
Biological Sequences chapter. So the first residue is always 0 and the last residue is always
(length - 1). Further, since all the classes of Bioseqs from bands on a gel to genetic or physical
maps to sequenced DNA use the same integer offset convention, locations always have the
same form and meaning even when moving between very different types of Bioseq
representations. This allows alignment, comparison, and display functions, among others, to
have the same uniform interface and semantics, no matter what the underlying Bioseq class.
Specialized numbering systems are supported but only as descriptive annotation (see
Numbering in Biological Sequences and Feature types "seq" and "num" in Sequence Features).
The internal conventions for positions on sequences are always the same.

There are no implicit Bioseq locations. All locations include a sequence identifier. This means
Features, Alignments, and Graphs are always independent of context and can always be
exchanged, submitted to databases, or stored as independent objects. The main consequence
of this is that information ABOUT regions of Bioseqs can be developed and contributed to the
public scientific discussion without any special rights of editing the Bioseq itself needing to
be granted to anyone but the original author of the Bioseq. Bioseqs in the public databases,
then, no longer need an anointed curator (beyond the original author) to be included in ongoing
scientific discussion and data exchange by electronic media.

Seq-id: Identifying Sequences—In a pure sense, a Seq-id is meant to unambiguously
identify a Bioseq. Unfortunately, different databases have different semantic rules regarding
the stability and ambiguity of their best available identifiers. For this reason a Bioseq can have
more than one Seq-id, so that the Seq-id with the best semantics for a particular use can be
selected from all that are available for that Bioseq, or so that a new Seq-id with different
semantics can be conferred on an existing Bioseq. Further, Seq-id is defined as a CHOICE of
datatypes which may differ considerably in their structure and semantics from each other.
Again, this is because differing sequence databases use different conventions for identifying
sequences and it is important not to lose this critical information from the original data source.

One Seq-id type, "gi", has been implemented specifically to make a simple, absolutely stable
Seq-id available for sequence data derived from any source. It is discussed in detail below.

A Textseq-id structure is used in many Seq-ids described below. It has four possible fields; a
name, an accession number, a release, and a version. Formally, all fields are OPTIONAL,
although to be useful, a Textseq-id should have at least a name or an accession or both. This
style of Seq-id is used by GenBank, EMBL, DDBJ, PIR, SWISS-PROT, and PRF, but the
semantics of its use differ considerably depending on the database. However none of these
databases guarantees the stability of name or accession (i.e. that it points at a specific sequence),
so to be unambiguous the id must also have either the release of the database in which the
sequence with this id appeared. See the discussion under Seq-id: Semantics for details.

Seq-id: Semantics of Use—Different databases use their ids different ways and these
patterns may change over time. An attempt is made is this section to describe current usage
and offer some guidelines for interpreting Seq-ids.

local: Privately Maintained Data: The local Seq-id is an Object-id (see discussion in General
Use Objects), which is a CHOICE of a string or an integer. This is to reconcile the requirement
that all Bioseqs have a Seq-id and the needs of local software tools to manipulate data produced
or maintained privately. This might be pre-publication data, data still being developed, or

Page 110

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

proprietary data. The Object-id will accommodate either a string or a number as is appropriate
for the local environment. It is the responsibility of local software to keep the local Seq-ids
unique. A local Seq-id is not globally unique, so when Bioseqs with such identifiers are
published or exchanged, context (i.e. the submitter or owner of the id) must be maintained or
a new id class must be applied to the Bioseq (e.g. the assignment of a GenBank accession upon
direct data submission to GenBank).

other: A Local Textseq-id: The type "other" is a Textseq-id only, it does not carry context
(what database is this from?). So it is meant only be used under similar conditions as "local",
above, but allows the name/accession system to be used locally instead of being limited to a
single string or name as "local" is.

general: Ids from Local Databases: The Seq-id type "general" uses a Dbtag (see discussion
in General Use Objects), which is an Object-id as in Seq-id.local, above, with an additional
string to identify a source database. This means that an integer or string id from a smaller
database can create Seq-ids which both cite the database source and make the local Seq-ids
globally unique (usually). For example, the EcoSeq database is a collection of E.coli sequences
derived from many sources, maintained by Kenn Rudd. Each sequence in EcoSeq has a unique
descriptive name which is used as its primary identifier. A "general" Seq-id could be make for
the EcoSeq entry "EcoAce" by making the following "general" Seq-id:

Seq-id ::= general {

db "EcoSeq" ,

tag str "EcoAce" }

gibbsq, gibbmt: GenInfo Backbone Ids: The journal scanning component of GenBank was
originally know as the "GenInfo Backbone" database. This database is built by NCBI in
collaboration with Library Operations at the National Library of Medicine (NLM) by building
on the journal abstracting work done for building MEDLINE. This collaboration means more
than 3500 different journals (more than 350,000 articles a year) are scanned for sequence
containing publications, both nucleic acid and protein. New sequence data which cannot be
proven to have been already directly submitted to the sequence databases is entered into the
GenInfo Backbone. The data is released as part of the normal NCBI sequence database releases.

The Backbone database is a relational database which distinguishes between a simple sequence
(equivalent to a virtual or a raw Bioseq) and a complex Bioseq (equivalent to a segmented
Bioseq). As a result, every raw or virtual Bioseq produced from the Backbone will have a
gibbsq (GenInfo Backbone Seq Id). If that Bioseq is a component of a segmented Bioseq, then
the segmented Bioseq will have a gibbmt (GenInfo Backbone Molecule Type Id) but no gibbsq.
If the raw or virtual Bioseq is not part of a segmented Bioseq, then it will have both a gibbsq
and a gibbmt (the sequence and the molecule are the some).

This may seem confusing, and is, in fact, simply the result of the design of this database. For
a user of Bioseqs derived from the GenInfo Backbone, it is enough to know three things. Every
Bioseq from the Backbone will have a gibbsq, a gibbmt, or both. The gibbsq and gibbmt are
simple integers from two independent series. Either a gibbsq or a gibbmt is sufficient to retrieve
an entry, but the gibbsq is preferred if available to reference a specific sequence.

While sequences identified by a gibbsq or gibbmt are in practice very stable, they are not
guaranteed to be stable. If a correction must be made to a sequence in the Backbone, its id will
not be changed. See "gi" below for a guaranteed stable id. Backbone sequences for nucleic
acids are assigned a GenBank accession number in addition to its backbone ids by NCBI.

Page 111

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

genbank, embl, ddbj: The International Nucleic Acid Sequence Databases: NCBI
(GenBank) in the U.S., the European Molecular Biology Laboratory datalibrary (EMBL) in
Europe, and the DNA Database of Japan (DDBJ) in Japan are members of an international
collaboration of nucleic acid sequence databases. Each collects data, often directly submitted
by authors, and makes releases of its data in its own format independently of each other.
However, there are agreements in place for all the parties to exchange information with each
other in an attempt to avoid duplication of effort and provide a world wide comprehensive
database to their users. So a release by one of these databases is actually a composite of data
derived from all three sources.

All three databases assign a mnemonic name (called a LOCUS name by GenBank and DDBJ,
and an entry name by EMBL) which is meant to carry meaning encoded into it. The first few
letters indicate the organism and next few a gene product, and so on. There is no concerted
attempt to keep an entry name the same from release to release, nor is there any attempt for
the same entry to have the same entry name in the three different databases (since they construct
entry names using different conventions). While many people are used to referring to entrys
by name (and thus name is included in a Textseq-id) it is a notoriously unreliable way of
identifying a Bioseq and should normally be avoided.

All three databases also assign an Accession Number to each entry. Accession numbers do not
convey meaning, other than in a bookkeeping sense. Unlike names, accession numbers are
meant to be same for the same entry, no matter which database one looks in. Thus, accession
number is the best id for a Bioseq from this collaboration. Unfortunately rules for the use of
accession numbers have not required that an accession number uniquely identify a sequence.
A database may change an accession when it merely changes the annotation on an entry.
Conversely, a database may not change an accession even though it has changed the sequence
itself. There is no consistency about when such events may occur. There is also no exact method
of recording the history of an entry in this collaboration, so such accession number shifts make
it possible to lose track of entries by outside users of the databases. With all these caveats,
accession numbers are still the best identifiers available within this collaboration.

A database release may be considered a snapshot of the database at a frozen moment of time.
So a name or accession AND the database release IS a unique identifier for a Bioseq. For this
reason it is provided in the Textseq-id structure. Be warned however, that depending on what
data service is being queried, retrieval may not make use of the release information. Finally,
EMBL assigns a version number to each entry. For entries derived from EMBL, the
combination of accession number and version number is supposed to uniquely identify a
sequence.

pir: PIR International: The PIR database is also produced through an international
collaboration with contributors in the US at the Protein Identification Resource of the National
Biomedical Research Foundation (NBRF), in Europe at the Martinsried Institute for Protein
Sequences (MIPS), and in Japan at the International Protein Information Database in Japan
(JIPID). They also use an entry name and accession number. The PIR accession numbers,
however, are not related to the GenBank/EMBL/DDBJ accession numbers in any way and have
a very different meaning. In PIR, the entry name identifies the sequence, which is meant to be
the "best version" of that protein. The accession numbers are in transition from a meaning more
similar to the GenBank/EMBL/DDBJ accessions, to one in which an accession is associated
with protein sequences exactly as they appeared in specific publications. Thus, at present, PIR
ids may have both an accession and a name, they will move to more typically having either a
name or an accession, depending on what is being cited, the "best" sequence or an original
published sequence.

Page 112

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

swissprot: SWISS-PROT: The SWISS-PROT database was created by Amos Bairoch at the
University of Geneva in Switzerland (thus the name) and he continues to direct and develop it
in its current collaborative relationship with EMBL. SWISS-PROT is derived from many
sources including PIR, the GenInfo Backbone, and the translated coding regions from the
GenBank/EMBL/DDBJ nucleic acid databases, among others. SWISS-PROT follows the same
name and accession number conventions as GenBank/EMBL/DDBJ. The name is meant to be
easily remembered and codes biological information, but is not a stable identifier from release
to release. The accession is meant to be a stable identifier from release to release, but conveys
only bookkeeping information. Unlike PIR accession numbers, the SWISS-PROT accession
numbers are coordinated with those of GenBank/EMBL/DDBJ and do not conflict.

prf: Protein Research Foundation: The Protein Research Foundation in Japan has a large
database of protein sequence and peptide fragments derived from the literature. Again, there
is a name and an accession number. Since this database is meant only to record the sequence
as it appeared in a particular publication, the relationship between the id and the sequence is
quite stable in practice.

patent: Citing a Patent: The minimal information to unambiguously identify a sequence in
a patent is first to unambiguously identify the patent (by the Patent-seq-id.cit, see Bibliographic
References for a discussion of Id-pat) and then providing an integer serial number to identify
the sequence within the patent. The sequence data for sequence related patents are now being
submitted to the international patent offices in computer readable form, and the serial number
for the sequence is assigned by the processing office. However, older sequence related patents
were not assigned serial numbers by the processing patent offices. For those sequences the
serial number is assigned arbitrarily (but still uniquely). Note that a sequence with a Patent-
seq-id just appeared as part of a patent document. It is NOT necessarily what was patented by
the patent document.

pdb: Citing a Biopolymer Chain from a Structure Database: The Protein Data Bank (PDB,
also known as the Brookhaven Database), is a collection of data about structures of biological
entities such hemoglobin or cytochrome c. The basic entry in PDB is a structural model of a
molecule, not a sequence as in most sequence databases. A molecule may have multiple chains.
So a PDB-seq-id has a string for the PDB entry name (called PDB-mol-id here) and a single
character for a chain identifier within the molecule. The use of the single character just maps
the PDB practice. The character may be a digit, a letter, or even a space (ASCII 32). As with
the databases using the Textseq-id, the sequence of the chain in PDB associated with this
information is not stable, so to be unambiguous the id must also include the release date.

giim: GenInfo Import Id: A Giimport-id is a temporary id used to identify sequences imported
into the GenInfo system at NCBI from a variety of sources. Currently this id type is used in
the NCBI ASN.1 and Entrez:Sequences releases to provide a uniform id type across sequence
from all sources. The giim is not stable from release to release. The use of giim is a temporary
measure until long term, stable identifiers such as "gi" below can be assigned (first or second
quarter of 1993).

gi: A Stable, Uniform Id Applied to Sequences From All Sources: A Seq-id of type "gi" is
a simple integer assigned to a sequence by the NCBI "ID" database. It can be applied to a
Bioseq of any representation class, nucleic acid or protein. It uniquely identifies a sequence
from a particular source. If the sequence changes at all, then a new "gi" is assigned. The "gi"
does not change if only annotations are changed. Thus the "gi" provides a simple, uniform way
of identifying a stable coordinate system on a Bioseq provided by data sources which may not
themselves have stable ids. This is the identifier of choice for all references to Bioseqs through
features or alignments. See discussion below.

Page 113

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Seq-id: The C Implementation—A Seq-id is implemented in C as a ValNode with a
typedef SeqIdPtr ValNodePtr. The type of the Seq-id is given in ValNode->choice and a series
of #defines are used to indicate the type of the Seq-id. The ValNode->data.intvalue is used for
the integer types and ValNode->data.ptrvalue for the other types as in the following table.

Seq-id

Value #define ASN.1 name Type in ValNode->data

0 SEQID_NOT_SET not-set not needed

1 SEQID_LOCAL local ObjectIdPtr

2 SEQID_GIBBSQ gibbsq integer

3 SEQID_GIBBMT gibbmt integer

4 SEQID_GIIM giim GiimPtr

5 SEQID_GENBANK genbank TextSeqIdPtr

6 SEQID_EMBL embl TextSeqIdPtr

7 SEQID_PIR pir TextSeqIdPtr

8 SEQID_SWISSPROT swissprot TextSeqIdPtr

9 SEQID_PATENT patent PatentSeqIdPtr

10 SEQID_OTHER other TextSeqIdPtr

11 SEQID_GENERAL general DbtagPtr

12 SEQID_GI gi integer

13 SEQID_DDBJ ddbj TextSeqIdPtr

14 SEQID_PRF prf TextSeqIdPtr

15 SEQID_PDB pdb PDBSeqIdPtr

Since a SeqIdPtr is a ValNodePtr, a special SeqIdNew() is not provided, although the usual
SeqIdAsnRead(), SeqIdAsnWrite(), and SeqIdFree() functions are provided. Since SET OF
and SEQUENCE OF Seq-id are common, SeqIdSetAsnRead(), SeqIdSetAsnWrite(), and
SeqIdSetFree() functions are provided. They assume that the SeqIdPtr passed is the head of a
chain of SeqIds connect through the ValNodePtr->next and with the last ValNodePtr->next
equal to NULL. SeqIdDup() provides a fast function for duplicating SeqIds.

A large number of additional functions for manipulating SeqIds are described in the Sequence
Utilities chapter.

NCBI ID Database: Imposing Stable Seq-ids—As described in the Data Model chapter,
Bioseqs provide a simple integer coordinate system through which a host of different data and
analytical results can be easily associated with each other, even with scientists working
independently of each other and on heterogeneous systems. For this model to work, however,
requires stable identifiers for these integer coordinate systems. If one scientist notes a coding
region from positions 10-50 of sequence "A", then the database adds a single base pair at
position 5 of "A" without changing the identifier of "A", then at the next release of the database
the scientist's coding region is now frame-shifted one position and invalid. Unfortunately this
is currently the case due to the casual use of sequence identifiers by most existing databases.

Since NCBI integrates data from many different databases which follow their own directions,
we must impose stable ids on an unstable starting material. While a daunting task, it is not, in
the main, impossible. We have built a database called "ID", whose sole task is to assign and

Page 114

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

track stable sequence ids. ID assigns "gi" numbers, simple arbitrary integers which stably
identify a particular sequence coordinate system.

The first time ID "sees" a Bioseq, say EMBL accession A00000, it checks to see if it has a
Bioseq from EMBL with this accession already. If not, it assigns a new GI, say 5, to the entry
and adds it to the Bioseq.id chain (the original EMBL id is not lost). It also replaces all
references in the entry (say in the feature table) to EMBL A00000 to GI 5. This makes the
annotations now apply to a stable coordinate system.

Now EMBL sends an update of the entry which is just a correction to the feature table. The
same process occurs, except this time there is a previous entry with the same EMBL accession
number. ID retrieves the old entry and compares the sequence of the old entry with the new
entry. Since they are identical it reassigns GI 5 to the same entry, converts the new annotations,
and stores it as the most current view of that EMBL entry.

Now ID gets another update to A00000, but this time the sequence is different. ID assigns a
new GI, say 6, to this entry. It also updates the sequence history (Seq-inst.hist, see the Biological
Sequences chapter) of both old and new entries to make a doubly linked list. The GI 5 entry
has a pointer that it has been replaced by GI 6, and the GI 6 entry has a pointer showing it
replaced GI 5. When NCBI makes a new data release the entry designated GI 6 will be released
to represent EMBL entry A00000. However, the ASN.1 form of the data contains an explicit
history. A scientist who annotated a coding region on GI 5 can discover that it has been replaced
by GI 6. The GI 5 entry can still be retrieved from ID, aligned with GI 6, and the scientist can
determine if her annotation is still valid on the new entry. If she annotated using the accession
number instead of the GI, of course, she could be out of luck.

Since ID is attempting to order a chaotic world, mistakes will inevitably be made. However,
it is clear that in the vast majority of cases it is possible to impose stable ids. As scientists and
software begin to use the GI ids and reap the benefits of stable ids, the world may gradually
become less chaotic. The Seq-inst.hist data structure can even be used by data suppliers to
actively maintain an explicit history without ID having to infer it, which would be the ideal
case.

Seq-loc: Locations on a Bioseq—A Seq-loc is a location on a Bioseq of any
representation class, nucleic acid or protein. All Bioseqs provide a simple integer coordinate
system from 0 to (length -1) and all Seq-locs refer to that coordinate system. All Seq-locs also
explicitly the Bioseq (coordinate system) to which they apply with a Seq-id. Most objects which
are attached to or reference sequences do so through a Seq-loc. Features are blocks of data
attached by a Seq-loc. An alignment is just a collection of correlated Seq-locs. A segmented
sequence is built from other sequences by reference to Seq-locs.

Seq-locs come in many varieties.

null: A Gap: A null Seq-loc can be used in a Seq-loc with many components to indicate a gap
of unknown size. For example it is used in segmented sequences to indicate such gaps between
the sequenced pieces.

empty: A Gap in an Alignment: A alignment (see Sequence Alignments) may require that
every Seq-loc refer to a Bioseq, even for a gap. They empty type fulfills this need.

whole: A Reference to a Whole Bioseq: This is just a shorthand for the Bioseq from 0 to
(length -1). This form is falling out of favor at NCBI because it means one must retrieve the
referenced Bioseq to determine the length of the location. An interval covering the whole

Page 115

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Bioseq is equivalent to this and more useful. One the other hand, if an unstable Seq-id is used
here, it always applies to the full length of the Bioseq, even if the length changes. This was the
original rationale for this type. And it may still be valid while unstable sequences persist.

int: An Interval on a Bioseq: An interval is a single continuous region of defined length on
a Bioseq. A single integer value (Seqinterval.from), another single integer value (Seq-
interval.to), and a Seq-id (Seq-interval.id) are required. The "from" and "to" values must be in
the range 0 to (length -1) of the Bioseq cited in "id". If there is uncertainty about either the
"from" or "to" values, it is expressed in additional fields "fuzz-from" and/or "fuzz-to", and the
"from" and "to" values can be considered a "best guess" location. This design means that simple
software can ignore fuzzy values, but they are not lost to more sophisticated tools.

The "from" value is ALWAYS less than or equal to the "to" value, no matter what strand the
interval is on. It may be convenient for software to present intervals on the minus strand with
the "to" value before the "from" value, but internally this is NEVER the case. This requirement
means that software which determines overlaps of locations need never treat plus or minus
strand locations differently and it greatly simplifies processing.

The value of Seq-interval.strand is the only value different in intervals on the plus or minus
strand. Seq-interval.strand is OPTIONAL since it is irrelevant for proteins, but operationally
it will DEFAULT to plus strand on nucleic acid locations where it is not supplied.

The plus or minus strand is an attribute on each simple Seq-loc (interval or point) instead of
as an operation on an arbitrarily complex location (as in the GenBank/EMBL/DDBJ flatfile
Feature Table) since it means even very complex locations can be processed to a base pair
location in simple linear order, instead of requiring that the whole expression be processed and
resolved first.

packed-int: A Series of Intervals: A Packed-seqint is simply a SEQUENCE OF Seq-interval.
That means the location is resolved by evaluating a series of Seq-interval in order. Note that
the Seq-intervals in the series need not all be on the same Bioseq or on the same strand.

pnt: A Single Point on a Sequence: A Seq-point is essentially one-half of a Seq-interval and
the discussion (above) about fuzziness and strand applies equally to Seq-point.

packed-pnt: A Collection of Points: A Packed-seqpnt is an optimization for attaching a large
number of points to a single Bioseq. Information about the Seq-id, strand, or fuzziness need
not be duplicated for every point. Of course, this also means it must apply equally to all points
as well. This would typically be the case for listing all the cut sites of a certain restriction
enzyme, for example.

mix: An Arbitrarily Complex Location: A Seq-loc-mix is simply a SEQUENCE OF Seq-
loc. The location is resolved by resolving each Seq-loc in order. The component Seq-locs may
be of any complexity themselves, making this definition completely recursive. This means a
relatively small amount of software code can process locations of extreme complexity with
relative ease.

A Seq-loc-mix might be used to represent a segmented sequence with gaps of unknown length.
In this case it would consist of some elements of type "int" for intervals on Bioseqs and some
of type "null" representing gaps of unknown length. Another use would be to combine a Seq-
interval representing an untranslated leader, with a Packed-seqint from a multi-exon coding
region feature, and another Seq-interval representing an untranslated 3' end, to define the extent
of an mRNA on a genomic sequence.

Page 116

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

equiv: Equivalent Locations: This form is simply a SET OF Seq-locs that are equivalent to
each other. Such a construct could be used to represent alternative splicing, for example (and
is when translating the GenBank/EMBL/DDBJ location "one-of"). However note that such a
location can never resolve to a single result. Further, if there are multiple "equiv" forms in a
complex Seq-loc, it is unclear if all possible combinations are valid. In general this construct
should be avoided unless there is no alternative.

bond: A Chemical Bond Between Two Residues: The data elements in a Seq-bond are just
two Seq-points. The meaning is that these two points have a chemical bond between them
(which is different than describing just the location of two points). At NCBI we have restricted
its use to covalent bonds. Note that the points may be on the same (intra-chain bond) or different
(inter-chain bond) Bioseqs completely explicitly.

feat: A Location Indirectly Referenced Through A Feature: This one is really for the future,
when not only Bioseqs, but features have stable ids. The meaning is "the location of this
feature". This way one could give a valid location by citing, for example a Gene feature, which
would resolve to the location of that gene on a Bioseq. When identifiable features become
common (see Sequence Features) this will become a very useful location.

Seq-loc: The C Implementation—Since a Seq-loc is a CHOICE of many types a
SeqLocPtr is typedefed as a ValNodePtr. The ValNodePtr->choice indicates the type of SeqLoc
and a series of #defines provide the values in a convenient way. The ValNodePtr->data.ptrvalue
contains a pointer to the appropriate data structure as in the table below:

Seq-loc

Value #define ASN.1 name Type in ValNode->data

1 SEQLOC_NULL null not needed

2 SEQLOC_EMPTY empty SeqIdPtr

3 SEQLOC_WHOLE whole SeqIdPtr

4 SEQLOC_INT int SeqIntPtr

5 SEQLOC_PACKED_INT packed-int SeqLocPtr

6 SEQLOC_PNT pnt SeqPntPtr

7 SEQLOC_PACKED_PNT packed-pnt PackSeqPntPtr

8 SEQLOC_MIX mix SeqLocPtr

9 SEQLOC_EQUIV equiv SeqLocPtr

10 SEQLOC_BOND bond SeqBondPtr

11 SEQLOC_FEAT feat ChoicePtr

Note that SEQLOC_MIX and SEQLOC_EQUIV types have a SeqLocPtr in their data.ptrvalue.
This is expected since they are a SEQUENCE OF or SET OF Seq-loc and data.ptrvalue contains
a pointer to the head of the linked list of ValNodes connect through their ->next pointers.
SEQLOC_PACKED_INT is implemented this way as well, for simplicity, although each Seq-
loc in that chain will, by definition, be of type SEQLOC_INT.

Like Seq-id, above, there is no SeqLocNew() function since it is just a ValNode, but there are
the usual SeqLocAsnRead(), SeqLocAsnWrite(), and SeqLocFree() functions. In addition there
are SeqLocSetAsnWrite(), SeqLocSetAsnRead(), and SeqLocSetFree() functions.

Page 117

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

PackSeqPnt has some extra functions as well. PackSeqPntNum() returns the number of points
in the the PackSeqPnt. PackSeqPntGet() will return a point given an index (0 to (number of
points -1)) of the point. PackSeqPntPut() will add a point to the PackSeqPnt. These functions
are to hide the complexity of managing the set of points.

A series of #defines for nucleic acid strands are provided to map to the ASN.1 ENUMERATED
type. They are:

#define Seq_strand_unknown 0
#define Seq_strand_plus 1
#define Seq_strand_minus 2
#define Seq_strand_both 3
#define Seq_strand_both_rev 4
#define Seq_strand_other 255

In addition, there are a large number of utility functions for working with SeqLocs described
in the chapter on Sequence Utilities. This allow traversal of complex locations, comparison of
locations for overlap, conversion of coordinates in locations, and ability to open a window on
a Bioseq through a location.

ASN.1 Specification: seqloc.asn

--$Revision: 2.0 $
--**
--
-- NCBI Sequence location and identifier elements
-- by James Ostell, 1990
--
--**
NCBI-Seqloc DEFINITIONS ::=
BEGIN
EXPORTS Seq-id, Seq-loc, Seq-interval, Packed-seqint, Seq-point, Packed-
seqpnt,
 Na-strand, Giimport-id;
IMPORTS Object-id, Int-fuzz, Dbtag, Date FROM NCBI-General
 Id-pat FROM NCBI-Biblio
 Feat-id FROM NCBI-Seqfeat;
--*** Sequence identifiers ********************************
--*
Seq-id ::= CHOICE {
 local Object-id , -- local use
 gibbsq INTEGER , -- Geninfo backbone seqid
 gibbmt INTEGER , -- Geninfo backbone moltype
 giim Giimport-id , -- Geninfo import id
 genbank Textseq-id ,
 embl Textseq-id ,
 pir Textseq-id ,
 swissprot Textseq-id ,
 patent Patent-seq-id ,
 other Textseq-id , -- catch all
 general Dbtag , -- for other databases

Page 118

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 gi INTEGER , -- GenInfo Integrated Database
ddbj Textseq-id , -- DDBJ
prf Textseq-id , -- PRF SEQDB
pdb PDB-seq-id } -- PDB sequence
Patent-seq-id ::= SEQUENCE {
 seqid INTEGER , -- number of sequence in patent
 cit Id-pat } -- patent citation
Textseq-id ::= SEQUENCE {
 name VisibleString OPTIONAL ,
 accession VisibleString OPTIONAL ,
 release VisibleString OPTIONAL ,
 version INTEGER OPTIONAL }
Giimport-id ::= SEQUENCE {
 id INTEGER , -- the id to use here
 db VisibleString OPTIONAL , -- dbase used in
 release VisibleString OPTIONAL } -- the release
PDB-seq-id ::= SEQUENCE {
mol PDB-mol-id , -- the molecule name
chain INTEGER DEFAULT 32 ,-- a single ASCII character, chain id
 rel Date OPTIONAL } -- release date, month and year
PDB-mol-id ::= VisibleString -- name of mol, 4 chars

--*** Sequence locations **********************************
--*
Seq-loc ::= CHOICE {
 null NULL , -- not placed
 empty Seq-id , -- to NULL one Seq-id in a collection
 whole Seq-id , -- whole sequence
 int Seq-interval , -- from to
 packed-int Packed-seqint ,
 pnt Seq-point ,
 packed-pnt Packed-seqpnt ,
 mix Seq-loc-mix ,
 equiv Seq-loc-equiv , -- equivalent sets of locations
 bond Seq-bond ,
 feat Feat-id } -- indirect, through a Seq-feat

Seq-interval ::= SEQUENCE {
 from INTEGER ,
 to INTEGER ,
 strand Na-strand OPTIONAL ,
 id Seq-id , -- WARNING: this used to be optional
 fuzz-from Int-fuzz OPTIONAL ,
 fuzz-to Int-fuzz OPTIONAL }
Packed-seqint ::= SEQUENCE OF Seq-interval
Seq-point ::= SEQUENCE {
 point INTEGER ,
 strand Na-strand OPTIONAL ,
 id Seq-id , -- WARNING: this used to be optional
 fuzz Int-fuzz OPTIONAL }
Packed-seqpnt ::= SEQUENCE {

Page 119

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 strand Na-strand OPTIONAL ,
 id Seq-id ,
 fuzz Int-fuzz OPTIONAL ,
 points SEQUENCE OF INTEGER }
Na-strand ::= ENUMERATED { -- strand of nucleid acid
 unknown (0) ,
 plus (1) ,
 minus (2) ,
 both (3) , -- in forward orientation
 both-rev (4) , -- in reverse orientation
 other (255) }
Seq-bond ::= SEQUENCE { -- bond between residues
a Seq-point , -- connection to a least one residue
b Seq-point OPTIONAL } -- other end may not be available
Seq-loc-mix ::= SEQUENCE OF Seq-loc -- this will hold anything
Seq-loc-equiv ::= SET OF Seq-loc -- for a set of equivalent locations
END

C Structures and Functions: objloc.h

/* objloc.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the loclic for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objloc.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*

Page 120

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* $Revision: 2.0 $
*
* File Description: Object manager interface for module NCBI-Seqloc
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Seqloc_
#define _NCBI_Seqloc_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_General_
#include <objgen.h>
#endif
#ifndef _NCBI_Biblio_
#include <objbibli.h>
#endif
typedef ValNodePtr SeqIdPtr;
typedef ValNodePtr SeqLocPtr;
#ifndef _NCBI_Seqfeat_
#include <objfeat.h> /* after Seqloc to avoid cycles */
#endif
#ifdef __cplusplus
extern "C" {
#endif
/

*
* Seqloc loader
*

/
extern Boolean SeqLocAsnLoad PROTO((void));
/

*
* internal structures for NCBI-Seqloc objects
*

/
/

*
* SeqId is a choice using an ValNode, most types in data.ptrvalue

Page 121

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* except integers, in data.intvalue
* choice:
* 0 = not set
 1 = local Object-id , -- local use
 2 = gibbsq INTEGER , -- Geninfo backbone seqid
 3 = gibbmt INTEGER , -- Geninfo backbone moltype
 4 = giim Giimport-id , -- Geninfo import id
 5 = genbank Textseq-id ,
 6 = embl Textseq-id ,
 7 = pir Textseq-id ,
 8 = swissprot Textseq-id ,
 9 = patent Patent-seq-id ,
 10 = other Textseq-id , -- catch all
 11 = general Dbtag -- for other databases
 12 = gi INTEGER -- GenInfo Integrated Database
 13 = ddbj Textseq-id
14 = prf Textseq-id , -- PRF SEQDB
15 = pdb PDB-seq-id -- PDB sequence
*

/
#define SEQID_NOT_SET ((Uint1)0)
#define SEQID_LOCAL ((Uint1)1)
#define SEQID_GIBBSQ ((Uint1)2)
#define SEQID_GIBBMT ((Uint1)3)
#define SEQID_GIIM ((Uint1)4)
/*---
 * WARNING: CODE in objloc.c, especially SeqIdPrint() requires that
 * GENBANK through SwissProt be contiguous numbers
 * in the following order.
 -----/
#define SEQID_GENBANK ((Uint1)5)
#define SEQID_EMBL ((Uint1)6)
#define SEQID_PIR ((Uint1)7)
#define SEQID_SWISSPROT ((Uint1)8)
#define SEQID_PATENT ((Uint1)9)
#define SEQID_OTHER ((Uint1)10)
#define SEQID_GENERAL ((Uint1)11)
#define SEQID_GI ((Uint1)12)
#define SEQID_DDBJ ((Uint1)13)
#define SEQID_PRF ((Uint1)14)
#define SEQID_PDB ((Uint1)15)
Boolean SeqIdAsnWrite PROTO((SeqIdPtr anp, AsnIoPtr aip, AsnTypePtr atp));
SeqIdPtr SeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqIdPtr SeqIdFree PROTO((SeqIdPtr anp));
SeqIdPtr SeqIdDup PROTO((SeqIdPtr oldid));
/

*
* These routines process sets or sequences of SeqId's
*

Page 122

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/
Boolean SeqIdSetAsnWrite PROTO((SeqIdPtr anp, AsnIoPtr aip, AsnTypePtr
settype, AsnTypePtr elementtype));
SeqIdPtr SeqIdSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr settype, AsnTypePtr
elementtype));
SeqIdPtr SeqIdSetFree PROTO((SeqIdPtr anp));
/

*
* PatentSeqId
*

/
typedef struct patentseqid {
 Int2 seqid;
 IdPatPtr cit;
} PatentSeqId, PNTR PatentSeqIdPtr;
PatentSeqIdPtr PatentSeqIdNew PROTO((void));
Boolean PatentSeqIdAsnWrite PROTO((PatentSeqIdPtr psip, AsnIoPtr aip,
AsnTypePtr atp));
PatentSeqIdPtr PatentSeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
PatentSeqIdPtr PatentSeqIdFree PROTO((PatentSeqIdPtr psip));
/

*
* TextSeqId
*

/
typedef struct textseqid {
 CharPtr name,
 accession,
 release;
Int2 version; /* INT2_MIN (ncbilcl.h) = not set */
} TextSeqId, PNTR TextSeqIdPtr;
TextSeqIdPtr TextSeqIdNew PROTO((void));
Boolean TextSeqIdAsnWrite PROTO((TextSeqIdPtr tsip, AsnIoPtr aip, AsnTypePtr
atp));
TextSeqIdPtr TextSeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
TextSeqIdPtr TextSeqIdFree PROTO((TextSeqIdPtr tsip));
/

*
* Giim
*

/
typedef struct giim {
 Int4 id;
 CharPtr db,

Page 123

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 release;
} Giim, PNTR GiimPtr;
GiimPtr GiimNew PROTO((void));
Boolean GiimAsnWrite PROTO((GiimPtr gip, AsnIoPtr aip, AsnTypePtr atp));
GiimPtr GiimAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
GiimPtr GiimFree PROTO((GiimPtr gip));
/

*
* PDBSeqId
*

/
typedef struct pdbseqid {
 CharPtr mol;
Uint1 chain; /* 0 = no chain set. default = 32 */
DatePtr rel;
} PDBSeqId, PNTR PDBSeqIdPtr;
PDBSeqIdPtr PDBSeqIdNew PROTO((void));
Boolean PDBSeqIdAsnWrite PROTO((PDBSeqIdPtr tsip, AsnIoPtr aip, AsnTypePtr
atp));
PDBSeqIdPtr PDBSeqIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
PDBSeqIdPtr PDBSeqIdFree PROTO((PDBSeqIdPtr tsip));
/

*
* SeqLoc
* SeqLoc is a choice using an ValNode, most types in data.ptrvalue
* except integers, in data.intvalue
* choice:
 1 = null NULL , -- not placed
 2 = empty Seq-id , -- to NULL one Seq-id in a collection
 3 = whole Seq-id , -- whole sequence
 4 = int Seq-interval , -- from to
 5 = packed-int Packed-seqint ,
 6 = pnt Seq-point ,
 7 = packed-pnt Packed-seqpnt ,
 8 = mix SEQUENCE OF Seq-loc ,
 9 = equiv SET OF Seq-loc , -- equivalent sets of locations
 10 = bond Seq-bond
 11 = feat Feat-id -- indirect through a feature
*

/
#define SEQLOC_NULL ((Uint1)1)
#define SEQLOC_EMPTY ((Uint1)2)
#define SEQLOC_WHOLE ((Uint1)3)
#define SEQLOC_INT ((Uint1)4)
#define SEQLOC_PACKED_INT ((Uint1)5)
#define SEQLOC_PNT ((Uint1)6)
#define SEQLOC_PACKED_PNT ((Uint1)7)

Page 124

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

#define SEQLOC_MIX ((Uint1)8)
#define SEQLOC_EQUIV ((Uint1)9)
#define SEQLOC_BOND ((Uint1)10)
#define SEQLOC_FEAT ((Uint1)11)
Boolean SeqLocAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr atp));
SeqLocPtr SeqLocAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqLocPtr SeqLocFree PROTO((SeqLocPtr anp));
/

*
* these routines work on set/seq of SeqLoc
*

/
Boolean SeqLocSetAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr set,
AsnTypePtr element));
SeqLocPtr SeqLocSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr orig, AsnTypePtr
element));
SeqLocPtr SeqLocSetFree PROTO((SeqLocPtr anp));
/

*
* SeqInt
*

/
typedef struct seqint {
 Int4 from,
 to;
 Uint1 strand;
 SeqIdPtr id; /* seq-id */
 IntFuzzPtr if_from,
 if_to;
} SeqInt, PNTR SeqIntPtr;
SeqIntPtr SeqIntNew PROTO((void));
Boolean SeqIntAsnWrite PROTO((SeqIntPtr sip, AsnIoPtr aip, AsnTypePtr atp));
SeqIntPtr SeqIntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqIntPtr SeqIntFree PROTO((SeqIntPtr sip));
/

*
* Packed-int
*

/
Boolean PackSeqIntAsnWrite PROTO((SeqLocPtr sip, AsnIoPtr aip, AsnTypePtr
atp));
SeqLocPtr PackSeqIntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
/

*

Page 125

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* SeqLocMix
*

/
Boolean SeqLocMixAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr
atp));
SeqLocPtr SeqLocMixAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
/

*
* SeqLocEquiv
*

/
Boolean SeqLocEquivAsnWrite PROTO((SeqLocPtr anp, AsnIoPtr aip, AsnTypePtr
atp));
SeqLocPtr SeqLocEquivAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
/

*
* SeqPnt
*

/
typedef struct seqpoint {
 Int4 point;
 Uint1 strand;
 SeqIdPtr id; /* seq-id */
 IntFuzzPtr fuzz;
} SeqPnt, PNTR SeqPntPtr;
SeqPntPtr SeqPntNew PROTO((void));
Boolean SeqPntAsnWrite PROTO((SeqPntPtr spp, AsnIoPtr aip, AsnTypePtr atp));
SeqPntPtr SeqPntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqPntPtr SeqPntFree PROTO((SeqPntPtr spp));
/

*
* PackSeqPnt
*

/
#define PACK_PNT_NUM 100 /* number of points per block */
typedef struct packseqpnt {
 SeqIdPtr id; /* seq-id */
 IntFuzzPtr fuzz;
 Uint1 strand,
 used; /* number of pnts used */
 Int4 pnts[PACK_PNT_NUM];
 struct packseqpnt PNTR next; /* builds up chain of points */
} PackSeqPnt, PNTR PackSeqPntPtr;
PackSeqPntPtr PackSeqPntNew PROTO((void));

Page 126

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Boolean PackSeqPntAsnWrite PROTO((PackSeqPntPtr pspp, AsnIoPtr aip,
AsnTypePtr atp));
PackSeqPntPtr PackSeqPntAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
PackSeqPntPtr PackSeqPntFree PROTO((PackSeqPntPtr pspp));
Int4 PackSeqPntGet PROTO((PackSeqPntPtr pspp, Int4 index));
Boolean PackSeqPntPut PROTO((PackSeqPntPtr pspp, Int4 point));
Int4 PackSeqPntNum PROTO((PackSeqPntPtr pspp));
/

*
* SeqBond
*

/
typedef struct seqbond {
 SeqPntPtr a,
 b;
} SeqBond, PNTR SeqBondPtr;
SeqBondPtr SeqBondNew PROTO((void));
Boolean SeqBondAsnWrite PROTO((SeqBondPtr sbp, AsnIoPtr aip, AsnTypePtr
atp));
SeqBondPtr SeqBondAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqBondPtr SeqBondFree PROTO((SeqBondPtr sbp));
/

*
* strand types
*

/
#define Seq_strand_unknown 0
#define Seq_strand_plus 1
#define Seq_strand_minus 2
#define Seq_strand_both 3
#define Seq_strand_both_rev 4
#define Seq_strand_other 255
#ifdef __cplusplus
}
#endif
#endif

Sequence Features
The Sequence Features section documents data structures used to describe regions of Bioseqs.
The types are located in the seqfeat.asn module.

Module Types
! Structure of a feature - Seq-feat
! Type-specific feature data - SeqFeatData
! Coding region - Cdregion

Page 127

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#CdRegion:%2520Coding%2520Region
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqfeat/seqfeat.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#Seq-feat:%2520Structure%2520of%2520a%2520Feature
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#SeqFeatData:%2520Type%2520Specific%2520Feature%2520Data

! Genetic-code
! Reference to a restriction enzyme - Rsite-ref
! Reference to an RNA - RNA-ref
! Reference to a gene - Gene-ref
! Reference to a protein - Prot-ref
! Transcription initiation - Txinit

C++ Implementation Notes
In the C++ Toolkit, many types defined in the seqfeat ASN.1 module are extended to simplify
access to the feature data. The CSeq_feat class has methods for comparing features by type
and location. The CSeqFeatData class defines feature subtypes and qualifiers so that you can
better identify individual features.
! Introduction
! Seq-feat: Structure of a Feature
! SeqFeatData: Type Specific Feature Data
! Seq-feat Implementation in C
! CdRegion: Coding Region
! Genetic Codes
! Rsite-ref: Reference To A Restriction Enzyme
! RNA-ref: Reference To An RNA
! Gene-ref: Reference To A Gene
! Prot-ref: Reference To A Protein
! Txinit: Transcription Initiation
! Current Genetic Code Table: gc.prt
! ASN.1 Specification: seqfeat.asn
! C Structures and Functions: objfeat.h

Introduction—A sequence feature (Seq-feat) is a block of structured data (SeqFeatData)
explicitly attached to a region of a Bioseq through one or two Seq-locs (see Sequence Locations
and Identifiers). The Seq-feat itself can carry information common to all features, as well as
serving as the junction between the SeqFeatData and Seq-loc(s). Since a Seq-feat references a
Bioseq through an explicit Seq-loc, a Seq-feat is an entity which can stand alone, or be moved
between contexts without loss of information. Thus, information ABOUT Bioseqs can be
created, exchanged, and compared independently from the Bioseq itself. This is an important
attribute of the NCBI data model.

A feature table is a set of Seq-feat gathered together within a Seq-annot (see Biological
Sequences). The Seq-annot allows the features to be attributed to a source and be associated
with a title or comment. Seq-feats are normally exchanged "packaged" into a feature table.

Seq-feat: Structure of a Feature—A Seq-feat is a data structure common to all features.
The fields it contains can be evaluated by software the same way for all features, ignoring the
"data" element which is what makes each feature class unique.

id: Features Can Have Identifiers: At this time unique identifiers for features are even less
available or controlled than sequence identifiers. However, as molecular biology informatics

Page 128

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqFeatData
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#Genetic%2520Codes
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#Rsite-ref:%2520Reference%2520To%2520A%2520Restriction%2520Enzyme
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#RNA-ref:%2520Reference%2520To%2520An%2520RNA
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#Gene-ref:%2520Reference%2520To%2520A%2520Gene
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#Prot-ref:%2520Reference%2520To%2520A%2520Protein
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML#Txinit:%2520Transcription%2520Initiation
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_feat

becomes more sophisticated, it will become not only useful, but essential to be able to cite
features as precisely as NCBI is beginning to be able to cite sequences. The Seq-feat.id slot is
where these identifiers will go. The Feat-id object for features, meant to be equivalent of the
Seq-id object for Bioseqs, is not very fully developed yet. It can accommodate feature ids from
the NCBI Backbone database, local ids, and the generic Dbtag type. Look for better
characterized global ids to appear here in future as the requirement for structured data exchange
becomes increasingly accepted.

data: Structured Data Makes Feature Types Unique: Each type of feature can have a data
structure which is specifically designed to accommodate all the requirements of that type with
no concern about the requirements of other feature types. Thus a coding region data structure
can have fielded elements for reading frame and genetic code, while a tRNA data structure
would have information about the amino acid transferred.

This design completely modularizes the components required specifically by each feature type.
If a new field is required by a particular feature type, it does not affect any of the others. A new
feature type, even a very complex one, can be added without affecting any of the others.

Software can be written in a very modular fashion, reflecting the data design. Functions
common to all features (such as determining all features in a sequence region) simply ignore
the "data" field and are robust against changes or additions to this component. Functions which
process particular types have a well defined data interface unique to each type.

Perhaps a less obvious consequence is code and data reuse. Data objects used in other contexts
can be used as features simply by making them a CHOICE in SeqFeatData. For example, the
publication feature reuses the Pubdesc type used for Bioseq descriptors. This type includes all
the standard bibliographic types (see Bibliographic References) used by MEDLINE or other
bibliographic databases. Software which displays, queries, or retrieves publications will work
without change on the "data" component of a publication feature because it is EXACTLY THE
SAME object. This has profound positive consequences for both data and code development
and maintenance.

This modularization also makes it natural to discuss each allowed feature type separately as is
done in the SeqFeatData section below.

partial: This Feature is Incomplete: If Seq-feat.partial is TRUE, the feature is incomplete in
some (unspecified) way. The details of incompleteness may be specified in more detail in the
Seq-feat.location field. This flag allows quick exclusion of incomplete features when doing a
database wide survey. It also allows the feature to be flagged when the details of incompleteness
may not be know.

Seq-feat.partial should ALWAYS be TRUE if the feature is incomplete, even if Seq-
feat.location indicates the incompleteness as well.

except: There is Something Biologically Exceptional: The Seq-feat.except flag is similar to
the Seq-feat.partial flag in that it allows a simple warning that there is something unusual about
this feature, without attempting to structure a detailed explanation. Again, this allows software
scanning features in the database to ignore atypical cases easily. If Seq-feat.except is TRUE,
Seq-feat.comment should contain a string explaining the exceptional situation.

Seq-feat.except does not necessarily indicate there is something wrong with the feature, but
more that the biological exceeds the current representational capacity of the feature definition
and that this may lead to an incorrect interpretation. For example, a coding region feature on
genomic DNA where post-transcriptional editing of the RNA occurs would be a biological

Page 129

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

exception. If one translates the region using the frame and genetic code given in the feature
one does not get the protein it points to, but the data supplied in the feature is, in fact, correct.
It just does not take into account the RNA editing process.

Ideally, one should try to avoid or minimize exceptions by the way annotation is done. An
approach to minimizing the RNA editing problem is described in the "product" section below.
If one is forced to use exception consistently, it is a signal that a new or revised feature type is
needed.

comment: A Comment About This Feature: No length limit is set on the comment, but
practically speaking brief is better.

product: Does This Feature Produce Another Bioseq?: A Seq-feat is unusual in that it can
point to two different sequence locations. The "product" location enables two Bioseqs to be
linked together in a source/product relationship explicitly. This is very valuable for features
which describe a transformation from one Bioseq to another, such as coding region (nucleic
acid to protein) or the various RNA types (genomic nucleic acid to RNA product).

This explicit linkage is extremely valuable for connecting diverse types. Linkage of nucleic
acid to protein through coding region makes data traversal from gene to product or back simple
and explicit, but clearly of profound biological significance. Less obvious, but nonetheless
useful is the connection between a tRNA gene and the modified sequence of the tRNA itself,
or of a transcribed coding region and an edited mRNA.

Note that such a feature is as valuable in association with its product Bioseq alone as it is with
its source Bioseq alone, and could be distributed with either or both.

location: Source Location of This Feature: The Seq-feat.location is the traditional location
associated with a feature. While it is possible to use any Seq-loc type in Seq-feat.location, it
is recommended to use types which resolve to a single unique sequence. The use of a type like
Seq-loc-equiv to represent alternative splicing of exons (similar to the GenBank/EMBL/DDBJ
feature table "one-of") is strongly discouraged. Consider the example of such an alternatively
spliced coding region. What protein sequence is coded for by such usage? This problem is
accentuated by the availability of the "product" slot. Which protein sequence is the product of
this coding region? While such a short hand notation may seem attractive at first glance, it is
clearly much more useful to represent each splicing alternative, and its associated protein
product, times of expression, etc. separately.

qual: GenBank Style Qualifiers: The GenBank/EMBL/DDBJ feature table uses "qualifiers",
a combination of a string key and a string value. Many of these qualifiers do not map to the
ASN.1 specification, so this provides a means of carrying them in the Seq-feat for features
derived from those sources.

title: A User Defined Name: This field is provided for naming features for display. It would
be used by end-user software to allow the user to add locally meaningful names to features.
This is not an id, as this is provided by the "id" slot.

ext: A User Defined Structured Extension: The "ext" field allows the extension of a standard
feature type with a structured User-object (see General Use Objects) defined by a user. For
example, a particular scientist may have additional detailed information about coding regions
which do not fit into the standard CdRegion data type. Rather than create a completely new
feature type, the CdRegion type can be extended by filling in as much of the standard CdRegion
fields as possible, then putting the additional information in the User-object. Software which

Page 130

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

only expects a standard coding region will operate on the extended feature without a problem,
while software that can make use of the additional data in the User-object can operate on exactly
the same the feature.

cit: Citations For This Feature: This slot is a set of Pubs which are citations about the feature
itself, not about the Bioseq as a whole. It can be of any type, although the most common is
type "pub", a set of any kind of Pubs. The individual Pubs within the set may be Pub-equivs
(see Bibliographic References) to hold equivalent forms for the same publication, so some
thought should be given to the process of accessing all the possible levels of information in
this seemingly simple field.

exp-ev: Experimental Evidence: If it is known for certain that there is or is not experimental
evidence supporting a particular feature, Seq-feat.exp-ev can be "experimental" or "not-
experimental" respectively. If the type of evidence supporting the feature is not known, exp-
ev should not be given at all.

This field is only a simple flag. It gives no indication of what kind of evidence may be available.
A structured field of this type will differ from feature type to feature type, and thus is
inappropriate to the generic Seq-feat. Information regarding the quality of the feature can be
found in the CdRegion feature and even more detail on methods in the Tx-init feature. Other
feature types may gain experimental evidence fields appropriate to their types as it becomes
clear what a reasonable classification of that evidence might be.

xref: Linking To Other Features: SeqFeatXrefs are copies of the Seq-feat.data field and
(optionally) the Seq-feat.id field from other related features. This is a copy operation and is
meant to keep some degree of connectivity or completeness with a Seq-feat that is moved out
of context. For example, in a collection of data including a nucleic acid sequence and its
translated protein product, there would be a Gene feature on the nucleic acid, a Prot-ref feature
on the protein, and a CdRegion feature linking all three together. However, if the CdRegion
feature is taken by itself, the name of the translated protein and the name of the gene are not
immediately available. The Seq-feat.xref provides a simple way to copy the relevant
information. Note that there is a danger to any such copy operation in that the original source
of the copied data may be modified without updating the copy. Software should be careful
about this, and the best course is to take the original data if it is available to the software, using
any copies in xref only as a last resort. If the "id" is included in the xref, this makes it easier
for software to keep the copy up to date. But it depends on widespread use of feature ids.

SeqFeatData: Type Specific Feature Data—The "data" slot of a Seq-feat is filled with
SeqFeatData, which is just a CHOICE of a variety of specific data structures. They are listed
under their CHOICE type below, but for most types a detailed discussion will be found under
the type name itself later in this chapter, or in another chapter. That is because most types are
data objects in their own right, and may find uses in many other contexts than features.

gene: Location Of A Gene: A gene is a feature of its own, rather than a modifier of other
features as in the GenBank/EMBL/DDBJ feature tables. A gene is a heritable region of nucleic
acid sequence which confers a measurable phenotype. That phenotype may be achieved by
many components of the gene including but not limited to coding regions, promoters,
enhancers, terminators, and so on. The gene feature is meant to approximately cover the region
of nucleic acid considered by workers in the field to be the gene. This admittedly fuzzy concept
has an appealing simplicity and fits in well with higher level views of genes such as genetic
maps.

Page 131

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The gene feature is implemented with a Gene-ref object, or a "reference to" a gene. The Gene-
ref object is discussed below.

org: Source Organism Of The Bioseq: Normally when a whole Bioseq or set of Bioseqs is
from the same organism, the Org-ref (reference to Organism) will be found at the descriptor
level of the Bioseq or Bioseq-set (see Biological Sequences). However, in some cases the whole
Bioseq may not be from the same organism. This may occur naturally (e.g. a provirus integrated
into a host chromosome) or artificially (e.g. recombinant DNA techniques).

The org feature is implemented with an Org-ref object, or a "reference to" an organism. The
Orgref is discussed below.

cdregion: Coding Region: A cdregion is a region of nucleic acid which codes for a protein.
It can be thought of as "instructions to translate" a nucleic acid, not simply as a series of exons
or a reflection of an mRNA or primary transcript. Other features represent those things.
Unfortunately, most existing sequences in the database are only annotated for coding region,
so transcription and splicing information must be inferred (often inaccurately) from it. We
encourage the annotation of transcription features in addition to the coding region. Note that
since the cdregion is "instructions to translate", one can represent translational stuttering by
having overlapping intervals in the Seq-feat.location. Again, beware of assuming a cdregion
definitely reflects transcription.

A cdregion feature is implemented with a Cdregion object, discussed below.

prot: Describing A Protein: A protein feature describes and/or names a protein or region of
a protein. It uses a Prot-ref object, or "reference to" a protein, described in detail below.

A single amino acid Bioseq can have many protein features on it. It may have one over its full
length describing a pro-peptide, then a shorter one describing the mature peptide. An extreme
case might be a viral polyprotein which would have one protein feature for the whole
polyprotein, then additional protein features for each of the component mature proteins. One
should always take into account the "location" slot of a protein feature.

rna: Describing An RNA: An RNA feature can describe both coding intermediates and
structural RNAs using an RNA-ref, or "reference to" an RNA. The RNA-ref is described in
more detail below. The Seq-feat.location for an RNA can be attached to either the genomic
sequence coding for the RNA, or to the sequence of the RNA itself, when available. The
determination of whether the Bioseq the RNA feature is attached to is genomic or an RNA
type is made by examining the Bioseq.descr.mol-type, not by making assumptions based on
the feature. When both the genomic Bioseq and the RNA Bioseq are both available, one could
attach the RNA Seq-feat.location to the genomic sequence and the Seq-feat.product to the RNA
to connect them and capture explicitly the process by which the RNA is created.

pub: Publication About A Bioseq Region: When a publication describes a whole Bioseq, it
would normally be at the "descr" slot of the Bioseq. However, if it applies to a sub region of
the Bioseq, it is convenient to make it a feature. The pub feature uses a Pubdesc (see Biological
Sequences for a detailed description) to describe a publication and how it relates to the Bioseq.
To indicate a citation about a specific feature (as opposed to about the sequence region in
general), use the Seq-feat.cit slot of that feature.

seq: Tracking Original Sequence Sources: The "seq" feature is a simple way to associate a
region of sequence with a region of another. For example, if one wished to annotate a region
of a recombinant sequence as being from "pBR322 10-50" one would simply use a Seq-loc

Page 132

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

(see Sequence Locations and Identifiers) for the interval 10-50 on Seq-id pBR322. Software
tools could use such information to provide the pBR322 numbering system over that interval.

This feature is really meant to accommodate older or approximate data about the source of a
sequence region and is no more than annotation. More specific and computationally useful
ways of doing this are (1) create the recombinant sequence as a segmented sequence directly
(see Biological Sequences), (2) use the Seq-hist field of a Bioseq to record its history, (3) create
alignments (see Sequence Alignments) which are also valid Seq-annots, to indicate more
complex relationships of one Bioseq to others.

imp: Importing Features From Other Data Models: The SeqFeatData types explicitly
define only certain well understood or widely used feature types. There may be other features
contained in databases converted to this specification which are not represented by this ASN.
1 specification. At least for GenBank, EMBL, DDBJ, PIR, and SWISS-PROT, these can be
mapped to an Imp-feat structure so the features are not lost, although they are still unique to
the source database. All these features have the basic form of a string key, a location (carried
as the original string), and a descriptor (another string). In the GenBank/EMBL/DDBJ case,
any additional qualifiers can be carried on the Seq-feat.qual slot.

GenBank/EMBL/DDBJ use a "location" called "replace" which is actually an editing operation
on the sequence which incorporates literal strings. Since the locations defined in this
specification are locations on sequences, and not editing operations, features with replace
operators are all converted to Imp-feat so that the original location string can be preserved.
This same strategy is taken in the face of incorrectly constructed locations encountered in
parsing outside databases into ASN.1.

region: A Named Region: The region feature provides a simple way to name a region of a
Bioseq (e.g. "globin locus", "LTR", "subrepeat region", etc).

comment: A Comment On A Region Of Sequence: The comment feature allows a comment
to be made about any specified region of sequence. Since comment is already a field in Seq-
feat, there is no need for an additional type specific data item in this case, so it is just NULL.

bond: A Bond Between Residues: This feature annotates a bond between two residues. A
Seq-loc of type "bond" is expected in Seq-feat.location. Certain types of bonds are given in
the ENUMERATED type. If the bond type is "other" the Seq-feat.comment slot should be used
to explain the type of the bond. Allowed bond types are:

 disulfide (1) ,
 thiolester (2) ,
 xlink (3) ,
 thioether (4) ,
 other (255) } ,

site: A Defined Site: The site feature annotates a know site from the following specified list.
If the site is "other" then Seq-feat.comment should be used to explain the site.

active (1) ,

binding (2) ,

Page 133

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

cleavage (3) ,

inhibit (4) ,

modified (5),

glycosylation (6) ,

myristoylation (7) ,

mutagenized (8) ,

metal-binding (9) ,

phosphorylation (10) ,

acetylation (11) ,

amidation (12) ,

methylation (13) ,

hydroxylation (14) ,

sulfatation (15) ,

oxidative-deamination (16) ,

pyrrolidone-carboxylic-acid (17) ,

gamma-carboxyglutamic-acid (18) ,

blocked (19) ,

lipid-binding (20) ,

np-binding (21) ,

dna-binding (22) ,

other (255) } ,

rsite: A Restriction Enzyme Cut Site: A restriction map is basically a feature table with rsite
features. Software which generates such a feature table could then use any sequence annotation
viewer to display its results. Restriction maps generated by physical methods (before sequence
is available), can use this feature to create a map type Bioseq representing the ordered restriction
map. For efficiency one would probably create one Seq-feat for each restriction enzyme used
and used the Packed-pnt Seq-loc in the location slot. See Rsite-ref, below.

user: A User Defined Feature: An end-user can create a feature completely of their own
design by using a User-object (see General Use Objects) for SeqFeatData. This provides a

Page 134

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

means for controlled addition and testing of new feature types, which may or may not become
widely accepted or to "graduate" to a defined SeqFeatData type. It is also a means for software
to add structured information to Bioseqs for its own use and which may never be intended to
become a widely used standard. All the generic feature operations, including display, deletion,
determining which features are carried on a sub region of sequence, etc, can be applied to an
user feature with no knowledge of the particular User-object structure or meaning. Yet software
which recognizes that User-object can take advantage of it.

If an existing feature type is available but lacks certain additional fields necessary for a special
task or view of information, then it should be extended with the Seq-feat.ext slot, rather than
building a complete user feature de novo.

txinit: Transcription Initiation: This feature is used to designate the region of transcription
initiation, about which considerable knowledge is available. See Txinit, below.

num: Applying Custom Numbering To A Region: A Numbering object can be used as a
Bioseq descriptor to associate various numbering systems with an entire Bioseq. When used
as a feature, the numbering system applies only to the region in Seq-feat.location. This make
multiple, discontinuous numbering systems available on the same Bioseq. See Biological
Sequences for a description of Numbering, and also Seq-feat.seq, above, for an alternative way
of applying a sequence name and its numbering system to a sequence region.

psec-str: Protein Secondary Structure: Secondary structure can be annotated on a protein
sequence using this type. It can be predicted by algorithm (in which case Seq-feat.exp-ev should
be "not-experimental") or by analysis of the known protein structure (Seq-feat.exp-ev =
"experimental"). Only three types of secondary structure are currently supported. A "helix" is
any helix, a "sheet" is beta sheet, and "turn" is a beta or gamma turn. Given the controversial
nature of secondary structure classification (not be mention prediction), we opted to keep it
simple until it was clear that more detail was really necessary or understood.

non-std-residue: Unusual Residues: When an unusual residue does not have a direct sequence
code, the "best" standard substitute can be used in the sequence and the residue can be labeled
with its real name. No attempt is made to enforce a standard nomenclature for this string.

het: Heterogen: In the PDB structural database, non-biopolymer atoms associated with a
Bioseq are referred to as "heterogens". When a heterogen appears as a feature, it is assumed
to be bonded to the sequence positions in Seq-feat.location. If there is no specific bonding
information, the heterogen will appear as a descriptor of the Bioseq. The Seq-loc for the Seq-
feat.location will probably be a point or points, not a bond. A Seq-loc of type bond is between
sequence residues.

Seq-feat Implementation in C—The C implementation of a Seq-feat is mostly
straightforward. However, some explanation of the "id" and "data" slots will be helpful. Both
are implemented as a Choice, which is like a ValNode but without a next pointer. Both Choice
structures are included as part of a SeqFeat structure. In the tables below the values of
Choice.choice and the type in Choice.data.ptrvalue or Choice.data.intvalue are shown.

SeqFeat.id

Page 135

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ASN.1 name Value in Choice.choice Type in Choice.data

(not present) 0 not needed

gibb 1 integer

giim 2 GiimPtr

local 3 ObjectIdPtr

general 4 DbtagPtr

SeqFeat.data

ASN.1 name Value in Choice.choice Type in Choice.data

(not present) 0 not needed

gene 1 GeneRefPtr

org 2 OrgRefPtr

cdregion 3 CdRegionPtr

prot 4 ProtRefPtr

rna 5 RnaRefPtr

pub 6 PubdescPtr

seq 7 SeqLocPtr

imp 8 ImpFeatPtr

region 9 CharPtr

comment 10 (not used)

bond 11 integer

site 12 integer

rsite 13 RsiteRefPtr

user 14 UserObjectPtr

txinit 15 TxinitPtr

num 16 NumberingPtr

psec-str 17 integer

non-std-residue 18 CharPtr

het 19 CharPtr

In addition to the usual SeqFeatNew(), SeqFeatAsnRead(), SeqFeatAsnWrite(), and
SeqFeatFree() functions, there is a SeqFeatToXref() function which creates an xref and copies
the "id" and "data" slots to it. There are also SeqFeatSetAsnRead() and SeqFeatSetAsnWrite
() functions for sets of features. Finally, there is are special SeqFeatDataAsnRead(),
SeqFeatDataAsnWrite(), and SeqFeatDataFree() functions which operate on the "data"
component of a SeqFeat structure since there is no separate C structure for SeqFeatData.

Of course, within the software tools for producing GenBank, report, or other formats from
ASN.1 are functions to format and display features as well. There are some functions to
manipulate the SeqFeatData objects, such as the translation of a CdRegion, and a host of
functions to use and compare the Seq-locs of "product" and "location" or easily access and use
the sequence regions they point to. These functions are discussed in the Sequence Utilities

Page 136

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

chapter. Additional functions, described in Exploring The Data, allow one to easily locate
features of interest by type, in arbitrarily complex objects.

CdRegion: Coding Region—A CdRegion, in association with a Seq-feat, is considered
"instructions to translate" to protein. The Seq-locs used by the Seq-feat do not necessarily
reflect the exon structure of the primary transcript (although they often do). A Seq-feat of type
CdRegion can point both to the source nucleic acid and to the protein sequence it produces.
Most of the information about the source nucleic acid (such as the gene) or the destination
protein (such as its name) is associated directly with those Bioseqs. The CdRegion only serves
as a link between them, and as a method for explicitly encoding the information needed to
derive one from the other.

orf: Open Reading Frame: CdRegion.orf is TRUE if the coding region is only known to be
an open reading frame. This is a signal that nothing is known about the protein product, or even
if it is produced. In this case the translated protein sequence will be attached, but there will be
no other information associated with it. This flag allows such very speculative coding regions
to be easily ignored when scanning the database for genuine protein coding regions.

The orf flag is not set when any reasonable argument can be made that the CdRegion is really
expressed, such as detection of mRNA or strong sequence similarity to known proteins.

Translation Information: CdRegion has several explicit fields to define how to translate the
coding region. Reading frame is explicitly given or defaults to frame one.

The genetic code is assumed to be the universal code unless given explicitly. The code itself
is given, rather than requiring software to determine the code at run-time by analyzing the
phylogenetic position of the Bioseq. Genetic code is described below.

Occasionally the genetic code is not followed at specific positions in the sequence. Examples
are the use of alternate initiation codons only in the first position, the effects of suppresser
tRNAs, or the addition of selenocysteine. The Code-break object specifies the three bases of
the codon in the Bioseq which is treated differently and the amino acid which is generated at
that position. During translation the genetic code is followed except at positions indicated by
Code-breaks, where the instructions in the Code-break are followed instead.

Problems With Translations: In a surprising number of cases an author publishes both a
nucleic acid sequence and the protein sequence produced by its coding region, but the
translation of the coding region does not yield the published protein sequence. On the basis of
the publication it is not possible to know for certain which sequence is correct. In the NCBI
Backbone database both sequences are preserved as published by the author, but the conflict
flag is set to TRUE in the CdRegion. If available, the number of gaps and mismatches in the
alignment of the translated sequence to the published protein sequence are also given so a
judgment can be made about the severity of the problem.

Genetic Codes—A Genetic-code is a SET which may include one or more of a name, an
integer id, or 64 cell arrays of amino acid codes in different alphabets. Thus, in a CdRegion,
one can either refer to a genetic code by name or id; provide the genetic code itself, or both.
Tables of genetic codes are provided in the NCBI software release with most possibilities filled
in.

The Genetic-code.name is a descriptive name for the genetic code, mainly for display to
humans. The integer id refers to the ids in the gc.val (binary ASN.1) or gc.prt (text ASN.1) file
of genetic codes maintained by NCBI, distributed with the software tools and Entrez releases,

Page 137

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

and published in the GenBank/EMBL/DDBJ feature table document. Genetic-code.id is the
best way to explicitly refer to a genetic code.

The genetic codes themselves are arrays of 64 amino acid codes. The index to the position in
the array of the amino acid is derived from the codon by the following method:

index = (base1 * 16) + (base2 * 4) + base3

where T=0, C=1, A=2, G=3

Note that this encoding of the bases is not the same as any of the standard nucleic acid encoding
described in Biological Sequence. This set of values was chosen specifically for genetic codes
because it results in the convenient groupings of amino acid by codon preferred for display of
genetic code tables.

The genetic code arrays have names which indicate the amino acid alphabet used (e.g. ncbieaa).
The same encoding technique is used to specify start codons. Alphabet names are prefixed with
"s" (e.g. sncbieaa) to indicate start codon arrays. Each cell of a start codon array contains either
the gap code ("-" for ncbieaa) or an amino acid code if it is valid to use the codon as a start
codon. Currently all starts are set to code for methionine, since it has never been convincingly
demonstrated that a protein can start with any other amino acid. However, if other amino acids
are shown to be used as starts, this structure can easily accommodate that information.

The contents of gc.prt, the current supported genetic codes, is given at the end of this chapter.

C Implementation Of Genetic Codes: GeneticCode is implemented as a ValNodePtr with
choice = 254. The ValNodePtr>data.ptrvalue is the head of a linked list of ValNodes, each of
which contains on of the possible forms of a particular GeneticCode as follows:

GeneticCode Elements

ASN.1 name Value in ValNode.choice Type in ValNode.data

name 1 CharPtr

id 2 integer

ncbieaa 3 CharPtr

ncbi8aa 4 ByteStorePtr

ncbistdaa 5 ByteStorePtr

sncbieaa 6 CharPtr

sncbi8aa 7 ByteStorePtr

sncbistdaa 8 ByteStorePtr

GeneticCodeNew() returns a pointer to the ValNode with choice = 254, the element which
points to the head of the chain. This is the datum which is returned from GeneticCodeAsnRead
() and is passed to GeneticCodeAsnWrite() and GeneticCodeFree(). There are also
GeneticCodeTableAsnRead() and ..Write() functions. The table functions expect a list of
ValNode with ->choice = 254 linked by their ->next pointers, each with a linked list of
ValNodes representing the elements of a genetic code starting from its ValNodePtr-
>data.ptrvalue.

Page 138

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

A special function, GeneticCodeTableLoad() reads gc.val into memory. For this function to
work the gc.val file must be in the directory with other DATA items such as sequence alphabet
file, seqcode.val.

GeneticCodeFind(id, name) returns a GeneticCodePtr to the appropriate code assuming
GeneticCodeTableLoad() has previously succeeded. If "name" is NULL, id is matched. If the
code cannot be found, NULL is returned.

Rsite-ref: Reference To A Restriction Enzyme—This simple data structure just
references a restriction enzyme. It is a choice of a simple string (which may or may not be from
a controlled vocabulary) or a Dbtag, in order to cite an enzyme from a specific database such
as RSITE. The Dbtag is preferred, if available.

Note that this reference is not an Rsite-entry which might contain a host of information about
the restriction enzyme, but is only a reference to the enzyme.

RNA-ref: Reference To An RNA—An RNA-ref allows naming and a minimal description
of various RNAs. The "type" is a controlled vocabulary for dividing RNAs into broad, well
accepted classes. The "pseudo" field is used for RNA pseudogenes.

The "ext" field allows the addition of structure information appropriate to a specific RNA class
as appropriate. The "name" extension allows naming the "other" type or adding a modifier,
such as "28S" to rRNA. For tRNA there is a structured extension which as fields for the amino
acid transferred, drawn from the standard amino acid alphabets, and a value for one or more
codons that this tRNA recognizes. The values of the codons are calculated as a number from
0 to 63 using the same formula as for calculating the index to Genetic Codes, above.

As nomenclature and attributes for classes of RNAs becomes better understood and accepted,
the RNA-ref.ext will gain additional extensions.

Gene-ref: Reference To A Gene—A Gene-ref is not intended to carry all the information
one might want to know about a gene, but to provide a small set of information and reference
some larger body of information, such as an entry in a genetic database.

The "locus" field is for the gene symbol, preferably an official one (e.g. "Adh"). The "allele"
field is for an allele symbol (e.g. "S"). The "desc" field is for a descriptive name for the gene
(e.g. "Alcohol dehydrogenase, SLOW allele"). One should fill in as many of these fields as
possible.

The "maploc" field accepts a string with a map location using whatever conventions are
appropriate to the organism. This field is hardly definitive and if up to date mapping information
is desired a true mapping database should always be consulted.

If "pseudo" is TRUE, this is a pseudogene.

The "db" field allows the Gene-ref to be attached to controlled identifiers from established
gene databases. This allows a direct key to a database where gene information will be kept up
to date without requiring that the rest of the information in the Gene-ref necessarily be up to
date as well. This type of foreign key is essential to keeping loosely connected data up to date
and NCBI is encouraging gene databases to make such controlled keys publicly available.

The "syn" field holds synonyms for the gene. It does not attempt to discriminate symbols,
alleles, or descriptions.

Page 139

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

In addition to the usual C functions, there is a specific GeneRefDup() function to duplicate this
object quickly.

Prot-ref: Reference To A Protein—A Prot-ref is meant to reference a protein very
analogous to the way a Gene-ref references a gene. The "name" field is a SET OF strings to
allow synonyms. The first name is presumed to be the preferred name by software tools. Since
there is no controlled vocabulary for protein names this is the best that can be done at this time.
"ADH" and "alcohol dehydrogenase" are both protein names.

The "desc" field is for a description of the protein. This field is often not necessary if the name
field is filled in, but may be informative in some cases and essential in cases where the protein
has not yet been named (e.g. ORF21 putative protein).

The "ec" field contains a SET of EC numbers. These strings are expected to be only numbers
separated by periods (no leading "EC"). Sometimes the last few positions will be occupied by
dashes or not filled in at all if the protein has not been fully characterized. Examples of EC
numbers are (1.14.13.8 or 1.14.14.- or 1.14.14.3 or 1.14.--.-- or 1.14).

The "activity" field allows the various known activities of the protein to be specified. This can
be very helpful, especially when the name is not informative.

The "db" field is to accommodate keys from protein databases. While protein nomenclature is
not well controlled, there are subfields such as immunology which have controlled names.
There are also databases which characterize proteins in other ways than sequence, such as 2-
d spot databases which could provide such a key.

In addition to the usual C functions, there is also a ProtRefDup() for quickly duplicating this
object.

Txinit: Transcription Initiation—This is an example of a SeqFeatData block designed and
built by a domain expert, an approach the NCBI strongly encourages and supports. The Txinit
structure was developed by Philip Bucher and David Ghosh. It carries most of the information
about transcription initiation represented in the Eukaryotic Promoter Database (EPD). The
Txinit structure carries a host of detailed experimental information, far beyond the simple
"promoter" features in GenBank/EMBL/DDBJ. EPD is released as a database in its own right
and as Txinit Seq-feats. NCBI will be incorporating the EPD in its feature table form to provide
expert annotation of the sequence databases in the manner described in the Data Model chapter.

The Txinit object is well described by its comments in the ASN.1 definition. The best source
of more in depth discussion of these fields is in the EPD documentation, and so it will not be
reproduced here.

Current Genetic Code Table: gc.prt

--**
-- This is the NCBI genetic code table
-- Base 1-3 of each codon have been added as comments to facilitate
-- readability at the suggestion of Peter Rice, EMBL
--***
Genetic-code-table ::= {
{

name "Standard" ,

Page 140

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

name "SGC0" ,

id 1 ,

ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

name "Vertebrate Mitochondrial" ,

name "SGC1" ,

id 2 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSS**VVVVAAAADDEEGGGG",

sncbieaa "--------------------------------MMMM---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

name "Yeast Mitochondrial" ,

name "SGC2" ,

id 3 ,

ncbieaa "FFLLSSSSYY**CCWWTTTTPPPPHHQQRRRRIIMMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,

Page 141

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

{

name "Mold Mitochondrial and Mycoplasma" ,

name "SGC3" ,

id 4 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

name "Invertebrate Mitochondrial" ,

name "SGC4" ,

id 5 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIMMTTTTNNKKSSSSVVVVAAAADDEEGGGG",

sncbieaa "---M----------------------------M-MM----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

name "Ciliate Macronuclear and Daycladacean" ,

name "SGC5" ,

id 6 ,

ncbieaa "FFLLSSSSYYQQCC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

Page 142

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

name "Protozoan Mitochondrial (and Kinetoplast)" ,

name "SGC6" ,

id 7 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "--MM---------------M------------MMMM---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,

{

name "Plant Mitochondrial/Chloroplast (posttranscriptional variant)" ,

name "SGC7" ,

id 8 ,

ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRWIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "--M-----------------------------MMMM---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

Page 143

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

name "Echinoderm Mitochondrial" ,

name "SGC8" ,

id 9 ,

ncbieaa "FFLLSSSSYY**CCWWLLLLPPPPHHQQRRRRIIIMTTTTNNNKSSSSVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

name "Euplotid Macronuclear" ,

name "SGC9" ,

id 10 ,

ncbieaa "FFLLSSSSYY*QCCCWLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "-----------------------------------M----------------------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG
} ,
{

name "Eubacterial" ,

id 11 ,

ncbieaa "FFLLSSSSYY**CC*WLLLLPPPPHHQQRRRRIIIMTTTTNNKKSSRRVVVVAAAADDEEGGGG",

sncbieaa "---M---------------M------------M--M---------------M------------"

-- Base1 TTTTTTTTTTTTTTTTCCCCCCCCCCCCCCCCAAAAAAAAAAAAAAAAGGGGGGGGGGGGGGGG

-- Base2 TTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGGTTTTCCCCAAAAGGGG

-- Base3 TCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAGTCAG

Page 144

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

}
}

ASN.1 Specification: seqfeat.asn

--$Revision: 2.0 $
--**
--
-- NCBI Sequence Feature elements
-- by James Ostell, 1990
--
--**
NCBI-Seqfeat DEFINITIONS ::=
BEGIN
EXPORTS Seq-feat, Feat-id;
IMPORTS Gene-ref FROM NCBI-Gene
 Prot-ref FROM NCBI-Protein
 Org-ref FROM NCBI-Organism
 RNA-ref FROM NCBI-RNA
 Seq-loc, Giimport-id FROM NCBI-Seqloc
 Pubdesc, Numbering, Heterogen FROM NCBI-Sequence
 Rsite-ref FROM NCBI-Rsite
 Txinit FROM NCBI-TxInit
 Pub-set FROM NCBI-Pub
 Object-id, Dbtag, User-object FROM NCBI-General;
--*** Feature identifiers ********************************
--*
Feat-id ::= CHOICE {
 gibb INTEGER , -- geninfo backbone
 giim Giimport-id , -- geninfo import
 local Object-id , -- for local software use
 general Dbtag } -- for use by various databases
--*** Seq-feat ***
--* sequence feature generalization
Seq-feat ::= SEQUENCE {
 id Feat-id OPTIONAL ,
 data SeqFeatData , -- the specific data
 partial BOOLEAN OPTIONAL , -- incomplete in some way?
 except BOOLEAN OPTIONAL , -- something funny about this?
 comment VisibleString OPTIONAL ,
 product Seq-loc OPTIONAL , -- product of process
 location Seq-loc , -- feature made from
 qual SEQUENCE OF Gb-qual OPTIONAL , -- qualifiers
 title VisibleString OPTIONAL , -- for user defined label
 ext User-object OPTIONAL , -- user defined structure extension
 cit Pub-set OPTIONAL , -- citations for this feature
 exp-ev ENUMERATED { -- evidence for existence of feature
 experimental (1) , -- any reasonable experimental check
 not-experimental (2) } OPTIONAL , -- similarity, pattern, etc
xref SET OF SeqFeatXref OPTIONAL } -- cite other relevant features
SeqFeatData ::= CHOICE {

Page 145

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 gene Gene-ref ,
 org Org-ref ,
 cdregion Cdregion ,
 prot Prot-ref ,
 rna RNA-ref ,
 pub Pubdesc , -- publication applies to this seq
 seq Seq-loc , -- to annotate origin from another seq
 imp Imp-feat ,
 region VisibleString, -- named region (globin locus)
 comment NULL , -- just a comment
 bond ENUMERATED {
 disulfide (1) ,
 thiolester (2) ,
 xlink (3) ,
 thioether (4) ,
 other (255) } ,
site ENUMERATED {

active (1) ,

binding (2) ,

cleavage (3) ,

inhibit (4) ,

modified (5),

glycosylation (6) ,

myristoylation (7) ,

mutagenized (8) ,

metal-binding (9) ,

phosphorylation (10) ,

acetylation (11) ,

amidation (12) ,

methylation (13) ,

hydroxylation (14) ,

sulfatation (15) ,

oxidative-deamination (16) ,

pyrrolidone-carboxylic-acid (17) ,

Page 146

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

gamma-carboxyglutamic-acid (18) ,

blocked (19) ,

lipid-binding (20) ,

np-binding (21) ,

dna-binding (22) ,

other (255) } ,
 rsite Rsite-ref , -- restriction site (for maps really)
 user User-object , -- user defined structure
 txinit Txinit , -- transcription initiation
num Numbering , -- a numbering system
psec-str ENUMERATED { -- protein secondary structure

helix (1) , -- any helix

sheet (2) , -- beta sheet

turn (3) } , -- beta or gamma turn
non-std-residue VisibleString , -- non-standard residue here in seq
het Heterogen } -- cofactor, prosthetic grp, etc, bound to seq
SeqFeatXref ::= SEQUENCE {
 id Feat-id OPTIONAL ,

 -- the feature copied
 data SeqFeatData } -- the specific data

--*** CdRegion ***
--*
--* Instructions to translate from a nucleic acid to a peptide
--* conflict means it's supposed to translate but doesn't
--*
Cdregion ::= SEQUENCE {
 orf BOOLEAN OPTIONAL , -- just an ORF ?
 frame ENUMERATED {
 not-set (0) , -- not set, default to one
 one (1) ,
 two (2) ,
 three (3) } DEFAULT one , -- reading frame
 conflict BOOLEAN OPTIONAL , -- conflict
 gaps INTEGER OPTIONAL , -- number of gaps on conflict/except
 mismatch INTEGER OPTIONAL , -- number of mismatches on above
 code Genetic-code OPTIONAL , -- genetic code used
 code-break SEQUENCE OF Code-break OPTIONAL , -- individual exceptions
 stops INTEGER OPTIONAL } -- number of stop codons on above
 -- each code is 64 cells long, in the order where
 -- T=0,C=1,A=2,G=3, TTT=0, TTC=1, TCA=4, etc

Page 147

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 -- NOTE: this order does NOT corresspond to a Seq-data
 -- encoding. It is "natural" to codon usage instead.
 -- the value in each cell is the AA coded for
 -- start= AA coded only if first in peptide
 -- in start array, if codon is not a legitimate start
 -- codon, that cell will have the "gap" symbol for
 -- that alphabet. Otherwise it will have the AA
 -- encoded when that codon is used at the start.
Genetic-code ::= SET OF CHOICE {
 name VisibleString , -- name of a code
 id INTEGER , -- id in dbase
 ncbieaa VisibleString , -- indexed to IUPAC extended
 ncbi8aa OCTET STRING , -- indexed to NCBI8aa
ncbistdaa OCTET STRING , -- indexed to NCBIstdaa
 sncbieaa VisibleString , -- start, indexed to IUPAC extended
 sncbi8aa OCTET STRING , -- start, indexed to NCBI8aa
sncbistdaa OCTET STRING } -- start, indexed to NCBIstdaa
Code-break ::= SEQUENCE { -- specific codon exceptions
 loc Seq-loc , -- location of exception
 aa CHOICE { -- the amino acid
 ncbieaa INTEGER , -- ASCII value of NCBIeaa code
 ncbi8aa INTEGER , -- NCBI8aa code

ncbistdaa INTEGER } } -- NCBIstdaa code
Genetic-code-table ::= SET OF Genetic-code -- table of genetic codes
--*** Import ***
--*
--* Features imported from other databases
--*
Imp-feat ::= SEQUENCE {
 key VisibleString ,
 loc VisibleString OPTIONAL , -- original location string
 descr VisibleString OPTIONAL } -- text description
Gb-qual ::= SEQUENCE {
 qual VisibleString ,
 val VisibleString }
END
--**
--
-- NCBI Restriction Sites
-- by James Ostell, 1990
-- version 0.8
--
--**
NCBI-Rsite DEFINITIONS ::=
BEGIN
EXPORTS Rsite-ref;
IMPORTS Dbtag FROM NCBI-General;
Rsite-ref ::= CHOICE {
 str VisibleString , -- may be unparsable
 db Dbtag } -- pointer to a restriction site database

Page 148

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

END
--**
--
-- NCBI RNAs
-- by James Ostell, 1990
-- version 0.8
--
--**
NCBI-RNA DEFINITIONS ::=
BEGIN
EXPORTS RNA-ref, Trna-ext;
--*** rnas ***
--*
--* various rnas
--*
 -- minimal RNA sequence
RNA-ref ::= SEQUENCE {
 type ENUMERATED { -- type of RNA feature
 unknown (0) ,
 premsg (1) ,
 mRNA (2) ,
 tRNA (3) ,
 rRNA (4) ,
 snRNA (5) ,
 scRNA (6) ,
 other (255) } ,
 pseudo BOOLEAN OPTIONAL ,
 ext CHOICE {
 name VisibleString , -- for naming "other" type
 tRNA Trna-ext } OPTIONAL } -- for tRNAs
Trna-ext ::= SEQUENCE { -- tRNA feature extensions
 aa CHOICE { -- aa this carries
 iupacaa INTEGER ,
 ncbieaa INTEGER ,
 ncbi8aa INTEGER ,

ncbistdaa INTEGER } OPTIONAL ,
 codon SET OF INTEGER OPTIONAL } -- codon(s) as in Genetic-code
 -- NOT anti-codons
END
--**
--
-- NCBI Genes
-- by James Ostell, 1990
-- version 0.8
--
--**
NCBI-Gene DEFINITIONS ::=
BEGIN
EXPORTS Gene-ref;
IMPORTS Dbtag FROM NCBI-General;

Page 149

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

--*** Gene ***
--*
--* reference to a gene
--*
Gene-ref ::= SEQUENCE {
 locus VisibleString OPTIONAL , -- Official gene symbol
 allele VisibleString OPTIONAL , -- Official allele designation
 desc VisibleString OPTIONAL , -- descriptive name
 maploc VisibleString OPTIONAL , -- descriptive map location
 pseudo BOOLEAN DEFAULT FALSE , -- pseudogene
 db SET OF Dbtag OPTIONAL , -- ids in other dbases
syn SET OF VisibleString OPTIONAL } -- synonyms for locus
END
--**
--
-- NCBI Organism
-- by James Ostell, 1990
-- version 0.8
--
--**
NCBI-Organism DEFINITIONS ::=
BEGIN
EXPORTS Org-ref;
IMPORTS Dbtag FROM NCBI-General;
--*** Org-ref ***
--*
--* Reference to an organism
--*
Org-ref ::= SEQUENCE {
 taxname VisibleString OPTIONAL , -- scientific name
 common VisibleString OPTIONAL , -- common name
 mod SET OF VisibleString OPTIONAL , -- modifier for tissue/strain/line
 db SET OF Dbtag OPTIONAL , -- ids in other dbases
 syn SET OF VisibleString OPTIONAL } -- synonyms for taxname or common
END
--**
--
-- NCBI Protein
-- by James Ostell, 1990
-- version 0.8
--
--**
NCBI-Protein DEFINITIONS ::=
BEGIN
EXPORTS Prot-ref;
IMPORTS Dbtag FROM NCBI-General;
--*** Prot-ref ***
--*
--* Reference to a protein name
--*
Prot-ref ::= SEQUENCE {

Page 150

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 name SET OF VisibleString OPTIONAL , -- protein name
 desc VisibleString OPTIONAL , -- description (instead of name)
 ec SET OF VisibleString OPTIONAL , -- E.C. number(s)
 activity SET OF VisibleString OPTIONAL , -- activities
 db SET OF Dbtag OPTIONAL } -- ids in other dbases
END
--**
--
-- Transcription Initiation Site Feature Data Block
-- James Ostell, 1991
-- Philip Bucher, David Ghosh
-- version 1.1
--
--
--
--**
NCBI-TxInit DEFINITIONS ::=
BEGIN
EXPORTS Txinit;
IMPORTS Gene-ref, Prot-ref, Org-ref FROM NCBI-SeqFeat;
Txinit ::= SEQUENCE {
 name VisibleString , -- descriptive name of initiation site
 syn SEQUENCE OF VisibleString OPTIONAL , -- synonyms
 gene SEQUENCE OF Gene-ref OPTIONAL , -- gene(s) transcribed
 protein SEQUENCE OF Prot-ref OPTIONAL , -- protein(s) produced
 rna SEQUENCE OF VisibleString OPTIONAL , -- rna(s) produced
 expression VisibleString OPTIONAL , -- tissue/time of expression
 txsystem ENUMERATED { -- transcription apparatus used at this site
 unknown (0) ,
 pol1 (1) , -- eukaryotic Pol I
 pol2 (2) , -- eukaryotic Pol II
 pol3 (3) , -- eukaryotic Pol III
 bacterial (4) ,
 viral (5) ,
 rna (6) , -- RNA replicase
 organelle (7) ,
 other (255) } ,
 txdescr VisibleString OPTIONAL , -- modifiers on txsystem
 txorg Org-ref OPTIONAL , -- organism supplying transcription apparatus
 mapping-precise BOOLEAN DEFAULT FALSE , -- mapping precise or approx
 location-accurate BOOLEAN DEFAULT FALSE , -- does Seq-loc reflect mapping
 inittype ENUMERATED {
 unknown (0) ,
 single (1) ,
 multiple (2) ,
 region (3) } OPTIONAL ,
 evidence SET OF Tx-evidence OPTIONAL }
Tx-evidence ::= SEQUENCE {
 exp-code ENUMERATED {
 unknown (0) ,
 rna-seq (1) , -- direct RNA sequencing

Page 151

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 rna-size (2) , -- RNA length measurement
 np-map (3) , -- nuclease protection mapping with homologous sequence
ladder
 np-size (4) , -- nuclease protected fragment length measurement
 pe-seq (5) , -- dideoxy RNA sequencing
 cDNA-seq (6) , -- full-length cDNA sequencing
 pe-map (7) , -- primer extension mapping with homologous sequence
ladder
 pe-size (8) , -- primer extension product length measurement
 pseudo-seq (9) , -- full-length processed pseudogene sequencing

rev-pe-map (10) , -- see NOTE (1) below
 other (255) } ,
 expression-system ENUMERATED {
 unknown (0) ,
 physiological (1) ,
 in-vitro (2) ,
 oocyte (3) ,
 transfection (4) ,
 transgenic (5) ,
 other (255) } DEFAULT physiological ,
 low-prec-data BOOLEAN DEFAULT FALSE ,
 from-homolog BOOLEAN DEFAULT FALSE } -- experiment actually done on
 -- close homolog
-- NOTE (1) length measurement of a reverse direction primer-extension
--

product (blocked by RNA 5'end) by comparison with
--

homologous sequence ladder (J. Mol. Biol. 199, 587)

END

C Structures and Functions: objfeat.h

/* objfeat.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*

Page 152

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objfeat.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*
* $Revision: 2.0 $
*
* File Description: Object manager interface for module NCBI-SeqFeat
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Seqfeat_
#define _NCBI_Seqfeat_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_General_
#include <objgen.h>
#endif
#ifndef _NCBI_Seqloc_
#include <objloc.h>
#endif
#ifndef _NCBI_Pub_
#include <objpub.h>
#endif
#ifndef _NCBI_Pubdesc_
#include <objpubd.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif

Page 153

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/

*
* loader
*

/
extern Boolean SeqFeatAsnLoad PROTO((void));
/

*
* GBQual
*

/
typedef struct gbqual {
 CharPtr qual,
 val;
 struct gbqual PNTR next;
} GBQual, PNTR GBQualPtr;
GBQualPtr GBQualNew PROTO((void));
Boolean GBQualAsnWrite PROTO((GBQualPtr gbp, AsnIoPtr aip, AsnTypePtr atp));
GBQualPtr GBQualAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
GBQualPtr GBQualFree PROTO((GBQualPtr gbp));
/

*
* SeqFeatXref
*
cross references between features
*

/
typedef struct seqfeatxref {
 Choice id;
 Choice data;
 struct seqfeatxref PNTR next;
} SeqFeatXref, PNTR SeqFeatXrefPtr;
SeqFeatXrefPtr SeqFeatXrefNew PROTO((void));
Boolean SeqFeatXrefAsnWrite PROTO((SeqFeatXrefPtr sfxp, AsnIoPtr aip,
AsnTypePtr atp));
SeqFeatXrefPtr SeqFeatXrefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqFeatXrefPtr SeqFeatXrefFree PROTO((SeqFeatXrefPtr sfxp));

 /* free frees whole chain of SeqFeatXref */
/

*

Page 154

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* SeqFeat
* Feat-id is built into idtype/id
* 1=gibb (in id.intvalue)
* 2=gimm (id.ptrvalue)
* 3=local (id.ptrvalue to Object-id)
* 4=general (id.ptrvalue to Dbtag)
* SeqFeatData is built into datatype/data
* datatype gives type of SeqFeatData:
* 0 = not set
 1 = gene, data.value.ptrvalue = Gene-ref ,
 2 = org , data.value.ptrvalue = Org-ref ,
 3 = cdregion, data.value.ptrvalue = Cdregion ,
 4 = prot , data.value.ptrvalue = Prot-ref ,
 5 = rna, data.value.ptrvalue = RNA-ref ,
 6 = pub, data.value.ptrvalue = Pubdesc , -- publication applies to this
seq
 7 = seq, data.value.ptrvalue = Seq-loc , -- for tracking source of a
seq.
 8 = imp, data.value.ptrvalue = Imp-feat ,
 9 = region, data.value.ptrvalue= VisibleString, -- for a name
 10 = comment, data.value.ptrvalue= NULL , -- just a comment
 11 = bond, data.value.intvalue = ENUMERATED {
 disulfide (1) ,
 thiolester (2) ,
 xlink (3) ,
 other (255) } ,
 12 = site, data.value.intvalue = ENUMERATED {
 active (1) ,
 binding (2) ,
 cleavage (3) ,
 inhibit (4) ,
 modified (5),
 other (255) } ,
 13 = rsite, data.value.ptrvalue = Rsite-ref
 14 = user, data.value.ptrvalue = UserObjectPtr
 15 = txinit, data.value.ptrvalue = TxinitPtr
16 = num, data.value.ptrvalue = NumberingPtr -- a numbering system
17 = psec-str data.value.intvalue = ENUMERATED { -- protein secondary
structure

helix (1) , -- any helix

sheet (2) , -- beta sheet

turn (3) } , -- beta or gamma turn
18 = non-std-residue data.value.ptrvalue = VisibleString , -- non-standard
residue here in seq
19 = het data.value.ptrvalue=CharPtr Heterogen -- cofactor, prosthetic grp,
etc, bound to seq
*
*

Page 155

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/
typedef struct seqfeat {
 Choice id;
 Choice data;
 Boolean partial ,
 except;
 CharPtr comment;
 ValNodePtr product ,
 location;
 GBQualPtr qual;
 CharPtr title;
 UserObjectPtr ext;
 ValNodePtr cit; /* citations (Pub-set) */
Uint1 exp_ev;
SeqFeatXrefPtr xref;
 struct seqfeat PNTR next;
} SeqFeat, PNTR SeqFeatPtr;
SeqFeatPtr SeqFeatNew PROTO((void));
Boolean SeqFeatAsnWrite PROTO((SeqFeatPtr anp, AsnIoPtr aip, AsnTypePtr
atp));
SeqFeatPtr SeqFeatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqFeatPtr SeqFeatFree PROTO((SeqFeatPtr anp));
 /* get a SeqFeatXref from a feature. Currently only Prot-ref and */
 /* Gene-ref are supported */
SeqFeatXrefPtr SeqFeatToXref PROTO((SeqFeatPtr sfp));
/

*
* SeqFeatId - used as parts of other things, so is not allocated itself
*

/
void SeqFeatIdFree PROTO((ChoicePtr cp)); /* does NOT free cp itself */
Boolean SeqFeatIdAsnWrite PROTO((ChoicePtr cp, AsnIoPtr aip, AsnTypePtr
orig));
Boolean SeqFeatIdAsnRead PROTO((AsnIoPtr aip, AsnTypePtr orig, ChoicePtr
cp));
 /** NOTE: SeqFeatIdAsnRead() does NOT allocate cp ***/
Boolean SeqFeatIdDup PROTO((ChoicePtr dest, ChoicePtr src));
/

*
* SeqFeatData - used as parts of other things, so is not allocated itself
*

/
void SeqFeatDataFree PROTO((ChoicePtr cp)); /* does NOT free cp itself */
Boolean SeqFeatDataAsnWrite PROTO((ChoicePtr cp, AsnIoPtr aip, AsnTypePtr
orig));
Boolean SeqFeatDataAsnRead PROTO((AsnIoPtr aip, AsnTypePtr orig, ChoicePtr

Page 156

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

cp));
 /** NOTE: SeqFeatDataAsnRead() does NOT allocate cp ***/
/

*
* SeqFeatSet - sets of seqfeats
*

/
Boolean SeqFeatSetAsnWrite PROTO((SeqFeatPtr anp, AsnIoPtr aip, AsnTypePtr
set, AsnTypePtr element));
SeqFeatPtr SeqFeatSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr set, AsnTypePtr
element));
/

*
* CodeBreak
*

/
typedef struct cb {
 SeqLocPtr loc; /* the Seq-loc */
 Choice aa; /* 1=ncbieaa, 2=ncbi8aa, 3=ncbistdaa */
 struct cb PNTR next;
} CodeBreak, PNTR CodeBreakPtr;
CodeBreakPtr CodeBreakNew PROTO((void));
Boolean CodeBreakAsnWrite PROTO((CodeBreakPtr cbp, AsnIoPtr aip, AsnTypePtr
atp));
CodeBreakPtr CodeBreakAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
CodeBreakPtr CodeBreakFree PROTO((CodeBreakPtr cbp));
/

*
* CdRegion
*

/
typedef struct cdregion {
 Boolean orf;
 Uint1 frame;
 Boolean conflict;
 Uint1 gaps, /* 255 = any number > 254 */
 mismatch,
 stops;
 ValNodePtr genetic_code; /* NULL = not set */
 CodeBreakPtr code_break;
} CdRegion, PNTR CdRegionPtr;
CdRegionPtr CdRegionNew PROTO((void));
Boolean CdRegionAsnWrite PROTO((CdRegionPtr cdp, AsnIoPtr aip, AsnTypePtr
atp));
CdRegionPtr CdRegionAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));

Page 157

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CdRegionPtr CdRegionFree PROTO((CdRegionPtr cdp));
/

*
* GeneticCode
*
* ncbieaa, ncbi8aa, ncbistdaa
* are arrays 64 cells long, where each cell gives the aa produced
* by triplets coded by T=0, C=1, A=2, G=3
* TTT = cell[0]
* TTC = cell[1]
* TTA = cell[2]
* TTG = cell[3]
* TCT = cell[4]
* ((base1 * 16) + (base2 * 4) + (base3)) = cell in table
*
* sncbieaa, sncbi8aa, sncbistdaa
*
are arrays same as above, except the AA's they code for are only for
*
the first AA of a peptide. This accomdates alternate start codes.
* If a codon is not a valid start, the cell contains the "gap" symbol
* instead of an AA.
*
* in both cases, IUPAC cannot be used because it has no symbol for
* stop.
*

*
* GeneticCode is a ValNodePtr so variable numbers of elements are
*
easily accomodated. A ValNodePtr with choice = 254 is the head
* of the list. Its elements are a chain of ValNodes beginning with
* the data.ptrvalue of the GeneticCode (head). GeneticCodeNew()
* returns the head.
*
* Types in ValNodePtr->choice are:
*
0 = not set
*
1 = name (CharPtr in ptrvalue)
*
2 = id
(in intvalue)
*
3 = ncbieaa (CharPtr in ptrvalue)
*
4 = ncbi8aa (ByteStorePtr in ptrvalue)
*
5 = ncbistdaa (ByteStorePtr in ptrvalue)
*

Page 158

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

6 = sncbieaa (CharPtr in ptrvalue)
*
7 = sncbi8aa (ByteStorePtr in ptrvalue)
*
8 = sncbistdaa (ByteStorePtr in ptrvalue)
*
255 = read unrecognized type, but passed ASN.1
*

/
typedef ValNodePtr GeneticCodePtr;
GeneticCodePtr GeneticCodeNew PROTO((void));
Boolean GeneticCodeAsnWrite PROTO((GeneticCodePtr gcp, AsnIoPtr aip,
AsnTypePtr atp));
GeneticCodePtr GeneticCodeAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
GeneticCodePtr GeneticCodeFree PROTO((GeneticCodePtr gcp));
Boolean GeneticCodeTableAsnWrite PROTO((GeneticCodePtr gcp, AsnIoPtr aip,
AsnTypePtr atp));
GeneticCodePtr GeneticCodeTableAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
GeneticCodePtr GeneticCodeFind PROTO((Int4 id, CharPtr name));
GeneticCodePtr GeneticCodeTableLoad PROTO((void));
/

*
* ImpFeat
*

/
typedef struct impfeat {
 CharPtr key,
 loc,
 descr;
} ImpFeat, PNTR ImpFeatPtr;
ImpFeatPtr ImpFeatNew PROTO((void));
Boolean ImpFeatAsnWrite PROTO((ImpFeatPtr ifp, AsnIoPtr aip, AsnTypePtr
atp));
ImpFeatPtr ImpFeatAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
ImpFeatPtr ImpFeatFree PROTO((ImpFeatPtr ifp));
/

*
* RnaRef
* Choice used for extensions
* 0 = no extension
* 1 = name, ext.value.ptrvalue = CharPtr
* 2 = trna, ext.value.ptrvalue = tRNA
*

/
typedef struct rnaref {
 Uint1 type;

Page 159

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Boolean pseudo;
 Choice ext;
} RnaRef, PNTR RnaRefPtr;
RnaRefPtr RnaRefNew PROTO((void));
Boolean RnaRefAsnWrite PROTO((RnaRefPtr rrp, AsnIoPtr aip, AsnTypePtr atp));
RnaRefPtr RnaRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
RnaRefPtr RnaRefFree PROTO((RnaRefPtr rrp));
/

*
* tRNA
*

/
typedef struct trna {
 Uint1 aatype, /* 0=not set, 1=iupacaa, 2=ncbieaa, 3=ncbi8aa 4=ncbistdaa
*/
 aa; /* the aa transferred in above code */
 Uint1 codon[6]; /* codons recognized, coded as for Genetic-code */
} tRNA, PNTR tRNAPtr; /* 0-63 = codon, 255=no data in cell */
/

*
* GeneRef
*

/
typedef struct generef {
 CharPtr locus,
 allele,
 desc,
 maploc;
 Boolean pseudo;
 ValNodePtr db; /* ids in other databases */
 ValNodePtr syn; /* synonyms for locus */
} GeneRef, PNTR GeneRefPtr;
GeneRefPtr GeneRefNew PROTO((void));
Boolean GeneRefAsnWrite PROTO((GeneRefPtr grp, AsnIoPtr aip, AsnTypePtr
atp));
GeneRefPtr GeneRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
GeneRefPtr GeneRefFree PROTO((GeneRefPtr grp));
GeneRefPtr GeneRefDup PROTO((GeneRefPtr grp));
/

*
* OrgRef
*

/
typedef struct orgref {
 CharPtr taxname,

Page 160

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 common;
 ValNodePtr mod;
 ValNodePtr db; /* ids in other databases */
 ValNodePtr syn; /* synonyms for taxname and/or common */
} OrgRef, PNTR OrgRefPtr;
OrgRefPtr OrgRefNew PROTO((void));
Boolean OrgRefAsnWrite PROTO((OrgRefPtr orp, AsnIoPtr aip, AsnTypePtr atp));
OrgRefPtr OrgRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
OrgRefPtr OrgRefFree PROTO((OrgRefPtr orp));
/

*
* ProtRef
*

/
typedef struct protref {
 ValNodePtr name;
 CharPtr desc;
 ValNodePtr ec,
 activity;
 ValNodePtr db; /* ids in other databases */
} ProtRef, PNTR ProtRefPtr;
ProtRefPtr ProtRefNew PROTO((void));
Boolean ProtRefAsnWrite PROTO((ProtRefPtr orp, AsnIoPtr aip, AsnTypePtr
atp));
ProtRefPtr ProtRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
ProtRefPtr ProtRefFree PROTO((ProtRefPtr orp));
ProtRefPtr ProtRefDup PROTO((ProtRefPtr orp));
/

*
* RsiteRef
* uses an ValNode
* choice = 1 = str
* 2 = db
*

/
typedef ValNodePtr RsiteRefPtr;
Boolean RsiteRefAsnWrite PROTO((RsiteRefPtr orp, AsnIoPtr aip, AsnTypePtr
atp));
RsiteRefPtr RsiteRefAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
RsiteRefPtr RsiteRefFree PROTO((RsiteRefPtr orp));
/

*
* Txinit
* Transcription initiation site
*

Page 161

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/
typedef struct txevidence {
 Uint1 exp_code ,
 exp_sys ;
 Boolean low_prec_data ,
 from_homolog;
 struct txevidence PNTR next;
} TxEvidence, PNTR TxEvidencePtr;
typedef struct txinit {
 CharPtr name;
 ValNodePtr syn ,
 gene ,
 protein ,
 rna ;
 CharPtr expression;
 Uint1 txsystem;
 CharPtr txdescr;
 OrgRefPtr txorg;
 Boolean mapping_precise,
 location_accurate;
 Uint1 inittype; /* 255 if not set */
 TxEvidencePtr evidence;
} Txinit, PNTR TxinitPtr;
TxinitPtr TxinitNew PROTO((void));
Boolean TxinitAsnWrite PROTO((TxinitPtr txp, AsnIoPtr aip, AsnTypePtr atp));
TxinitPtr TxinitAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
TxinitPtr TxinitFree PROTO((TxinitPtr txp));
#ifdef __cplusplus
}
#endif
#endif

Sequence Alignments
Sequence Alignments

! Introduction
! Seq-align
! Score: Score Of An Alignment Or Segment
! Dense-diag: Segments For diags Seq-align
! Std-seg: Aligning Any Bioseq Type With Any Other
! ASN.1 Specification: seqalign.asn
! C++ Implementation Notes

Introduction—A sequence alignment is a mapping of the coordinates of one Bioseq onto the
coordinates of one or more other Bioseqs. Such a mapping may be associated with a score and/
or a method for doing the alignment. An alignment can be generated algorithmically by
software or manually by a scientist. The Seq-align object is designed to capture the final result
of the process, not the process itself.

Page 162

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

A Seq-align is one of the forms of Seq-annot and is as acceptable a sequence annotation as a
feature table. Seq-aligns would normally be "packaged" in a Seq-annot for exchange with other
tools or databases so the alignments can be identified and given a title.

The most common sequence alignment is from one sequence to another with a one to one
relationship between the aligned residues of one sequence with the residues of the other (with
allowance for gaps). Two types of Seq-align types, Dense-seg and Dense-diag are specifically
for this type of alignment. The Std-seg, on the other hand, is very generic and does not assume
that the length of one aligned region is necessarily the same as the other. This permits expansion
and contraction of one Bioseq relative to another, which is necessary in the case of a physical
map Bioseq aligned to a genetic map Bioseq, or a sequence Bioseq aligned with any map
Bioseq.

All the forms of Seq-align are composed of segments. Each segment is an aligned region which
contains only sequence or only a gap for any sequence in the alignment. Below is a three
dimensional alignment with six segments:

Seq-ids
id=100AAGGCCTTTTAGAGATGATGATGATGATGA
id=200AAGGCCTaTTAG.......GATGATGATGA
id=300....CCTTTTAGAGATGATGAT....ATGA
| 1 | 2 | 3 |4| 5 | 6| Segments

Taking only two of the sequences in a two way alignment, only three segments are needed to
define the alignment:

Seq-ids
id=100AAGGCCTTTTAGAGATGATGATGATGATGA
id=200AAGGCCTaTTAG.......GATGATGATGA
| 1 | 2 | 3 | Segments

Seq-align—A Seq-align is a collection of segments representing one complete alignment.
The whole Seq-align may have a Score representing some measure of quality or attributing the
method used to build the Seq-align. In addition, each segment may have a score for that segment
alone.

type: global: A global alignment is the alignment of Bioseqs over their complete length. It
expresses the relationship between the intact Bioseqs. As such it is typically used in studies of
homology between closely related proteins or genomes where there is reason to believe they
share a common origin over their complete lengths.

The segments making up a global alignment are assumed to be connected in order from first
to last to make up the alignment, and that the full lengths of all sequences will be accounted
for in the alignment.

type: partial: A partial alignment only defines a relationship between sequences for the lengths
actually included in the alignment. No claim is made that the relationship pertains to the full
lengths of any of the sequences.

Page 163

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Like a global alignment, the segments making up a partial alignment are assumed to be
connected in order from first to last to make up the alignment. Unlike a global alignment, it is
not assumed the alignment will necessarily account for the full lengths of any or all sequences.

A partial or global alignment may use either the denseg choice of segment (for aligned Bioseqs
with one to one residue mappings, such as protein or nucleic acid sequences) or the std choice
for any Bioseqs including maps. In both cases there is an ordered relationship between one
segment and the next to make the complete alignment.

type: diags: A Seq-align of type diags means that each segment is independent of the next and
no claims are made about the reasonableness of connecting one segment to another. This is the
kind of relationship shown by a "dot matrix" display. A series of diagonal lines in a square
matrix indicate unbroken regions of similarity between the sequences. However, diagonals
may overlap multiple times, or regions of the matrix may have no diagonals at all. The diags
type of alignment captures that kind of relationship, although it is not limited to two dimensions
as a dot matrix is.

The diags type of Seq-align may use either the dendiag choice of segment (for aligned Bioseqs
with one to one residue mappings, such as protein or nucleic acid sequences) or the std choice
for any Bioseqs including maps. In both cases the SEQUENCE OF does not imply any ordered
relationship between one segment and the next. Each segment is independent of any other.

Type:disc: A discontinuous alignment is a set of alignments between two or more sequences.
The alignments in the set represent the aligned chunks, broken by unaligned regions
(represented by the implicit gaps in-between the alignments in the set).

Each chunk is a non-recursive Seq-align of type ''global'' or ''partial'' and with the same
dimension. Seq-ids in all Seq-aligns are identical (and in the same order).

Examples of usage include mRNA-to-genomic alignments representing exons or genomic-to-
genomic alignments containing unaligned regions.

dim: Dimensionality Of The Alignment: Most scientists are familiar with pairwise, or two
dimensional, sequence alignments. However, it is often useful to align sequences in more
dimensions. The dim attribute of Seq-align indicates the number of sequences which are
simultaneously aligned. A three dimensional alignment is a true three way alignment (ABC),
not three pairwise alignments (AB, AC, BC). Three pairwise alignments are three Seq-align
objects, each with dimension equal to two.

Another common situation is when many sequences are aligned to one, as is the case of a merge
of a number of components into a larger sequence, or the relationship of many mutant alleles
to the wild type sequence. This is also a collection of two dimensional alignments, where one
of the Bioseqs is common to all alignments. If the wild type Bioseq is A, and the mutants are
B, C, D, then the Seq-annot would contain three two dimensional alignments, AB, AC, AD.

The dim attribute at the level of the Seq-align is optional, while the dim attribute is required
on each segment. This is because it is convenient for a global or partial alignment to know the
dimensionality for the whole alignment. It is also an integrity check that every segment in such
a Seq-align has the same dimension. For diags however, the segments are independent of each
other, and may even have different dimensions. This would be true for algorithms that locate
the best n-way diagonals, where n can be 2 to the number of sequences. For a simple dot-matrix,
all segments would be dimension two.

Page 164

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Score: Score Of An Alignment Or Segment—A Score contains an id (of type Object-
id) which is meant to identify the method used to generate the score. It could be a string (e.g.
"BLAST raw score", "BLAST p value") or an integer for use by a software system planning
to process a number of defined values. The value of the Score is either an integer or real number.
Both Seq-align and segment types allow more than one Score so that a variety of measures for
the same alignment can be accommodated.

Dense-diag: Segments For diags Seq-align—A Seq-align of type diags represents a
series of unconnected diagonals as a SEQUENCE OF Dense-diag. Since each Dense-diag is
unrelated to the next the SEQUENCE OF just suggests a presentation order. It does not imply
anything about the reasonableness of joining one Dense-diag to the next. In fact, for a multi-
sequence comparison, each Dense-diag may have a different dimension and/or include Bioseqs
not included by another Dense-diag.

A single Dense-diag defines its dimension with dim. There should be dim number of Seq-id
in ids, indicating the Bioseqs involved in the segment, in order. There should be dim number
of integers in starts (offsets into the Bioseqs, starting with 0, as in any Seq-loc) indicating the
first (lowest numbered) residue of each Bioseq involved in the segment is, in the same order
as ids. The len indicates the length of all Bioseqs in the segment. Thus the last residue involved
in the segment for every Bioseq will be its start plus len - 1.

In the case of nucleic acids, if any or all of the segments are on the complement strand of the
original Bioseq, then there should be dim number of Na-strand in len in the same order as ids,
indicating which segments are on the plus or minus strands. The fact that a segment is on the
minus strand or not does NOT affect the values chosen for starts. It is still the lowest numbered
offset of a residue involved in the segment.

Clearly all Bioseq regions involved in a Dense-diag must have the same length, so this form
does not allow stretching of one Bioseq compared to another, as may occur when comparing
a genetic map Bioseq to a physical map or sequence Bioseq. In this case one would use Std-
seg.

Dense-seg: Segments for "global" or "partial" Seq-align—A Dense-seg is a single
entity which describes a complete global or partial alignment containing many segments. Like
Dense-diag above, it is only appropriate when there is no stretching of the Bioseq coordinates
relative to each other (as may happen when aligning a physical to a genetic map Bioseq). In
that case, one would use a SEQUENCE OF Std-seg, described below.

A Dense-seg must give the dimension of the alignment in dim and the number of segments in
the alignment in numseg. The ids slot must contain dim number of Seq-ids for the Bioseqs
used in the alignment.

The starts slot contains the lowest numbered residue contained in each segment, in ids order.
The starts slot should have numseg times dim integers, or the start of each Bioseq in the first
segment in ids order, followed by the start of each Bioseq in the second segment in ids order
and so on. A start of minus one indicates that the Bioseq is not present in the segment (i.e. a
gap in a Bioseq).

The lens slot contains the length of each segment in segment order, so lens will contain numseg
integers.

If any or all of the sequences are on the minus strand of the original Bioseq, then there should
be numseg times dim Na-strand values in len in the same order as starts. Whether a sequence

Page 165

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

segment is on the plus or minus strand has no effect on the value selected for starts. It is
always the lowest numbered residue included in the segment.

The scores is a SEQUENCE OF Score, one for each segment. So there should be numseg
Scores, if scores is filled. A single Score for the whole alignment would appear in the score
slot of the Seq-align.

The three dimensional alignment show above is repeated below, followed by its ASN.1
encoding into a Seq-align using Dense-seg. The Seq-ids are given in the ASN.1 as type "local".

Seq-ids

id=100AAGGCCTTTTAGAGATGATGATGATGATGA
id=200AAGGCCTaTTAG.......GATGATGATGA
id=300....CCTTTTAGAGATGATGAT....ATGA
| 1 | 2 | 3 |4| 5 | 6| Segments

Seq-align ::= {
type global ,
dim 3 ,
segs denseg {
dim 3 ,
numseg 6 ,
ids {
local id 100 ,
local id 200 ,
local id 300 } ,

starts { 0,0,-1, 4,4,0, 12,-1,8, 19,12,15, 22,15,-1, 26,19,18 } ,

lens { 4, 8, 7, 3, 4, 4 } } }

Std-seg: Aligning Any Bioseq Type With Any Other—A SEQUENCE OF Std-seg can
be used to describe any Seq-align type on any types of Bioseqs. A Std-seg is very purely a
collection of correlated Seq-locs. There is no requirement that the length of each Bioseq in a
segment be the same as the other members of the segment or that the same Seq-loc type be
used for each member of the segment. This allows stretching of one Bioseq relative to the other
(s) and potentially very complex descriptions of relationships between sequences.

Each Std-seg must give its dimension, so it can be used for diags. Optionally it can give the
Seq-ids for the Bioseqs used in the segment (again a convenience for Seq-align of type diags).
The loc slot gives the locations on the Bioseqs used in this segment. As usual, there is also a
place for various Score(s) associated with the segment. The example given above is presented
again, this time as a Seq-align using Std-segs. Note the use of Seq-loc type "empty" to indicate
a gap. Alternatively one could simply change the dim for each segment to exclude the Bioseqs
not present in the segment, although this would require more interpretation by software.

Seq-ids

Page 166

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

id=100AAGGCCTTTTAGAGATGATGATGATGATGA
id=200AAGGCCTaTTAG.......GATGATGATGA
id=300....CCTTTTAGAGATGATGAT....ATGA
| 1 | 2 | 3 |4| 5 | 6| Segments

Seq-align ::= {
type global ,
dim 3 ,
segs std {
{
dim 3 ,
loc {
int {
id local id 100 ,
from 0 ,
to 3 } ,
int {
id local id 200 ,
from 0 ,
to 3 } ,
empty local id 300 } ,
{
dim 3 ,
loc {
int {
id local id 100 ,
from 4 ,
to 11 } ,
int {
id local id 200 ,
from 4 ,
to 11 } ,
int {
id local id 300 ,
from 0 ,
to 7 } } ,
{
dim 3 ,
loc {
int {
id local id 100 ,
from 12 ,
to 18 } ,
empty local id 200 ,
int {
id local id 300 ,
from 8 ,

to 14 } } ,

{

Page 167

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

dim 3 ,

loc {
int {
id local id 100 ,
from 19 ,
to 21 } ,
int {
id local id 200 ,
from 12 ,
to 14 } ,
int {
id local id 300 ,
from 15 ,
to 17 } } ,
{
dim 3 ,
loc {
int {
id local id 100 ,
from 22 ,
to 25 } ,
int {
id local id 200 ,
from 15 ,
to 18 } ,
empty local id 300 } ,
{
dim 3 ,
loc {
int {
id local id 100 ,
from 26 ,
to 29 } ,
int {
id local id 200 ,
from 19 ,
to 22 } ,
int {
id local id 300 ,
from 18 ,

to 21 } } } }

Clearly the Std-seg method should only be used when its flexibility is required. Nonetheless,
there is no ready substitute for Std-seg when flexibility is demanded.

Page 168

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ASN.1 Specification: seqalign.asn

--$Revision$

--**
--
-- NCBI Sequence Alignment elements
-- by James Ostell, 1990
--
--**
NCBI-Seqalign DEFINITIONS ::=
BEGIN
EXPORTS Seq-align, Score, Score-set, Seq-align-set;
IMPORTS Seq-id, Seq-loc , Na-strand FROM NCBI-Seqloc
 User-object, Object-id FROM NCBI-General;
--*** Sequence Alignment ********************************

Seq-align-set ::= SET OF Seq-align
Seq-align ::= SEQUENCE {
 type ENUMERATED {
 not-set (0) ,
 global (1) ,
 diags (2) , -- unbroken, but not ordered, diagonals
 partial (3) , -- mapping pieces together
 disc (4) , -- discontinuous alignment
 other (255) } ,
 dim INTEGER OPTIONAL , -- dimensionality
 score SET OF Score OPTIONAL , -- for whole alignment
 segs CHOICE { -- alignment data
 dendiag SEQUENCE OF Dense-diag ,
 denseg Dense-seg ,
 std SEQUENCE OF Std-seg ,
 packed Packed-seg ,
 disc Seq-align-set,
 spliced Spliced-seg,
 sparse Sparse-seg
 } ,

 -- regions of sequence over which align
 -- was computed
 bounds SET OF Seq-loc OPTIONAL,

 -- alignment id
 id SEQUENCE OF Object-id OPTIONAL,

 --extra info
 ext SEQUENCE OF User-object OPTIONAL
}

Dense-diag ::= SEQUENCE { -- for (multiway) diagonals
 dim INTEGER DEFAULT 2 , -- dimensionality

Page 169

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 ids SEQUENCE OF Seq-id , -- sequences in order
 starts SEQUENCE OF INTEGER , -- start OFFSETS in ids order
 len INTEGER , -- len of aligned segments
 strands SEQUENCE OF Na-strand OPTIONAL ,
 scores SET OF Score OPTIONAL }

 -- Dense-seg: the densist packing for sequence alignments
 -- only. A start of -1 indicates a gap for that
 -- sequence of length lens.
 --
 -- id=100 AAGGCCTTTTAGAGATGATGATGATGATGA
 -- id=200 AAGGCCTTTTAG.......GATGATGATGA
 -- id=300 CCTTTTAGAGATGATGAT....ATGA
 --
 -- dim = 3, numseg = 6, ids = { 100, 200, 300 }
 -- starts = { 0,0,-1, 4,4,0, 12,-1,8, 19,12,15, 22,15,-1,
 -- 26,19,18 }
 -- lens = { 4, 8, 7, 3, 4, 4 }
 --

Dense-seg ::= SEQUENCE { -- for (multiway) global or
 -- partial alignments
 dim INTEGER DEFAULT 2 , -- dimensionality
 numseg INTEGER , -- number of segments here
 ids SEQUENCE OF Seq-id , -- sequences in order
 starts SEQUENCE OF INTEGER , -- start OFFSETS in ids order
 -- within segs
 lens SEQUENCE OF INTEGER , -- lengths in ids order within
 -- segs
 strands SEQUENCE OF Na-strand OPTIONAL ,
 scores SEQUENCE OF Score OPTIONAL } -- score for each seg
Packed-seg ::= SEQUENCE { -- for (multiway) global or
 -- partial alignments
 dim INTEGER DEFAULT 2 , -- dimensionality
 numseg INTEGER , -- number of segments here
 ids SEQUENCE OF Seq-id , -- sequences in order
 starts SEQUENCE OF INTEGER , -- start OFFSETS in ids order
 -- for whole alignment
 present OCTET STRING , -- Boolean if each sequence
 -- present or absent in each
 -- segment
 lens SEQUENCE OF INTEGER , -- length of each segment
 strands SEQUENCE OF Na-strand OPTIONAL ,
 scores SEQUENCE OF Score OPTIONAL } -- score for each
 -- segment
Std-seg ::= SEQUENCE {
 dim INTEGER DEFAULT 2 , -- dimensionality
 ids SEQUENCE OF Seq-id OPTIONAL ,
 loc SEQUENCE OF Seq-loc ,
 scores SET OF Score OPTIONAL }

Page 170

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Spliced-seg ::= SEQUENCE {
 -- product is either protein or transcript (cDNA)
 product-id Seq-id OPTIONAL,
 genomic-id Seq-id OPTIONAL,

 -- should be 'plus' or 'minus'
 product-strand Na-strand OPTIONAL ,
 genomic-strand Na-strand OPTIONAL ,

 product-type ENUMERATED {
 transcript(0),
 protein(1)
 },

 -- set of segments involved
 -- each segment corresponds to one exon
 -- exons are always in biological order
 exons SEQUENCE OF Spliced-exon ,

 -- optional poly(A) tail
 poly-a INTEGER OPTIONAL,

 -- length of the product, in bases/residues
 -- from this, a 3' unaligned length can be extracted;
 -- this also captures
 -- the case in which a protein aligns leaving a partial
 -- codon alignment
 -- at the 3' end
 product-length INTEGER OPTIONAL,

 -- alignment descriptors / modifiers
 -- this provides us a set for extension
 modifiers SET OF Spliced-seg-modifier OPTIONAL
}

Spliced-seg-modifier ::= CHOICE {
 -- protein aligns from the start and the first codon
 -- on both product and genomic is start codon
 start-codon-found BOOLEAN,

 -- protein aligns to its end and there is stop codon
 -- on the genomic right after the alignment
 stop-codon-found BOOLEAN
}

-- complete or partial exon
-- two consecutive Spliced-exons may belong to one exon
Spliced-exon ::= SEQUENCE {
 -- product-end >= product-start
 product-start Product-pos ,
 product-end Product-pos ,

Page 171

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 -- genomic-end >= genomic-start
 genomic-start INTEGER ,
 genomic-end INTEGER ,

 -- product is either protein or transcript (cDNA)
 product-id Seq-id OPTIONAL ,
 genomic-id Seq-id OPTIONAL ,

 -- should be 'plus' or 'minus'
 product-strand Na-strand OPTIONAL ,

 -- genomic-strand represents the strand of translation
 genomic-strand Na-strand OPTIONAL ,

 -- basic seqments always are in biologic order

 parts SEQUENCE OF Spliced-exon-chunk OPTIONAL ,

 -- scores for this exon
 scores Score-set OPTIONAL ,

 -- splice sites
 splice-5-prime Splice-site OPTIONAL,
 splice-3-prime Splice-site OPTIONAL,

 -- flag: is this exon complete or partial?
 partial BOOLEAN OPTIONAL,
 --extra info
 ext SEQUENCE OF User-object OPTIONAL
}

Product-pos ::= CHOICE {
 nucpos INTEGER,
 protpos Prot-pos
}

-- codon based position on protein (1/3 of aminoacid)
Prot-pos ::= SEQUENCE {
 -- standard protein position
 amin INTEGER ,

 -- 0, 1, 2, or 3 as for Cdregion
 -- 0 = not set
 -- 1, 2, 3 = actual frame
 frame INTEGER DEFAULT 0
}

-- Spliced-exon-chunk: piece of an exon
-- lengths are given in nucleotide bases (1/3 of aminoacid
-- when product is a protein)

Page 172

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Spliced-exon-chunk ::= CHOICE {
 -- both sequences represented, product and genomic
 -- sequences match
 match INTEGER ,

 -- both sequences represented, product and genomic
 -- sequences do not match
 mismatch INTEGER ,

 -- both sequences are represented, there is sufficient
 -- similarity between product and genomic sequences.
 -- Can be used to replace stretches
 -- of matches and mismatches, mostly for protein to
 -- genomic where definition of match or mismatch
 -- depends on translation table
 diag INTEGER ,

 -- insertion in product sequence (i.e. gap in the genomic
 -- sequence)
 product-ins INTEGER ,

 -- insertion in genomic sequence (i.e. gap in the product
 -- sequence)
 genomic-ins INTEGER
}

-- site involved in splice
Splice-site ::= SEQUENCE {
 -- typically two bases in the intronic region, always
 -- in IUPAC format
 bases VisibleString
}

-- ==
--

-- Sparse-seg follows the semantics of dense-seg and is more
 optimal for
-- representing sparse multiple alignments
--
-- ==
Sparse-seg ::= SEQUENCE {
 master-id Seq-id OPTIONAL,

 -- pairwise alignments constituting this multiple alignment
 rows SET OF Sparse-align,

 -- per-row scores
 row-scores SET OF Score OPTIONAL,

 -- index of extra items

Page 173

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 ext SET OF Sparse-seg-ext OPTIONAL
}

Sparse-align ::= SEQUENCE {
 first-id Seq-id,
 second-id Seq-id,

 numseg INTEGER, -- number of segments

 first-starts SEQUENCE OF INTEGER , -- starts on the first
 -- sequence [numseg]
 second-starts SEQUENCE OF INTEGER , -- starts on the second
 -- sequence [numseg]
 lens SEQUENCE OF INTEGER , -- lengths of segments
 -- [numseg]
 second-strands SEQUENCE OF Na-strand OPTIONAL ,

 -- per-segment scores
 seg-scores SET OF Score OPTIONAL
}

Sparse-seg-ext ::= SEQUENCE {
 --seg-ext SET OF {
 -- index INTEGER,
 -- data User-field
 -- }
 index INTEGER
}

-- use of Score is discouraged for external ASN.1 specifications
Score ::= SEQUENCE {
 id Object-id OPTIONAL ,
 value CHOICE {
 real REAL ,
 int INTEGER
 }
}

-- use of Score-set is encouraged for external ASN.1 specifications
Score-set ::= SET OF Score

END

C++ Implementation Notes—The C++ Toolkit adds several methods to the classes
generated from ASN.1 specifications to simplify alignment data access and manipulation. The
CSeq_align class has methods returning Seq-id, start, stop, and strand for a particular alignment
row, regardless of its representation; it allows swapping alignment rows or converting the
alignment from one type to another. The CDense_seg class extends the default set of alignment
members with sequence character width (1 or 3, depending on molecule type).

Page 174

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDense_seg
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_align

Sequence Graphs
The Sequence Graphs section describes Seq-graph type used to associate some analytical data
with a region on a Bioseq. The type definition is located in the seqres.asn module.
! Introduction
! Seq-graph: Graph on a Bioseq
! ASN.1 Specification: seqres.asn
! C Structures and Functions: objres.h

Introduction
Analytical tools can attach results to Bioseqs in named collections as Seq-annots. This allows
analytical programs developed from various sources to add information to a standard object
(the Bioseq) and then let a single program designed for displaying a Bioseq and its associated
information show the analytical results in an integrated fashion. Feature tables have been
discussed previously, and can serve as the vehicle for results from restriction mapping
programs, motif searching programs, open reading frame locators, and so on. Alignment
programs and curator tools can produce Seq-annots containing Seq-aligns. In this chapter we
present the third annotation type, a graph, which can be used to show properties like G+C
content, surface potential, hydrophobicity, and so on.

Seq-graph: Graph on a Bioseq
A Seq-graph defines some continuous set of values over a defined interval on a Bioseq. It has
slots for a title and a comment. The "loc" field defines the region of the Bioseq to which the
graph applies. Titles can be given for the X (graph value) axis and/or the Y (sequence axis) of
the graph. The "comp" slot allows a compression to supplied (i.e. how many residues are
represented by a single value of the graph?). Compression is assumed to be one otherwise.
Scaling values, a and b can be used to scale the values given in the Seq-graph to those displayed
on the graph (by the formula "display value" = (a times "graph value") plus b). Finally, the
number of values in the graph must be given (and should agree with the length of "loc" divided
by "comp").

The graphs themselves can be coded as byte, integer, or real values. Each type defines the
maximum and minimum values to show on the graph (no given values need necessarily reach
the maximum or minimum) and the value along which to draw the X axis of the graph.

ASN.1 Specification: seqres.asn

--$Revision: 2.0 $
--**
--
-- NCBI Sequence Analysis Results (other than alignments)
-- by James Ostell, 1990
--
--**
NCBI-Seqres DEFINITIONS ::=
BEGIN
EXPORTS Seq-graph;
IMPORTS Seq-loc FROM NCBI-Seqloc;
--*** Sequence Graph ********************************
--*

Page 175

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seqres/seqres.asn
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQRES.HTML#Seq-graph:%2520Graph%2520on%2520a%2520Bioseq

--* for values mapped by residue or range to sequence
--*
Seq-graph ::= SEQUENCE {
 title VisibleString OPTIONAL ,
 comment VisibleString OPTIONAL ,
 loc Seq-loc , -- region this applies to
 title-x VisibleString OPTIONAL , -- title for x-axis
 title-y VisibleString OPTIONAL ,
 comp INTEGER OPTIONAL , -- compression (residues/value)
a REAL OPTIONAL , -- for scaling values
b REAL OPTIONAL , -- display = (a x value) + b
 numval INTEGER , -- number of values in graph
 graph CHOICE {
 real Real-graph ,
 int Int-graph ,
 byte Byte-graph } }
Real-graph ::= SEQUENCE {
 max REAL , -- top of graph
 min REAL , -- bottom of graph
 axis REAL , -- value to draw axis on
 values SEQUENCE OF REAL }
Int-graph ::= SEQUENCE {
 max INTEGER ,
 min INTEGER ,
 axis INTEGER ,
 values SEQUENCE OF INTEGER }
Byte-graph ::= SEQUENCE { -- integer from 0-255
 max INTEGER ,
 min INTEGER ,
 axis INTEGER ,
 values OCTET STRING }
END

C Structures and Functions: objres.h

/* objres.h
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that

Page 176

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* File Name: objres.h
*
* Author: James Ostell
*
* Version Creation Date: 4/1/91
*
* $Revision: 2.0 $
*
* File Description: Object manager interface for module NCBI-Seqres
*
* Modifications:
* --
* Date
 Name Description of modification
* ------- ---------- ---
*
*
* ==
*/
#ifndef _NCBI_Seqres_
#define _NCBI_Seqres_
#ifndef _ASNTOOL_
#include <asn.h>
#endif
#ifndef _NCBI_Seqloc_
#include <objloc.h>
#endif
#ifdef __cplusplus
extern "C" {
#endif
/

*
* loader
*

/
extern Boolean SeqResAsnLoad PROTO((void));
/

*
* internal structures for NCBI-SeqRes objects

Page 177

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

*

/
/

*
* SeqGraph
*

/
typedef struct seqgraph {
 CharPtr title,
 comment;
 SeqLocPtr loc; /* SeqLoc */
 CharPtr titlex,
 titley;
 Uint1 flags[3]; /* [0]-comp used?,[1]-a,b used?, [2] graphtype */
 Int4 compl; /* 1=real, 2=int, 3=byte */
 FloatHi a, b;
 Int4 numval;
 DataVal max,
 min,
 axis;
 Pointer values; /* real=array of FloatHi, int=array of Int4, */
 struct seqgraph PNTR next; /* byte = ByteStore */
} SeqGraph, PNTR SeqGraphPtr;
SeqGraphPtr SeqGraphNew PROTO((void));
Boolean SeqGraphAsnWrite PROTO((SeqGraphPtr sgp, AsnIoPtr aip, AsnTypePtr
atp));
SeqGraphPtr SeqGraphAsnRead PROTO((AsnIoPtr aip, AsnTypePtr atp));
SeqGraphPtr SeqGraphFree PROTO((SeqGraphPtr sgp));
/

*
* SeqGraphSet
*

/
Boolean SeqGraphSetAsnWrite PROTO((SeqGraphPtr sgp, AsnIoPtr aip, AsnTypePtr
set, AsnTypePtr element));
SeqGraphPtr SeqGraphSetAsnRead PROTO((AsnIoPtr aip, AsnTypePtr set,
AsnTypePtr element));
#ifdef __cplusplus
}
#endif
#endif

Page 178

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Biological Object Manager
[15]

Overview

Introduction

The Object Manager[Library xobjmgr: include | src]

The Object Manager is a library, working in conjunction with the serializable object classes (see
above) to facilitate access to biological sequence data. The Object Manager has been designed to
coordinate the use of these objects, particularly the management of the details of loading data
from one or more potentially heterogeneous data sources. The goal is to present a consistent,
flexible interface to users that minimizes their exposure to the details of interacting with biological
databases and their underlying data structures.

Most of the major classes in this library have a short definition in addition to the descriptions and
links below. Handles are the primary mechanism through which users access data; details of the
retrieval are managed transparently by the Object Manager.

See the usage page to begin working with the Object Manager. An example and sample project
have been created to further assist new users and serve as a template for new projects. We have
also compiled a list of common problems encountered when using the Object Manager.

Object Manager [include/objmgr | src/objmgr]
i Top-Level Object Manager Classes

! CObjectManager Class: Manage Serializable Data Objects object_manager
[.hpp | .cpp]

! Scope Definition for Bio-Sequence Data scope[.hpp | .cpp]
! Data loader Base Class data_loader[.hpp | .cpp]

ii Handles
! Seq_id Handle (now located outside of the Object Manager) seq_id_handle

[.hpp | .cpp]
! Bioseq handle bioseq_handle[.hpp | .cpp]
! Bioseq-set handle bioseq_set_handle[.hpp | .cpp]
! Seq-entry handle seq_entry_handle[.hpp | .cpp]
! Seq-annot handle seq_annot_handle[.hpp | .cpp]
! Seq-feat handle seq_feat_handle[.hpp | .cpp]
! Seq-align handle seq_align_handle[.hpp | .cpp]
! Seq-graph handle seq_graph_handle[.hpp | .cpp]

iii Accessing Sequence Data
! Sequence Map seq_map[.hpp | .cpp]
! Representation of/Random Access to the Letters of a Bioseq seq_vector[.hpp

| .cpp]
iv Iterators

! Tree structure iterators

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_vector.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/object_manager.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/object_manager.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/scope.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/scope.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/data_loader.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/data_loader.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objects/seq/seq_id_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objects/seq/seq_id_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/bioseq_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/bioseq_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/bioseq_set_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/bioseq_set_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_entry_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_entry_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_annot_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_annot_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_feat_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_feat_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_align_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_align_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_graph_handle.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_graph_handle.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_map.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_map.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_vector.hpp

! Bioseq iterator bioseq_ci[.hpp | .cpp]
! Seq-entry iterator seq_entry_ci[.hpp | .cpp]

" Descriptor iterators
! Seq-descr iterator seq_descr_ci[.hpp | .cpp]
! Seqdesc iterator seqdesc_ci[.hpp | .cpp]

" Annotation iterators
! Seq-annot iterator seq_annot_ci[.hpp | .cpp]
! Annotation iterator annot_ci[.hpp | .cpp]
! Feature iterator feat_ci[.hpp | .cpp]
! Alignment iterator align_ci[.hpp | .cpp]
! Graph iterator graph_ci[.hpp | .cpp]

" Seq-map iterator seq_map_ci[.hpp | .cpp]
" Seq-vector iterator seq_vector_ci[.hpp | .cpp]

Demo Cases
" Simple Object Manager usage example [src/sample/app/objmgr/objmgr_sample.cpp]
" More complicated demo application [src/app/objmgr/demo/objmgr_demo.cpp]

Test Cases [src/objmgr/test]

Object Manager Utilities [include/objmgr/util | src/objmgr/util]

Chapter Outline

The following is an outline of the topics presented in this chapter:
" Preface
" Requirements
" Use cases
" Classes

! Definition
! Attributes and operations

" Request history and conflict resolution
" GenBank data loader configuration
" Configuring NetCached to cache GenBank data
" Usage

! How to use it
! Generic code example

" Educational exercises
! Framework setup
! Tasks description
! Common problems

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/objmgr/objmgr_sample.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/bioseq_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/bioseq_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_entry_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_entry_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_descr_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_descr_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seqdesc_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seqdesc_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_annot_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_annot_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/annot_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/annot_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/feat_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/feat_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/align_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/align_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/graph_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/graph_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_map_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_map_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/seq_vector_ci.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/seq_vector_ci.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/objmgr/objmgr_sample.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/objmgr/demo/objmgr_demo.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/test
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objmgr/util
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/objmgr/util

Preface
Molecular biology is generating a vast multitude of data referring to our understanding of the
processes which underlie all living things. This data is being accumulated and analyzed in
thousands of laboratories all over the world. Its raw volume is growing at an astonishing rate.

In these circumstances the problem of storing, searching, retrieving and exchanging molecular
biology data cannot be underestimated. NCBI maintains several databases for storing
biomedical information. While the amount of information stored in these databases grows at
an exponential rate, it becomes more and more important to optimize, improve the data retrieval
software tools. Object Manager is one of such tools specifically designed to facilitate data
retrieval.

The NCBI databases and software tools are designed around a particular model of biological
sequence data. The nature of this data is not yet fully understood, its fundamental properties
and relationships are constantly being revised. So, the data model must be very flexible. NCBI
uses Abstract Syntax Notation One (ASN.1) as a formal language to describe biological
sequence data and its associated information.

Requirements
Client must be able to analyze biological sequence data, which come from multiple
heterogeneous data sources. As for 'standard' databases, we mean only NCBI GenBank.
'Nonstandard' data source may include but are not limited to reading data from file or
constructing bio sequence 'manually'.

The purpose of biologist could be to investigate different combinations of data pieces. The
system should provide for transparent merge of different pieces of data, as well as various
combinations of it. Important thing to note is that such combinations may be incorrect or
ambiguous. It is one of the possible goals of client to discover such ambiguity.

The bio sequence data may be huge. Querying this vast amount of data from a remote database
may impose severe requirements on communication lines and computer resources - both client
and server. The system should provide for partial data acquisition. In other words, the system
should only transmit data that is really needed, not all of it at once. At the same time this
technology should not impose additional (or too much) restrictions on a client system. The
process, from a client point of view, should be as transparent as possible. When and if client
needs more information, it should be retrieved 'automatically'.

Different biological sequences can refer to each other. One example of such reference may be
in the form 'the sequence of amino acids here is the same as sequence of amino acids there' (what
is the meaning of here and there is a separate question). The data retrieval system should be
able to resolve such references automatically answering what amino acids (or nucleic acids)
are actually here. At the same time, at client request, such automatic resolution may be turned
off. Probably, the client's purpose is to investigate such references.

Biological sequences are identified by Seq-id, which may have different forms. Information
about specific sequence stored in the database can be modified at any time. Sometimes, if
changes are minor, this only results in creating a new submission of existing bio sequence and
assigning a new revision number to it. In case of more substantial changes new version number
can be assigned. The data change, still, from client point of view the system should provide
consistency. Possible scenarios include:
! Database changes during client's session. Client starts working and retrieves some data

from the database, the data in database then change. When client then asks for an

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML
http://www.ncbi.nlm.nih.gov
http://asn1.elibel.tm.fr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML

additional data, the system should retrieve original bio sequence submission data, not
the most recent one.

! Database changes between client's sessions. Client retrieves some data and ends work
session. Next time the most recent submission data is retrieved, unless the client asks
for a specific version number.

The system must support multithreading. It should be possible to work with bio sequence data
from multiple threads.

Use cases
Biological sequence data and its associated information are described in NCBI data model
using Abstract Syntax Notation One (ASN.1). There is a tool which, based on this
specifications, generates corresponding data objects. Object Manager manipulates these
objects, so they are referenced in this document without further explanations.

The most general container object of bio sequence data, as defined in NCBI data model, is
Seq-entry. In general, Seq-entry is defined recursively as a tree of Seq-entries (one entry refers
to another one etc), where each node contains either Bioseq or list of other Seq-entries plus
some additional data like sequence description, sequence annotations etc. Naturally, in any
such tree there is only one top-level Seq-entry (TSE).

Client must be able to define a scope of visibility and reference resolution. Such scope is defined
by the sources of data - the system uses only 'allowed' sources to look for data. Such scopes
may, for instance, contain several variants of the same bio sequence (Seq-entry). Since
sequences refer to each other, the scopes practically always intersect. In this case changing
some data in one scope should be somehow reflected in all other scopes, which 'look' at the
same data - there is a need in some sort of communication between scopes.

A scope may contain multiple top-level Seq-entries and multiple sources of data.

Once a scope is created, a client should be able to
! Add externally created top-level Seq-entry to it;
! Add data loader to it. Data loader is a link between out-of-process source of bio

sequence data and the scope; it loads data when and if necessary;
! Edit objects retrieved from the scope. Data fetched from external sources through

loaders can not be modified directly. Instead of this an object may be detached from
its original source and the new copy provided for editing. Editing includes:
" moving existing data from one object to another;
" adding new data to an object;
" removing data from an object.

Once the scope is populated with data, a client should be able to
! Find Bioseq with a given Seq_id, loading the Seq-entry if necessary;
! Find top-level Seq-entry for a sequence with a given Seq_id;
! Retrieve general information about the sequence (type, length etc., without fetching

sequence data) by Seq_id;
! Obtain sequence data - actual sequence data (by Seq_id) in a specified encoding;
! Enumerate sequence descriptions and sequence annotation data, namely: features,

graphs and alignments. The annotation iterators may be fine-tuned to restrict
annotation types, locations, depth of search etc.

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML
http://asn1.elibel.tm.fr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML

Multithreading. There are two scenarios one may think of:
! Several threads work with the same scope simultaneously. The scope is given to them

from the outside, so this external controller is responsible for waiting for thread
termination and deleting the scope.

! Different threads create their own scopes to work with the same data source. That is,
the data source is shared resource.

Classes
Definition

Here we define Object Manager's key classes and their behavior:
! Object manager
! Scope
! Data loader
! Data source
! Handles
! Seq-map
! Seq-vector
! Iterators

Object manager—Object manager manages data objects, provides them to Scopes when
needed. It knows all existing Data sources and Data loaders. When a Scope needs one, it
receives a data object from the Object Manager. This enables sharing and reusing of all relevant
data between different Scopes. Another function of the Object Manager is letting Scopes know
each other, letting Scopes to communicate. This is a barely visible entity.

Scope—Scope is a top-level object available to a client. Its purpose is to define a scope of
visibility and reference resolution and provide access to the bio sequence data.

Data loader—Data loader is a link between in-process data storage and remote, out-of process
data source. Its purpose is to communicate with a remote data source, receive data from there,
and understand what is already received and what is missing, and pass data to the local storage
(Data source). Data loader maintains its own index of what data is loaded already and references
that data in the Data source.

Data source—Data source stores bio sequence data locally. Scope communicates with this
object to obtain any sequence data. Data source creates and maintains internal indices to
facilitate information search. Data source may contain data of several top-level Seq-entries. In
case client pushes an externally constructed Seq-entry object in the Scope, such object is stored
in a separate Data source. In this case, Data source has only one top-level Seq-entry. From the
other side, when Data source is linked to a Data loader, it will contain all top-level Seq-entries
retrieved by that loader.

Handles—Most objects received from the Object Manager are accessed through handles. One
of the most important of them is Bioseq handle, a proxy for CBioseq. Its purpose is to facilitate
access to Bioseq data. When client wants to access particular biological sequence, it requests
a Bioseq handle from the Scope. Another important class is Seq-id handle which is used in
many places to optimize data indexing. Other handles used in the Object Manager are:
! Bioseq-set handle

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQSET.HTML

! Seq-entry handle
! Seq-annot handle
! Seq-feat handle
! Seq-align handle
! Seq-graph handle

Most handles have two versions: simple read-only handle and edit handle, which may be used
to modify the data.

Seq-map—Seq-map contains general information about the sequence structure: location of
data, references gaps etc.

Seq-vector—Seq-vector provides sequence data in the selected coding.

Iterators—Many objects in the Object Manager can be enumerated using iterators. Some of
the iterators behave like usual container iterators (e.g. Seq-vector iterator), others have more
complicated behavior depending on different arguments and flags.

Description iterators traverse bio sequence descriptions (Seq-descr and Seqdesc) in the Seq-
entry. They start with the description(s) of the requested Bioseq or Seq-entry and then retrieve
all descriptions iterating through the tree nodes up to the top-level Seq-entry. Starting Bioseq
is defined by a Bioseq handle. Descriptions do not contain information about what Bioseq they
describe, so the only way to figure it out is by description location on the tree.

Annotation iterators are utility classes for traversing sequence annotation data. Each
annotation contains a reference to one or more regions on one or more sequences (Bioseq).
From one point of view this is good, because we can always say which sequences are related
to the given annotation. On the other hand, this creates many problems, since an annotation
referencing a sequence may be stored in another sequence/Seq-entry/tree. The annotation
iterators attempt to find all objects related to the given location in all Data sources from the
current Scope. Data sources create indexes for all annotations by their locations. Another useful
feature of the annotation iterators is location mapping: for segmented sequences the iterators
can collect annotations defined on segments and adjust their locations to point to the master
sequence.

There are several annotation iterator classes; some specialized for particular annotation types:
! Seq-annot iterator - traverses Seq-annot objects starting from a given Seq-entry/Bioseq

up to the top-level Seq-entry (The same way as Descriptor iterators do) or down to
each leaf seq-entry. (Seq-annot);

! Annot iterator -traverses Seq-annot objects (Seq-annot) rather than individual
annotations;

! Feature iterator - traverses sequence features (Seq-feat);
! Alignment iterator - traverses sequence alignments descriptions (Seq-align).
! Graph iterator - traverses sequence graphs (Seq-graph);

Tree iterators include Bioseq iterator and Seq-entry iterator, which may be used to visit leafs
and nodes of a Seq-entry tree.

Seq-map iterator iterates over parts of a bioseq. It is used mostly with segmented sequences to
enumerate their segments and check their type without fetching complete sequence data.

Seq-vector iterator is used to access individual sequence characters in a selected coding.

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQRES.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/BIOSEQ.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQFEAT.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQALIGN.HTML

Attributes and Operations
! Object manager
! Scope
! Data loader
! Handles:

" Bioseq handle
" Bioseq-set handle
" Seq-entry handle
" Seq-annot handle
" Seq-feat handle
" Seq-align handle
" Seq-graph handle

! Seq-map
! Seq-vector
! Iterators:

" Bioseq iterator
" Seq-entry iterator
" Seq-descr iterator
" Seqdesc iterator
" Seq-annot iterator
" Annot iterator
" Feature iterator
" Alignment iterator
" Graph iterator
" Seq-map iterator
" Seq-vector iterator

Object manager—Before being able to use any Scopes, a client must create and initialize
Object Manager (CObjectManager). Initialization functions include registration of Data
loaders, some of which may be declared as default ones. All default Data loaders are added to
a Scope when the latter asks for them. All Data loaders are named, so Scopes may refer to them
by name. Another kind of data object is CSeq_entry - it does not require any data loader, but
also may be registered with the Object Manager. Seq-entry may not be a default data object.

CObjectManager is a singleton, which means at any moment you may have only one instance
of the class using static method CObjectManager::GetInstance(void). The method returns
CRef<CObjectManager> and this CRef<> should not be released until you finish using the
Object Manager. Otherwise the Object Manager may be deleted and next call to GetInstance
will return a new object.

Most other CObjectManager methods are used to manage Data loaders.

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_entry
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CObjectManager

Object methods

! static CRef<CObjectManager> GetInstance(void) - returns the existing object
manager or creates one. The returned CRef should be kept alive while the object
manager is used.

! RegisterDataLoader - creates and registers data loader specified by driver name
using plugin manager.

! FindDataLoader - finds data loader by its name. Returns pointer to the loader or
null if no loader was found.

! GetRegisteredNames - fills vector of strings with the names of all registered data
loaders.

! void SetLoaderOptions - allows to modify options (default flag and priority) of a
registered data loader.

! bool RevokeDataLoader - revokes a registered data loader by pointer or name.
Returns false if the loader is still in use. Throws exception if the loader is not
registered.

Scope—Scope (CScope) is designed to be a lightweight object, which could be easily created
and destroyed. Scope may even be created on the stack - as an automatic object. Scope is
populated with data by adding data loaders or already created Seq-entries to it. Data loaders
can only be added by name, which means it must be registered with the Object Manager
beforehand. Once an externally created Seq-entry is added to a Scope, it should not be modified
any more.

The main task of a scope is to cache resolved data references. Any resolved data chunk will
be locked by the scope through which it was fetched. For this reason retrieving a lot of unrelated
data through the same scope may consume a lot of memory. To clean scope's cache and release
the memory you can use ResetHistory or just destroy the scope and create a new one. When a
scope is destroyed or cleaned any handles retrieved from the scope become invalid.

Object methods

! AddDefaults - adds all loaders registered as default in the object manager.
! AddDataLoader - adds a data loader to the scope using the loader's name.
! AddScope - adds all loaders attached to another scope.
! AddTopLevelSeqEntry - adds a TSE to the scope. If the TSE has been already added

to some scope, the data and indices will be re-used.
! AddBioseq - adds a bioseq object wrapping it to a new Seq-entry.
! AddSeq_annot - adds a Seq-annot object to the scope.
! GetBioseqHandle - returns a bioseq handle for the requested bioseq. There are

several versions of this function accepting different arguments. A bioseqs can be
found by its seq-id, seq-id handle or seq-loc. There are special flags which control
data loading while resolving a bioseq (e.g. you may want to check if a bioseq has
been already loaded by any scope or resolved in this particular scope).

! GetBioseqHandleFromTSE - allows to get a bioseq handle restricting the search to
a single top-level Seq-entry.

! GetSynonyms - returns a set of synonyms for a given bioseq. Synonyms returned
by a scope may differ from the Seq-id set stored in Bioseq object. The returned set

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CScope

includes all ids which are resolved to the bioseq in this scope. An id may be hidden
if it has been resolved to another bioseq. Several modifications of the same id may
appear as synonyms (e.g. accession.version and accession-only may be synonyms).

! GetAllTSEs - fills a vector of Seq-entry handles with all resolved TSEs.
! GetIds - fetches complete list of IDs for a given seq-id without fetching the bioseq

(if supported by loader).

Data loader—The Data loader base class (CDataLoader) is almost never used by a client
application directly. The specific data loaders (like GenBank data loader) have several static
methods which should be used to register loaders in the Object Manager. Each of
RegisterInObjectManager methods constructs a loader name depending on the arguments,
checks if a loader with this name is already registered, creates and registers the loader if
necessary. GetLoaderNameFromArgs methods may be used to get a potential loader's name
from a set of arguments. RegisterInObjectManager returns a simple structure with two
methods: IsCreated, indicating if the loader was just created or a registered loader with the
same name was found, and GetLoader, returning pointer to the loader. The pointer may be null
if the RegisterInObjectManager function fails or if the type of the already registered loader can
not be casted to the type requested.

Bioseq handle—When a client wants to access a bioseq data, it asks the Scope for a Bioseq
handle (CBioseq_Handle). The Bioseq handle is a proxy to access the bioseq data; it may be
used to iterate over annotations and descriptors related to the bioseq etc. Bioseq handle also
takes care of loading any necessary data when requested. E.g. to get a sequence of characters
for a segmented bioseq it will load all segments and put their data in the right places.

Most methods of CBioseq for checking and getting object members are mirrored in the Bioseq
handle's interface. Other methods are described below.

Object methods

! GetSeqId - returns seq-id which was used to obtain the handle or null (if the handle
was obtained in a way not requiring seq-id).

! GetSeq_id_Handle - returns seq-id handle corresponding to the id used to obtain
the handle.

! IsSynonym - returns true if the id resolves to the same handle.
! GetSynonyms - returns a list of all bioseq synonyms.
! GetParentEntry - returns a handle for the parent seq-entry of the bioseq.
! GetTopLevelEntry - returns a handle for the top-level seq-entry.
! GetBioseqCore - returns TBioseqCore, which is CConstRef<CBioseq>. The bioseq

object is guaranteed to have basic information loaded (the list of seq-ids, bioseq
length, type etc.). Some information in the bioseq (descriptors, annotations,
sequence data) may be not loaded yet.

! GetCompleteBioseq - returns the complete bioseq object. Any missing data will be
loaded and put in the bioseq members.

! GetComplexityLevel and GetExactComplexityLevel - allow finding a parent seq-
entry of a specified class (e.g. nuc-prot). The first method is more flexible since it
considers some seq-entry classes as equivalent.

! GetBioseqMolType - returns molecule type of the bioseq.

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDataLoader

! GetSeqMap - returns seq-map object for the bioseq.
! GetSeqVector - returns seq-vector with the selected coding and strand.
! GetSequenceView - creates a seq-vector for a part of the bioseq. Depending on the

flags the resulting seq-vector may show all intervals (merged or not) on the bioseq
specified by seq-loc, or all parts of the bioseq not included in the seq-loc.

! GetSeqMapByLocation - returns seq-map constructed from a seq-loc. The method
uses the same flags as GetSequenceView.

! MapLocation - maps a seq-loc from the bioseq's segment to the bioseq.

Bioseq-set handle—Bioseq-set handle (CBioseq_set_Handle) is a proxy class for bioseq-
set objects. Like in Bioseq handle, most of its methods allow read-only access to the members
of CBioseq_set object. Some other methods are similar to the Bioseq handle's interface.

Object methods

! GetParentEntry - returns a handle for the parent seq-entry of the bioseq.
! GetTopLevelEntry - returns a handle for the top-level seq-entry.
! GetBioseq_setCore - returns core data for the bioseq-set. The object is guaranteed

to have basic information loaded. Some information may be not loaded yet.
! GetCompleteBioseq_set - returns the complete bioseq-set object. Any missing data

will be loaded and put in the bioseq members.
! GetComplexityLevel and GetExactComplexityLevel - allow finding a parent seq-

entry of a specified class (e.g. nuc-prot). The first method is more flexible since it
considers some seq-entry classes as equivalent.

Seq-entry handle—Seq-entry handle (CSeq_entry_Handle) is a proxy class for seq-entry
objects. Most of its methods allow read-only access to the members of Seq-entry object. Other
methods may be used to navigate the seq-entry tree.

Object methods

! GetParentBioseq_set - returns a handle for the parent bioseq-set if any.
! GetParentEntry - returns a handle for the parent seq-entry.
! GetSingleSubEntry - checks that the seq-entry contains a bioseq-set of just one child

seq-entry and returns a handle for this entry, otherwise throws exception.
! GetTopLevelEntry - returns a handle for the top-level seq-entry.
! GetSeq_entryCore - returns core data for the seq-entry. Some information may be

not loaded yet.
! GetCompleteSeq_entry - returns the complete seq-entry object. Any missing data

will be loaded and put in the bioseq members.

Seq-annot handle—Seq-annot handle (CSeq_annot_Handle) is a simple proxy for seq-
annot objects.

Object methods

! GetParentEntry - returns a handle for the parent seq-entry.

Page 10

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq_set_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_entry_Handle

! GetTopLevelEntry - returns a handle for the top-level seq-entry.
! GetCompleteSeq_annot - returns the complete seq-annot object. Any data stubs are

resolved and loaded.

Seq-feat handle—Seq-feat handle (CSeq_feat_Handle) is a read-only proxy to seq-feat
objects data. It also simplifies and optimizes access to methods of SNP features.

Seq-align handle—Seq-align handle (CSeq_align_Handle) is a read-only proxy to seq-align
objects data. Most of its methods are simply mapped to the CSeq_align methods.

Seq-graph handle—Seq-graph handle (CSeq_graph_Handle) is a read-only proxy to seq-
graph objects data. Most of its methods are simply mapped to the CSeq_graph methods.

Seq-map—Seq-map (CSeqMap) object gives a general description of a biological sequence
data: location and type of each segment without data itself. It provides the overall structure of
a bioseq, or can be constructed from a seq-loc, representing a set of locations rather than a real
bioseq. Seq-map is used mostly together with Seq-map iterator, which enumerates individual
segments. Special flags allow selecting types of segments to be shown by the iterator and depth
of resolving references.

Object methods

! GetLength - returns the length of the whole seq-map.
! GetMol - returns molecule type for real bioseqs.
! begin, Begin, end, End, FindSegment - methods for normal seq-map iteration (lower

case names added for compatibility with STL).
! BeginResolved, FindResolved, EndResolved - force resolving references in the

seq-map. Optional arguments allow controlling types of segments to be shown and
resolution depth.

! ResolvedRangeIterator - starts iterator over the specified range and strand only.
! CanResolveRange - checks if necessary data is available to resolve all segments in

the specified range.

Seq-vector—Seq-vector (CSeqVector) is a convenient representation of sequence data. It
uses interface similar to the STL vector but data retrieval is optimized for better performance
on big sequences. Individual characters may be accessed through operator[], but better
performance may be achieved with seq-vector iterator. Seq-vector can be obtained from a
bioseq handle, or constructed from a seq-map or seq-loc.

Object methods

! size - returns length of the whole seq-vector.
! begin, end - STL-style methods for iterating over seq-vector.
! operator[] - provides access to individual character at a given position.
! GetSeqData - copy characters from a specified range to a string.
! GetSequenceType, IsProtein, IsNucleotide - check sequence type.

Page 11

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqVector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_feat_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_align_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_graph_Handle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqMap

! SetCoding, SetIupacCoding, SetNcbiCoding - control coding used by seq-vector.
These methods allow selecting Iupac or Ncbi coding without checking the exact
sequence type - correct coding will be selected by the seq-vector automatically.

! GetGapChar - returns character used in the current coding to indicate gaps in the
sequence.

! CanGetRange - check if sequence data for the specified range is available.
! SetRandomizeAmbiguities, SetNoAmbiguities - control randomization of

ambiguities in ncbi2na coding. If set, ambiguities will be represented with random
characters with distribution corresponding to the ambiguity symbol at each position.
Once assigned, the same character will be returned every time for the same position.

Bioseq iterator—Bioseq iterator (CBioseq_CI) enumerates bioseqs in a given seq-entry.
Optional filters may be used to restrict types of bioseqs to iterate.

Seq-entry iterator—Seq-entry iterator (CSeq_entry_CI) enumerates seq-entries in a given
parent seq-entry or a bioseq-set. Note that the iterator enumerates sub-entries for only one tree
level. It does not go down the tree if it finds a sub-entry of type 'set'.

Seq-descr iterator—Seq-descr iterator (CSeq_descr_CI) enumerates CSeq_descr objects
from a Bioseq or Seq-entry handle. The iterator starts from the specified point in the tree and
goes up to the top-level seq-entry. This provides sets of descriptors more closely related to the
Bioseq/Seq-entry requested to be returned first, followed by descriptors that are more generic.
To enumerate individual descriptors CSeqdesc_CI iterator should be used.

Seqdesc iterator—Another type of descriptor iterator is CSeqdesc_CI. It enumerates
individual descriptors (CSeqdesc) rather than sets of them. Optional flags allow selecting type
of descriptors to be included and depth of the search. The iteration starts from the requested
seq-entry or bioseq and proceeds to the top-level seq-entry or stops after going selected number
of seq-entries up the tree.

Seq-annot iterator—Seq-annot iterator (CSeq_annot_CI) may be used to enumerate
CSeq_annot objects - packs of annotations (features, graphs, alignments etc.). The iterator can
work in two directions: starting from a bioseq and going up to the top-level seq-entry, or going
down the tree from the selected seq-entry.

Annot iterator—Although returning CSeq_annot objects, CAnnot_CI searches individual
features, alignments and graphs related to the specified bioseq or location. It enumerates all
seq-annots containing the requested annotations. The search parameters may be fine-tuned
using SAnnotSelector like in case of feature, alignment or graph iterator.

SAnnotSelector: SAnnotSelector is a helper class which may be used to fine-tune annotation
iterator's settings. It is used with CAnnot_CI, CFeat_CI, CAlign_CI and CGraph_CI iterators.
Below is the brief explanation of the class methods. Some methods have several modifications
to simplify the selector usage. E.g. one can find SetOverlapIntervals() more convenient than
SetOverlapType(SAnnotSelector::eOverlap_Intervals).
! SetAnnotType - selects type of annotations to search for (features, alignments or

graphs). Type-specific iterators set this type automatically.
! SetFeatType - selects type of features to search for. Ignored when used with alignment

or graph iterator.
! SetFeatSubtype - selects feature subtype and corresponding type.

Page 12

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SAnnotSelector
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBioseq_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_entry_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_descr_CI&d=
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_descr
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqdesc_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqdesc
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_annot
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAnnot_CI

! SetByProduct - sets flag to search features by product rather than by location.
! SetOverlapType - select type of location matching during the search. If overlap type

is set to intervals, the annotation should have at least one interval intersecting with the
requested ranges to be included in the results. If overlap type is set to total range, the
annotation will be found even if its location has a gap intersecting with the requested
range. The default value is intervals. Total ranges are calculated for each referenced
bioseq individually, even if an annotation is located on several bioseqs, which are
segments of the same parent sequence.

! SetSortOrder - selects sorting of annotations: normal, reverse or none. The default
value is normal.

! SetResolveMethod - defines method of resolving references in segmented bioseqs.
Default value is TSE, meaning that annotations should only be searched on segments
located in the same top-level seq-entry. Other available options are none (to ignore
annotations on segments) and all (to search on all segments regardless of their
location). Resolving all references may produce a huge number of annotations for big
bioseqs, this option should be used with care.

! SetResolveDepth - limits the depth of resolving references in segmented bioseqs. By
default the search depth is not limited (set to kMax_Int).

! SetAdaptiveDepth, SetAdaptiveTrigger - set search depth limit using a trigger type/
subtype. The search stops when an annotation of the trigger type is found on some
level.

! SetMaxSize - limits total number of annotations to find.
! SetLimitNone, SetLimitTSE, SetLimitSeqEntry, SetLimitSeqAnnot - limits the search

to a single TSE, seq-entry or seq-annot object.
! SetUnresolvedFlag, SetIgnoreUnresolved, SetSearchUnresolved, SetFailUnresolved

- define how the iterators should behave if a reference in a sequence can not be resolved.
Ignore (default) will ignore missing parts, Fail will throw CAnnotException. Search
may be used to search by known ID on missing parts, but will work only if limit object
is also set, since the iterator needs to know where to look for the annotations.

! SetSearchExternal - sets all flags to search for external annotations. Such annotations
are packed with special bioseqs, (e.g. gnl|Annot:CDD|6 references gi 6 and contains
CDD features for the gi). If SetSearchSpecial is called with the Bioseq handle for this
special sequence or its TSE handle, only external CDD features from this TSE will be
found. The method calls SetResolveTSE, sets limit object to the same TSE and sets
SearchUnresolved flag.

! SetNoMapping - prevents the iterator from mapping locations to the top-level bioseq.
This option can dramatically increase iterators' performance when searching
annotations on a segmented bioseq.

Feature iterator—Feature iterator (CFeat_CI) is kind of annotation iterator. It enumerates
CSeq_feat objects related to a bioseq, seq-loc, or contained in a particular seq-entry or seq-
annot regardless of the referenced locations. The search parameters may be set using
SAnnotSelector (preferred method) or using constructors with different arguments. The iterator
returns CMappedFeat object rather than CSeq_feat. This allows accessing both original feature
(e.g. loaded from a database) and mapped one, with its location adjusted according to the search
parameters. Most methods of CMappedFeat are just proxies for the original feature members
and are not listed here.

Page 13

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_feat
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CFeat_CI

CMappedFeat methods

! GetOriginalFeature - returns the original feature.
! GetSeq_feat_Handle - returns handle for the original feature object.
! GetMappedFeature - returns a copy of the original feature with its location/product

adjusted according to the search parameters (e.g. id and ranges changed from a
segment to the parent bioseq). The mapped feature is not created unless requested.
This allows improving the iterator's performance.

! GetLocation - although present in CSeq_feat class, this method does not always
return the original feature's location, but first checks if the feature should be
mapped, creates the mapped location if necessary and returns it. To get the
unmapped location use GetOriginalFeature().GetLocation() instead.

! GetAnnot - returns handle for the seq-annot object, containing the original feature.

Alignment iterator—Alignment iterator (CAlign_CI) enumerates CSeq_align objects
related to the specified bioseq or seq-loc. It behaves much like CFeat_CI. Operators * and ->
return mapped CSeq_align object, to get the original alignment you can use
GetOriginalSeq_align or GetSeq_align_Handle methods.

Graph iterator—Graph data iterator (CGraph_CI) enumerates CSeq_graph objects related
to a specific bioseq or seq-loc. It behaves much like CFeat_CI, returning CMappedGraph object
which imitates interface of CSeq_graph and has additional methods to access both original and
mapped graphs.

Seq-map iterator—Seq-map iterator (CSeqMap_CI) is used to enumerate Seq-map
segments. Special flags allow selecting types of segments to be enumerated.

Object methods

! GetPosition - returns start position of the current segment.
! GetLength - returns length of the current segment.
! GetEndPosition - returns end position (exclusive) of the current segment.
! GetType - returns type of the current segment. The allowed types are eSeqGap,

eSeqData, eSeqRef, and eSeqEnd.
! GetData - returns sequence data (CSeq_data). The current segment type must be

eSeqData.
! GetRefData - returns sequence data for any segment which can be resolved to a real

sequence. The real position, length and strand of the data should be checked using
other methods.

! GetRefSeqid - returns referenced seq-id for segments of type eSeqRef.
! GetRefPosition - returns start position on the referenced bioseq for segments of

type eSeqRef.
! GetRefEndPosition - returns end position (exclusive) on the referenced bioseq for

segments of type eSeqRef.
! GetRefMinusStrand - returns true if referenced bioseq's strand should be reversed.

If there are several levels of references for the current segment, the method checks
strands on each level.

Page 14

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_data
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAlign_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_align
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CFeat_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CGraph_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_graph
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CFeat_CI
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqMap_CI

Seq-vector iterator—Seq-vector iterator (CSeqVector_CI) is used to access individual
characters from a Seq-vector. It has better performance than CSeqVector::operator[] when used
for sequential access to the data.

Object methods

! GetSeqData - copy characters from a specified range to a string.
! GetPos, SetPos - control current position of the iterator.
! GetCoding, SetCoding - control character coding.
! SetRandomizeAmbiguities, SetNoAmbiguities - control randomization of

ambiguities in ncbi2na coding. If set, ambiguities will be represented with random
characters with distribution corresponding to the ambiguity symbol at each position.
Once assigned, the same character will be returned every time for the same position.

Request history and conflict resolution
There are several points of potential ambiguity:

1 the client request may be incomplete;
2 the data in the database may be ambiguous;
3 the data stored by the Object Manager in the local cache may be out of date (in case

the database has been updated during the client session);
4 the history of requests may create conflicts (when the Object Manager is unable to

decide what exactly is the meaning of the request).

Incomplete Seq-id
Biological sequence id (Seq-id) gives a lot of freedom in defining what sequence the client is
interested in. It can be a Gi - a simple integer assigned to a sequence by the NCBI 'ID' database,
which in most cases is unique and univocal (Gi does not change if only annotations are
changed), but is also can be an accession string only (without version number or release
specification). It can specify in what database the sequence data is stored, or this information
could be missing.

The Object Manager's interpretation of such requests is kind of arbitrary (yet reasonable, e.g.
only the latest version of a given accession is being chosen). That is, the sequence could
probably be found, but only one sequence, not the list of 'matching' ones. At this point the
initial incomplete Seq-id has been resolved into a complete one. That is, the client asked the
Scope for a BioseqHandle providing incomplete Seq-id as the input. Scope resolved it into a
specific complete Seq-id and returned a handle. The client may now ask the handle about its
Seq-id. The returned Seq-id differs from the one provided initially by the client.

History of requests
Once the Seq-id has been resolved into a specific Seq-entry, the Object Manager keeps track
of all data requests to this sequence in order to maintain consistency. That is, it is perfectly
possible that few minutes later this same Seq-id could be resolved into another Seq-entry (the
data in the database may change). Still, from the client point of view, as long as this is the same
session, nothing should happen - the data should not change.

By 'session' we mean here the same Scope of resolution. That is, as long as the data are requested
through the same Scope, it is consistent. In another Scope the data could potentially be different.

Page 15

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/SEQLOC.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeqVector_CI

Another way to make the Scope forget about previous requests is calling its ResetHistory
method.

Ambiguous requests
It is possible that there are several Seq-entries which contain requested information. In this
case the processing depends on what is actually requested: sequence data or sequence
annotations. The Bioseq may be taken from only one source, while annotations - from several
Seq-entries.

Request for Bioseq—Scopes use several rules when searching for the best Bioseq for each
requested Seq-id. These rules are listed below in the order they are applied:

1 Check if the requested Seq-id has been already resolved to a Seq-entry within this
scope. This guarantees the same Bioseq will be returned for the same Seq-id.

2 If the Seq-id requested is not resolved yet, request it from Data sources starting from
the highest priority sources. Do not check lower-priority sources if something was
found in the higher-priority ones.

3 If more than one Data sources of the same priority contain the Bioseq or there is one
Data source with several versions of the same Seq-id, ask the Data source to resolve
the conflict. The Data source may take into account if the Bioseq is most recent or
not, what Seq-entries has been already used by the Scope (preferred Seq-entries) etc.

Request for annotations—Annotation iterators start with examining all Data Sources in
the Scope in order to find all top-level seq-entries, which contain annotations pointing to the
given Seq-id. The rules for filtering annotations are slightly different than for resolving
Bioseqs. First of all, the scope resolves the requested seq-id and takes all annotations related
to the seq-id from its top-level seq-entry. TSEs containing both sequence and annotations with
the same seq-id are ignored, since any other Bioseq with the same id is considered an old
version of the resolved one. If there are external annotations in TSEs not containing a Bioseq
with the requested seq-id, they are also collected.

GenBank data loader configuration
Application configuration is stored in a file with the same name as application, and
extension .ini. The file will be found either in the executable or in the user's home directory.

GenBank data loader looks for parameters in section [genbank] and its subsections.

Main GenBank data loader configuration
section [genbank]

[genbank]

; loader_method lists GenBank readers - interfaces to GenBank server.
; They are checked by GenBank loader in the order of appearance in
; this list.
; For example the value "cache;id2" directs GenBank loader to look
; in cache reader first,
; then to look for information in id2 reader from GenBank servers.
; Available readers are: id1, id2, pubseqos, pubseqos2, and cache.

Page 16

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

loader_method = cache;id2

; preopen can be set to false to postpone GenBank connection until needed,
; or to true to open connections in all readers at GenBank construction time.
; By default, each reader opens its connection depending on reader settings.

preopen = true

GenBank readers configuration
Readers id1& id2
section [genbank/id1] or [genbank/id2]—
[genbank/id1]

; no_conn means maximum number of simultaneous connections to ID server.
; By default it's 3 in multi-threaded application, and 1 in single-threaded.

no_conn = 2

; If preopen is not set in [genbank] section, local setting of preopen
; will be used to determine when to open ID connection.
; If preopen is set to false, ID reader will open connection only when needed.
; If the value is true the connection will be opened at GenBank
; construction time.

preopen = false

; ID1/ID2 service name, (default: ID1 or ID2 correspondingly)

service = ID1_TEST

; ID1/ID2 connection timeout in seconds, (default: 30 for ID1, and 20 for ID2)

timeout = 10

; number of connection retries in case of error (default: 3)

retry = 3

Readers pubseqos & pubseqos2
section [genbank/pubseqos] or [genbank/pubseqos2]—
[genbank/pubseqos]

; no_conn means maximum number of simultaneous connections to PubSeqOS server.
; By default it's 2 in multi-threaded application, and 1 in single-threaded.

Page 17

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

no_conn = 1

; If preopen is not set in [genbank] section, local setting of preopen will be used
; to determine when to open PubSeqOS connection.
; If preopen is set to false, PubSeqOS reader will open connection only when needed.
; If the value is true the connection will be opened at GenBank construction time.

preopen = false

; PubSeqOS server name, (default: PUBSEQ_OS)

server = PUBSEQ_OS_PUBLIC

; PubSeqOS connection login name, (default: anyone)

user = anyone

; PubSeqOS connection password, (default: allowed)

password = allowed

; number of connection retries in case of error (default: 3)

retry = 3

Reader cache
section [gebank/cache]—
GenBank loader cache consists of two parts, id_cache for storing small information, and
blob_cache for storing large sequence data. Parameters of those caches are similar and stored
in two sections, [genbank/cache/id_cache] and [genbank/cache/blob_cache].

The only parameter in those sections is driver, which can have values: bdb for a cache in a
local BerkeleyDB database, netcache for a cache in netcached. Then parameters of
corresponding ICache plugins are stored either in netcache or in bdb subsections.

Usually, both caches use the same interface with the same parameters, so it makes sense to put
interface parameters in one section and include it in both places.

For example:

[genbank/cache/id_cache]

driver=netcache

Page 18

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

[genbank/cache/id_cache/netcache]

.Include = netcache

[genbank/cache/blob_cache]

driver=netcache

[genbank/cache/blob_cache/netcache]

.Include = netcache

[netcache]

; Section with parameters of netcache interface.

; Name or IP of the computer where netcached is running.

host = localhost

; Port of netcached service.

port = 9000

; Display name of this application for use by netcached in its logs and diagnostics.

client = objmgr_demo

Configuring NetCached to cache GenBank data
NetCached configuration is stored in netcached.ini file either in the executable or in the user's
home directory.

Configuration parameters in the file are grouped in several sections.

Section [server] describes parameters of the server not related to storage.

Section [bdb] describes parameters of BerkeleyDB database for main NetCache storage.

One or more [icache_???] sections describe parameters of ICache instances used by GenBank
loader.

Server configuration

Page 19

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

section [server]

[server]

; port number server responds on

port=9000

; maximum number of clients(threads) can be served simultaneously

max_threads=25

; initial number of threads created for incoming requests

init_threads=5

; directory where server creates access log and error log

log_path=

; Server side logging

log=false

; Use name instead of IP address in keys, false by default

;use_hostname=false

; Size of thread local buffer (65536 should be fine)

tls_size=65536

; when true, if database cannot be open (corrupted) server

; automatically drops the db directory (works only for BDB)

; and creates the database from scratch

; (the content is going to be lost)

; Directory reinitialization can be forced by 'netcached -reinit'

Page 20

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

drop_db=true

; Network inactivity timeout in seconds

network_timeout=20

; Switch for session management API

; when turned on if the last customer disconnects server shutdowns

; after waiting for 'session_shutdown_timeout'

session_mng=false

; application shuts itself down if no new sessions arrive in the

; specified time

session_shutdown_timeout=30

Main BerkeleyDB database configuration
section [bdb]

[bdb]

; directory to keep the database. It is important that this

; directory resides on local drive (not NFS)

;
; WARNING: the database directory sometimes can be recursively deleted

;(when netcached started with -reinit).

;DO NOT keep any of your files(besides the database) in it.

path=e:/netcached_data

; Path to transaction log storage. By default transaction logs are stored

; at the same location as main database, but to improve performance it's

; best to put it to a dedicated fast hard drive (split I/O load)

;

Page 21

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

transaction_log_path=

; cache name

name=nccache

; use syncronous or asyncromous writes (used with transactions)

write_sync=false

; Direct IO for database files

direct_db=false

; Direct IO for transaction logs

direct_log=false

; when 'true' the database is transaction protected

use_transactions=true

; BLOB expiration timeout in seconds

timeout=3600

; onread - update BLOB time stamp on every read

;(otherwise only creation time will taken into account)

; purge_on_startup - delete all deprecated BLOBs when startind netcached

; (may significantly slow down startup propcess)

; check_expiration - check if BLOB has expired (on read) and if it is

; return 'not found'. Otherwise BLOB lives until

; it is deleted by the internal garbage collector

timestamp=onread

Page 22

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

purge_on_startup check_expiration

; do not change this
keep_versions=all
; Run background cleaning thread

; (Pretty much mandatory parameter, turn it off only if you want

; to keep absolutely everything in the database)

purge_thread=true

; Delay (seconds) between purge(garbage collector) runs.

purge_thread_delay=30

; maintanance thread sleeps for specified number of milliseconds after

; each batch. By changing this parameter you can adjust the purge
; thread priority

purge_batch_sleep=100

; maintanance thread processes database records by chunks of specified

; number. If you increase this number it also increases the performance

; of purge process (at the expense of the online connections)

purge_batch_size=70

; amount of memory allocated by BerkeleyDB for the database cache

; Berkeley DB page cache) (More is better)

mem_size=50M

; when non 0 transaction LOG will be placed to memory for better performance

; as a result transactions become non-durable and there is a risk of

; loosing the data if server fails

; (set to at least 100M if planned to have bulk transactions)

Page 23

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

;

log_mem_size=0

; Maximum size of the transaction log file
log_file_max=200M

; Percent of pages NC tries to keep available for read

; 0 - means no background dirty page write

;

memp_trickle=10

; Number of times Berkeley DB mutex spins before sleeping

; for some reason values beyond 75 somehow disable memp_trickle

;

tas_spins=200

; Specifies how often cache should remove the Berkeley DB LOG files

; Removal is triggered by the purge thread. Value of 2 means LOG is

; cleaned every second purge

purge_clean_log=2

; Call transaction checkpoint every 'checkpoint_bytes' of stored data

checkpoint_bytes=10M

; BLOBs < 10M stored in database

overflow_limit=10M

; This parameter regulates BLOB expiration. If client constantly reads

; the BLOB and you do not want it to stuck in the database forever

Page 24

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

; (timestamp=onread), set this parameter.

; If timeout is 3600 and ttl_prolong is 2, maximum possible timeout for
; the BLOB becomes 3600 * 2 = 7200 seconds.

ttl_prolong=3

; Maximum allowed BLOB size (for a single BLOB). 0 - no restriction

max_blob_size=0

; Number of round robin volumes. 0 - no rotation

; Cache opens approx 7 files per RR volume.

rr_volumes=3

ICache instances configuration
sections [icache_*]

Each ICache instance has interface name which is used by client to select the instance.

The name of section with ICache instance's configuration is a concatenation of string
icache_ and the name of the instance.

For example, parameters of ICache instance named ids are stored in section [icache_ids].

The parameters inside the section are the same as parameters in [bdb] section with few
exceptions.

If the path parameter has the same value as path in main [bdb] section both databases will be
stored in the same directory and share the same BerkeleyDB environment.

As a result, all parameters of the BerkeleyDB environment have no meaning in ICache section
and are taken from [bdb] section instead. To avoid database conflict all sections with the same
path parameter must have different name parameters.

GenBank data loader requires two cache instances with slightly different parameters. First,
named ids by default, is used for small Seq-id resolution information. Second, named blobs
by default, is used for large Seq-entry information. The names of those caches can be changed
in the client program configuration.

Similarly, NetCached configuration should describe two instances of ICache with names
matching to the names on client (ids and blobs by default).

For example:

[icache_ids]

Page 25

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

name=ids

path=e:/netcached_data

write_sync=false

use_transactions=true

timeout=3600

timestamp=subkey check_expiration

keep_versions=all

purge_thread=true

purge_thread_delay=3600

purge_batch_sleep=5000

purge_batch_size=10

mem_size=0

purge_clean_log=10

checkpoint_bytes=10M

overflow_limit=1M

ttl_prolong=3

page_size=small

[icache_blobs]

Page 26

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

name=blobs

path=e:/netcached_data

write_sync=false

use_transactions=true

timeout=3600

timestamp=subkey onread check_expiration

keep_versions=all

purge_thread=true

purge_thread_delay=3600

purge_batch_sleep=5000

purge_batch_size=10

mem_size=0

purge_clean_log=10

checkpoint_bytes=10M

overflow_limit=1M

ttl_prolong

How to use it
1 Start working with the Object Manager.
2 Add externally created top-level Seq-entry to the Scope.
3 Add a data loader to the Scope.
4 Start working with a Bioseq.

Page 27

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 Access sequence data.
6 Enumerate sequence descriptions.
7 Enumerate sequence annotations.

Start working with the Object Manager
Include the necessary headers:

#include <objmgr/object_manager.hpp>

#include <objmgr/scope.hpp>

#include <objmgr/bioseq_handle.hpp>

#include <objmgr/seq_vector.hpp>

#include <objmgr/desc_ci.hpp>

#include <objmgr/feat_ci.hpp>

#include <objmgr/align_ci.hpp>

#include <objmgr/graph_ci.hpp>

Request an instance of the CObjectManager and store as CRef:

CRef<CObjectManager> obj_mgr = CObjectManager::GetInstance();

Create a CScope. The Scope may be created as an object on the stack, or on the heap:

CRef<CScope> scope1 = new CScope(*obj_mgr);

CScope scope2(*obj_mgr);

Add externally created top-level Seq-entry to the Scope
Once there is a Seq-entry created somehow, it can be added to the Scope using the following
code:

CRef<CSeq_entry> entry(new CSeq_entry);

... // Populate or load the Seq-entry in some way

scope.AddTopLevelSeqEntry(*entry);

Add a data loader to the Scope

Data loader
is designed to be a replaceable object. There can be a variety of data loaders, each of which
would load data from different databases, flat files, etc. Data loader must be registered with
the Object Manager. One distinguishes them later by their names. One of the most popular data
loaders is the one that loads data from the GenBank - CGBDataLoader. Each loader has at least

Page 28

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

one RegisterInObjectManager static method, the first argument is usually a reference to the
Object Manager:

#include <objtools/data_loaders/genbank/gbloader.hpp>

...

CGBDataLoader::RegisterInObjectManager(*obj_mgr);

A data loader may be registered as default or non-default loader. GenBank loader is
automatically registered as default if you don't override it explicitly. For other loaders you may
need to specify additional arguments to set their priority or make them default (usually this can
be done through the last two arguments of the RegisterInObjectManager method). A Scope
can request a data loader from the Object Manager one at a time - by name. In this case you
will need to know the loader's name. You can get it from the loader using its GetName method,
or if you don't have a loader, you can use static GetLoaderNameFromArgs method as in the
following example (in this case there were no explicit arguments):

scope.AddDataLoader(CGBDataLoader::GetLoaderNameFromArgs());

More convenient way of adding Data loaders to a Scope works if you have registered the loaders
as default:

scope.AddDefaults();

Start working with a Bioseq
In order to be able to access a Bioseq, one has to obtain a Bioseq handle from the Scope, based
on a known Seq_id. It's always a good idea to check if the operation was successful:

CSeq_id seq_id;seq_id.SetGi(3);

CBioseq_Handle handle = scope.GetBioseqHandle(seq_id);

if (!handle) {

 ... // Failed to get the bioseq handle

}

Access sequence data
The access to the sequence data is provided through the Seq- vector object, which can be
obtained from a Bioseq handle. The vector may be used together with Seq-vector iterator to
enumerate the sequence characters:

CSeqVector seq_vec = handle.GetSeqVector(CBioseq_Handle::eCoding_Iupac);

for (CSeqVector_CI it = seq_vec.begin(); it; ++it) {

 NcbiCout << *it;

}

Page 29

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Seq-vector
class provides much more than the plain data storage. It rather 'knows where to find' the data.
As a result of a query, it may initiate reference resolution process, send requests to the source
database for more data etc.

There is another useful object, which describes sequence data - Sequence map. It is a collection
of segments, which describe sequence parts in general - location and type only, without
providing any real data. To obtain Sequence map from a Bioseq handle:

CConstRef<CSeqMap> seqmap(&handle.GetSeqMap());

It is possible then to enumerate all the segments in the map asking their type, length or position.
Note that in this example the iterator is obtained using begin() method and will enumerate only
top level segments of the Seq-map:

int len = 0;

for (CSeqMap::const_iterator seg = seqmap->begin() ; seg; ++seg) {

 switch (seg.GetType()) {

 case CSeqMap::eSeqData:

len += seg.GetLength();

break;

 case CSeqMap::eSeqRef:

len += seg.GetLength();

break;

 case CSeqMap::eSeqGap:

len += seg.GetLength();

break;

 default:

break;

 }

}

Enumerate sequence descriptions
Description iterator may be initialized with a Bioseq handle or Seq-entry handle. It makes it
possible to enumerate all CSeqdesc objects the Bioseq or the Seq-entry refers to:

Page 30

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

for (CSeqdesc_CI desc_it(handle); desc_it; ++desc_it) {

 const CSeqdesc& desc = *desc_it;

 ... // your code here

}

Another type of descriptor iterator iterates over sets of descriptors rather than individual
objects:

for (CSeq_descr_CI descr_it(handle); descr_it; ++descr_it) {

 const CSeq_descr& descr = *descr_it;

 ... // your code here

}

Enumerate sequence annotations
Annotation iterators may be used to enumerate annotations (features, alignments and graphs)
related to a Bioseq or a Seq-loc. They are very flexible and can be fine-tuned through Annot-
selector structure:

// Search all TSEs in the Scope for gene features

SAnnotSelector sel;

sel.SetFeatType(CSeqFeatData::e_Gene);

/// both start and stop are 0 - iterate the whole bioseq

CFeat_CI feat_it(handle, 0, 0, sel);

for (; feat_it; ++feat_it) {

 const CSeq_loc& loc = feat_it->GetLocation();

 ... // your code here

}

The next example shows slightly more complicated settings for the feature iterator. The selector
forces resolution of all references, both near (to Bioseqs located in the same TSE) and far. The
features will be collected from all segments resolved. Since this may result in loading a lot of
external Bioseqs, the selector is set to restrict the depth of references to 2 levels:

SAnnotSelector sel;

sel.SetFeatType(CSeqFeatData::e_Gene)

Page 31

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 .SetReaolveAll()

 .SetResolveDepth(2);

CFeat_CI feat_it(handle, 0, 0, sel);

for (; feat_it; ++feat_it) {

 const CSeq_loc& loc = feat_it->GetLocation();

 ... // your code here

}

Usage of alignment and graph iterators is similar to the feature iterator:

CAlign_CI align_it(handle, 0, 0);

...

CGraph_CI graph_it(handle, 0, 0);

...

All the above examples iterate annotations in a continuous interval on a Bioseq. To specify
more complicated locations a Seq-loc may be used instead of the Bioseq handle. The Seq-loc
may even reference different ranges on several Bioseqs:

CSeq_loc loc;

CSeq_loc_mix& mix = loc.SetMix();

... // fill the mixed location

for (CFeat_CI feat_it(scope, loc); feat_it; ++feat_it) {

 const CSeq_loc& feat_loc = feat_it->GetLocation();

 ... // your code here

}

Educational Exercises
Setup the framework for the C++ Object Manager learning task

Starting point—To jump-start your first project utilizing the new C++ Object Manager in
the C++ Toolkit framework on a UNIX platform, we suggest using the new_project shell script,
which creates a sample application and a makefile:

1 Create a new project called task in the folder task using the new_project shell script
(this will create the folder, the source file and the makefile):
new_project task app/objmgr

Page 32

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 Build the sample project and run the application:
cd task
make -f Makefile.task_app

./task -gi 333

The output should look like this:
First ID: emb|CAA23443.1|
Sequence: length=263, data=MARFLGLCTW

of descriptions: 6

of features:

[whole] Any: 2

[whole] Genes: 0

[0..9]Any: 2

[0..999, TSE] Any: 1

of alignments:

[whole] Any: 0

Done
3 Now you can go ahead and convert the sample code in the task.cpp into the code that

performs your learning task.
The new_project script can also be used to create a new project on Windows, and the usage is
the same as on UNIX.

How to convert the test application into CGI one?—In order to convert your
application into CGI one:

1 Create copy of the source (task.cpp) and makefile (Makefile.task_app)
cp task.cpp task_cgi.cpp
cp Makefile.task_app Makefile.task_cgiapp

2 Edit the makefile for the CGI application (Makefile.task_cgiapp): change application
name, name of the source file, add cgi libraries:
APP = task.cgi
SRC =

task_cgi
LIB = xobjmgr id1 seqset $(SEQ_LIBS) pub medline biblio general \

xser

xhtml xcgi
xutil xconnect xncbi

LIBS = $(NCBI_C_LIBPATH) $(NCBI_C_ncbi)

Page 33

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

$(FASTCGI_LIBS)
\

$(NETWORK_LIBS) $(ORIG_LIBS)
3 Build the project (at this time it is not a CGI application yet):

make -f Makefile.task_cgiapp
4 Convert task_cgi.cpp into a CGI application.

Convert CGI application into Fast-CGI one—In the LIB=... section of
Makefile.task_cgiapp, just replace xcgi library by xfcgi:

LIB = xobjmgr id1 seqset $(SEQ_LIBS) pub medline biblio general \

 xser xhtml xfcgi xutil xconnect xncbi

Task Description
We have compiled here a list of teaching examples to help you start working with the C++
Object Manager. Completing them, getting your comments and investigating the problems
encountered would let us give warnings of issues to deal with in the nearest future, better
understand what modifications should be made to this software system.

The main idea here is to build one task on the top of another, in growing level of complexity:
1 having a Seq-id (GI), get the Bioseq;
2 print the Bioseq's title descriptor;
3 print the Bioseq's length;
4 dump the Seg-map structure;
5 print the total number of cd-region features on the Bioseq;
6 calculate percentage of 'G' and 'C' symbols in the whole sequence;
7 calculate percentage of 'G' and 'C' symbols within cd-regions;
8 calculate percentage of 'G' and 'C' symbols for regions outside any cd-region feature;
9 convert the application into a CGI one;
10 convert the application into a FCGI one.

Test Bioseqs—Below is the list of example sequences to use with the C++ toolkit training
course. It starts with one Teaching Example that has one genomic nucleic acid sequence and
one protein with a cd-region. Following that is the list of Test Examples. Once the code is
functioning on the Teaching Example, we suggest running it through these. They include a
bunch of different conditions: short sequence with one cd-region, longer with 6 cd-regions, a
protein record (this is an error, and code should recover), segmented sequence, 8 megabase
genomic contig, a popset member, and a draft sequence with no cd-regions.

Teaching example: IDs and description of the sequence to be used as a simple teaching
example is shown in Table 1.

The application should produce the following results for the above Bioseq:

Page 34

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ID: emb|AJ438945.1|HSA438945 + gi|19584253

Homo sapiens SLC16A1 gene for monocarboxylate transporter isoform 1, exons
2-5

Sequence length: 17312

Sequence map:

 Segment: pos=0, length=17312, type=DATA

Total: 40.29%

 cdr0: 46.4405%

Cdreg: 46.4405%

Non-Cdreg: 39.7052%

Test examples: More complicated test Bioseqs are listed in Table 2.

Correct Results: Below are shown the correct results for each of the test Bioseqs. You can
use them as reference to make sure your application works correctly.

ID: gb|J01066.1|DROADH + gi|156787

D.melanogaster alcohol dehydrogenase gene, complete cds.

Sequence length: 2126

Sequence map:

 Segment: pos=0, length=2126, type=DATA

Total: 45.8137%

 cdr0: 57.847%

Cdreg: 57.847%

Non-Cdreg: 38.9668%

ID: gb|U01317.1|HUMHBB + gi|455025

Human beta globin region on chromosome 11.

Sequence length: 73308

Sequence map:

Page 35

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Segment: pos=0, length=73308, type=DATA

Total: 39.465%

 cdr0: 52.9279%

 cdr1: 53.6036%

 cdr2: 53.6036%

 cdr3: 49.2099%

 cdr4: 54.5045%

 cdr5: 56.3063%

 cdr6: 56.7568%

Cdreg: 53.2811%

Non-Cdreg: 38.9403%

ID: emb|AJ293577.1|HSA293577 + gi|14971422

Homo sapiens partial MOCS1 gene, exon 1 and joined CDS

Sequence length: 913

Sequence map:

 Segment: pos=0, length=913, type=DATA

Total: 54.655%

 cdr0: 58.3765%

Cdreg: 58.3765%

Non-Cdreg: 51.5837%

ID: gb|AH011004.1|SEG_Y043402S + gi|19550966

Mus musculus light ear protein (le) gene, complete cds.

Sequence length: 5571

Page 36

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Sequence map:

 Segment: pos=0, length=255, type=DATA

 Segment: pos=255, length=0, type=GAP

 Segment: pos=255, length=306, type=DATA

 Segment: pos=561, length=0, type=GAP

 Segment: pos=561, length=309, type=DATA

 Segment: pos=870, length=0, type=GAP

 Segment: pos=870, length=339, type=DATA

 Segment: pos=1209, length=0, type=GAP

 Segment: pos=1209, length=404, type=DATA

 Segment: pos=1613, length=0, type=GAP

 Segment: pos=1613, length=349, type=DATA

 Segment: pos=1962, length=0, type=GAP

 Segment: pos=1962, length=361, type=DATA

 Segment: pos=2323, length=0, type=GAP

 Segment: pos=2323, length=369, type=DATA

 Segment: pos=2692, length=0, type=GAP

 Segment: pos=2692, length=347, type=DATA

 Segment: pos=3039, length=0, type=GAP

 Segment: pos=3039, length=1066, type=DATA

 Segment: pos=4105, length=0, type=GAP

 Segment: pos=4105, length=465, type=DATA

 Segment: pos=4570, length=0, type=GAP

 Segment: pos=4570, length=417, type=DATA

 Segment: pos=4987, length=0, type=GAP

 Segment: pos=4987, length=584, type=DATA

Page 37

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Total: 57.2305%

 cdr0: 59.5734%

Cdreg: 59.5734%

Non-Cdreg: 55.8899%

ID: ref|NT_017168.8|HS7_17324 + gi|18565551

Homo sapiens chromosome 7 working draft sequence segment

Sequence length: 8470605

Sequence map:

 Segment: pos=0, length=29884, type=DATA

 Segment: pos=29884, length=100, type=GAP

 Segment: pos=29984, length=20739, type=DATA

 Segment: pos=50723, length=100, type=GAP

 Segment: pos=50823, length=157624, type=DATA

 Segment: pos=208447, length=29098, type=DATA

 Segment: pos=237545, length=115321, type=DATA

 Segment: pos=352866, length=25743, type=DATA

 Segment: pos=378609, length=116266, type=DATA

 Segment: pos=494875, length=144935, type=DATA

 Segment: pos=639810, length=108678, type=DATA

 Segment: pos=748488, length=102398, type=DATA

 Segment: pos=850886, length=149564, type=DATA

 Segment: pos=1000450, length=120030, type=DATA

 Segment: pos=1120480, length=89411, type=DATA

 Segment: pos=1209891, length=51161, type=DATA

Page 38

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Segment: pos=1261052, length=131072, type=DATA

 Segment: pos=1392124, length=118395, type=DATA

 Segment: pos=1510519, length=70119, type=DATA

 Segment: pos=1580638, length=59919, type=DATA

 Segment: pos=1640557, length=131072, type=DATA

 Segment: pos=1771629, length=41711, type=DATA

 Segment: pos=1813340, length=131072, type=DATA

 Segment: pos=1944412, length=56095, type=DATA

 Segment: pos=2000507, length=93704, type=DATA

 Segment: pos=2094211, length=82061, type=DATA

 Segment: pos=2176272, length=73699, type=DATA

 Segment: pos=2249971, length=148994, type=DATA

 Segment: pos=2398965, length=37272, type=DATA

 Segment: pos=2436237, length=96425, type=DATA

 Segment: pos=2532662, length=142196, type=DATA

 Segment: pos=2674858, length=58905, type=DATA

 Segment: pos=2733763, length=94760, type=DATA

 Segment: pos=2828523, length=110194, type=DATA

 Segment: pos=2938717, length=84638, type=DATA

 Segment: pos=3023355, length=94120, type=DATA

 Segment: pos=3117475, length=46219, type=DATA

 Segment: pos=3163694, length=7249, type=DATA

 Segment: pos=3170943, length=118946, type=DATA

 Segment: pos=3289889, length=127808, type=DATA

 Segment: pos=3417697, length=51783, type=DATA

 Segment: pos=3469480, length=127727, type=DATA

Page 39

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Segment: pos=3597207, length=76631, type=DATA

 Segment: pos=3673838, length=81832, type=DATA

 Segment: pos=3755670, length=21142, type=DATA

 Segment: pos=3776812, length=156640, type=DATA

 Segment: pos=3933452, length=117754, type=DATA

 Segment: pos=4051206, length=107098, type=DATA

 Segment: pos=4158304, length=15499, type=DATA

 Segment: pos=4173803, length=156199, type=DATA

 Segment: pos=4330002, length=89478, type=DATA

 Segment: pos=4419480, length=156014, type=DATA

 Segment: pos=4575494, length=105047, type=DATA

 Segment: pos=4680541, length=120711, type=DATA

 Segment: pos=4801252, length=119796, type=DATA

 Segment: pos=4921048, length=35711, type=DATA

 Segment: pos=4956759, length=131072, type=DATA

 Segment: pos=5087831, length=1747, type=DATA

 Segment: pos=5089578, length=38864, type=DATA

 Segment: pos=5128442, length=131072, type=DATA

 Segment: pos=5259514, length=97493, type=DATA

 Segment: pos=5357007, length=125390, type=DATA

 Segment: pos=5482397, length=96758, type=DATA

 Segment: pos=5579155, length=1822, type=DATA

 Segment: pos=5580977, length=144039, type=DATA

 Segment: pos=5725016, length=58445, type=DATA

 Segment: pos=5783461, length=158094, type=DATA

Page 40

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Segment: pos=5941555, length=4191, type=DATA

 Segment: pos=5945746, length=143965, type=DATA

 Segment: pos=6089711, length=107230, type=DATA

 Segment: pos=6196941, length=158337, type=DATA

 Segment: pos=6355278, length=25906, type=DATA

 Segment: pos=6381184, length=71810, type=DATA

 Segment: pos=6452994, length=118113, type=DATA

 Segment: pos=6571107, length=118134, type=DATA

 Segment: pos=6689241, length=92669, type=DATA

 Segment: pos=6781910, length=123131, type=DATA

 Segment: pos=6905041, length=136624, type=DATA

 Segment: pos=7041665, length=177180, type=DATA

 Segment: pos=7218845, length=98272, type=DATA

 Segment: pos=7317117, length=22979, type=DATA

 Segment: pos=7340096, length=123747, type=DATA

 Segment: pos=7463843, length=13134, type=DATA

 Segment: pos=7476977, length=156146, type=DATA

 Segment: pos=7633123, length=59501, type=DATA

 Segment: pos=7692624, length=107689, type=DATA

 Segment: pos=7800313, length=29779, type=DATA

 Segment: pos=7830092, length=135950, type=DATA

 Segment: pos=7966042, length=71035, type=DATA

 Segment: pos=8037077, length=129637, type=DATA

 Segment: pos=8166714, length=80331, type=DATA

 Segment: pos=8247045, length=49125, type=DATA

 Segment: pos=8296170, length=131072, type=DATA

Page 41

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Segment: pos=8427242, length=25426, type=DATA

 Segment: pos=8452668, length=100, type=GAP

 Segment: pos=8452768, length=16014, type=DATA

 Segment: pos=8468782, length=100, type=GAP

 Segment: pos=8468882, length=1723, type=DATA

Total: 37.2259%

 cdr0: 39.6135%

 cdr1: 38.9474%

 cdr2: 57.362%

 cdr3: 59.144%

 cdr4: 45.4338%

 cdr5: 37.6812%

 cdr6: 58.9856%

 cdr7: 61.1408%

 cdr8: 51.2472%

 cdr9: 44.2105%

 cdr10: 49.1071%

 cdr11: 43.6508%

 cdr12: 38.3754%

 cdr13: 39.1892%

 cdr14: 42.2222%

 cdr15: 49.5763%

 cdr16: 44.4034%

 cdr17: 42.9907%

 cdr18: 47.619%

Page 42

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 cdr19: 47.3684%

 cdr20: 47.973%

 cdr21: 38.6544%

 cdr22: 45.3052%

 cdr23: 37.7115%

 cdr24: 36.1331%

 cdr25: 61.4583%

 cdr26: 51.9878%

 cdr27: 47.6667%

 cdr28: 45.3608%

 cdr29: 38.7387%

 cdr30: 37.415%

 cdr31: 40.5405%

 cdr32: 41.1819%

 cdr33: 42.6791%

 cdr34: 43.7352%

 cdr35: 44.9235%

 cdr36: 38.218%

 cdr37: 34.4928%

 cdr38: 44.3137%

 cdr39: 37.9734%

 cdr40: 37.0717%

 cdr41: 48.6772%

 cdr42: 38.25%

 cdr43: 48.8701%

 cdr44: 46.201%

Page 43

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 cdr45: 46.7803%

 cdr46: 55.8405%

 cdr47: 43.672%

 cdr48: 50.3623%

 cdr49: 65.4835%

 cdr50: 52.6807%

 cdr51: 45.7447%

 cdr52: 53.7037%

 cdr53: 49.6599%

 cdr54: 38.5739%

 cdr55: 63.3772%

 cdr56: 37.6274%

 cdr57: 38.0952%

 cdr58: 39.6352%

 cdr59: 39.6078%

 cdr60: 58.4795%

 cdr61: 49.4987%

 cdr62: 47.0968%

 cdr63: 45.0617%

 cdr64: 41.5133%

 cdr65: 40.2516%

 cdr66: 39.6208%

 cdr67: 40.4412%

 cdr68: 43.0199%

 cdr69: 40.5512%

Page 44

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 cdr70: 54.7325%

 cdr71: 45.3034%

 cdr72: 55.6634%

 cdr73: 43.7107%

 cdr74: 45.098%

 cdr75: 43.8406%

 cdr76: 49.4137%

 cdr77: 44.7006%

 cdr78: 44.6899%

 cdr79: 56.4151%

 cdr80: 36.1975%

 cdr81: 34.8238%

 cdr82: 38.5447%

 cdr83: 44.0451%

 cdr84: 45.6684%

 cdr85: 45.1696%

 cdr86: 40.9462%

 cdr87: 56.044%

 cdr88: 46.2366%

 cdr89: 41.1765%

 cdr90: 42.9698%

 cdr91: 47.8261%

 cdr92: 43.2234%

 cdr93: 49.7849%

 cdr94: 43.3755%

 cdr95: 51.2149%

Page 45

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Cdreg: 44.397%

Non-Cdreg: 37.1899%

ID: gb|AF022257.1| + gi|2415435

HIV-1 patient ACH0039, clone 3918C6 from The Netherlands, envelope

glycoprotein V3 region (env) gene, partial cds.

Sequence length: 388

Sequence map:

 Segment: pos=0, length=388, type=DATA

Total: 31.9588%

 cdr0: 31.9588%

Cdreg: 31.9588%

Non-Cdreg: 0%

ID: gb|AC116052.1| + gnl|WUGSC|RP23-291E18 + gi|19697559

Sequence length: 18561

Sequence map:

 Segment: pos=0, length=1082, type=DATA

 Segment: pos=1082, length=100, type=GAP

 Segment: pos=1182, length=1086, type=DATA

 Segment: pos=2268, length=100, type=GAP

 Segment: pos=2368, length=1096, type=DATA

 Segment: pos=3464, length=100, type=GAP

 Segment: pos=3564, length=1462, type=DATA

 Segment: pos=5026, length=100, type=GAP

Page 46

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 Segment: pos=5126, length=1217, type=DATA

 Segment: pos=6343, length=100, type=GAP

 Segment: pos=6443, length=1450, type=DATA

 Segment: pos=7893, length=100, type=GAP

 Segment: pos=7993, length=1086, type=DATA

 Segment: pos=9079, length=100, type=GAP

 Segment: pos=9179, length=1127, type=DATA

 Segment: pos=10306, length=100, type=GAP

 Segment: pos=10406, length=1145, type=DATA

 Segment: pos=11551, length=100, type=GAP

 Segment: pos=11651, length=1257, type=DATA

 Segment: pos=12908, length=100, type=GAP

 Segment: pos=13008, length=1024, type=DATA

 Segment: pos=14032, length=100, type=GAP

 Segment: pos=14132, length=1600, type=DATA

 Segment: pos=15732, length=100, type=GAP

 Segment: pos=15832, length=2729, type=DATA

Total: 43.9253%

No coding regions found

ID: sp|Q08345|DDR1_HUMAN + gi|729008

Epithelial discoidin domain receptor 1 precursor (Tyrosine kinase DDR)

(Discoidin receptor tyrosine kinase) (Tyrosine-protein kinase CAK)

(Cell adhesion kinase) (TRK E) (Protein-tyrosine kinase RTK 6)

(CD167a antigen) (HGK2).

Sequence length: 913

Page 47

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Sequence map:

 Segment: pos=0, length=913, type=DATA

Not a DNA

Common problems
1 How to construct Seq_id by accession?
2 What is the format of data CSeqVector returns?
3 What to pay attention to when processing cd-regions?

How to construct Seq_id by accession?—CSeq_id class has constructor, accepting a
string, which may contain a Bioseq accession, or accession and version separated with dot. If
no version is provided, the Object Manager will try to find and fetch the latest one.

What is the format of data CSeqVector returns?—GetSeqVector method of
CBioseq_Handle has optional argument to select data coding. One of the possible values for
this argument is CBioseq_Handle::eCoding_Iupac. It forces the resulting Seq-vector to convert
data to printable characters - either Iupac-na or Iupac-aa, depending on the sequence type. Gaps
in the sequence are coded with special character, which can be received using
CSeqVector::GetGapChar, for nucleotides in Iupac coding it will be 'N' character. Note that
when calculating the percentage of 'G' /'C' in a sequence you need to ignore gaps.

What to pay attention to when processing cd-regions?—When looking for cd-
regions on a sequence, you get a set of features, which locations describe their position on the
sequence. Please note, that these locations may, and do overlap, which makes calculating
percentage of 'G'/'C' in the cd-regions much more difficult. To simplify this part of the task
you can merge individual cd-region locations using CSeq_loc methods (do not forget to sort
the seq-locs for correct merging) and use the resulting seq-loc to initialize a Seq-vector. To
calculate percentage of 'G'/'C' for non-cdr parts of a sequence create a new seq-loc with
CSeq_loc::Subtract() method.

Page 48

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CSeq_loc

Table 1. Teaching Example: Sequence
Accession Version Gi Definition

AJ438945 AJ438945.1 19584253 Homo sapiens SLC16A1 gene...

Page 49

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2. Test Examples: Sequences
Accession Version Gi Definition

J01066 J01066.1 156787 D.melanogaster alcohol dehydrogenase gene, complete cds

U01317 U01317.1 455025 Human beta globin region on chromosome 11.

AJ293577 AJ293577.1 14971422 Homo sapiens partial MOCS1 gene, exon 1 and joined CDS

AH01100 AH011004.1 19550966 Mus musculus light ear protein (le) gene, complete cds

NT_017168 NT_017168.8 18565551 Homo sapiens chromosome 7 working draft sequence segment

AF022257 AF022257.1 2415435 HIV-1 patient ACH0039, clone 3918C6 from The Netherlands...

AC116052 AC116052.1 19697559 Mus musculus chromosome UNK clone

Q08345 Q08345 729008 Epithelial discoidin domain receptor 1 precursor...

Page 50

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BLAST API
[16]

Thomas Madden
madden@ncbi.nlm.nih.gov

Jason Papadopoulos
papadopo@ncbi.nlm.nih.gov

Christiam Camacho
camacho@ncbi.nlm.nih.gov

George Coulouris
coulouri@ncbi.nlm.nih.gov

Kevin Bealer
bealer@ncbi.nlm.nih.gov

Abstract

Introduction

BLAST (Basic Local Alignment Search Tool) is used to perform sequence similarity searches.
Most often this means that BLAST is used to search a sequence (either DNA or protein) against
a database of other sequences (either all nucleotide or all protein) in order to identify similar
sequences. BLAST has many different flavors and can not only search DNA against DNA or
protein against protein but also can translate a nucleotide query and search it against a protein
database as well as the other way around. It can also compute a “profile” for the query sequence
and use that for further searches as well as search the query against a database of profiles. BLAST
is available as a web service at the NCBI, as a stand-alone binary, and is built into other tools
such as . It is an extremely versatile program and probably the most heavily used similarity search
program in the world. BLAST runs on a multitude of different platforms that include Windows,
MacOS, LINUX, and many flavors of UNIX. It is also under continuing development with new
algorithmic innovations. Multiple references to BLAST can be found at http://
www.ncbi.nlm.nih.gov/BLAST/blast_references.shtml.

The version of BLAST in the NCBI C++ Toolkit was rewritten from scratch based upon the
version in the C Toolkit that was originally introduced in 1997. A decision was made to break the
code for the new version of BLAST into two different categories. There is the “core” code of
BLAST that is written in vanilla C and does not use any part of the NCBI C or C++ Toolkits.
There is also the “api” code that is written in C++ and takes full advantage of the tools provided
by the NCBI C++ Toolkit. The reason to write the core part of the code in vanilla C was so that
the same code could be used in the C Toolkit (to replace the 1997 version) as well as to make it
possible for researchers interested in algorithmic development to work with the core of BLAST
independently of any Toolkit. Even though the core part was written without the benefit of the C
++ or C Toolkits an effort was made to conform to the “Programming Policies and Guidelines”
from of this book. Doxygen-style comments are used to allow API documentation to be
automatically generated (see the BLAST Doxygen link at http://www.ncbi.nlm.nih.gov/ieb/
ToolBox/CPP_DOC/doxyhtml/group__AlgoBlast.html). Both the core and api parts of BLAST
can be found under algo/blast in the C++ Toolkit.

An attempt was made to isolate the user of the BLAST API (as exposed in algo/blast/api) from
the core of BLAST, so that algorithmic enhancements or refactoring of that code would be

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/doxyhtml/group__AlgoBlast.html
http://www.ncbi.nlm.nih.gov/BLAST/blast_references.shtml
http://www.ncbi.nlm.nih.gov/BLAST/blast_references.shtml
http://www.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/doxyhtml/group__AlgoBlast.html

transparent to the API programmer as far as that is possible. Since BLAST is continually under
development and many of the developments involve new features it is not always possible or
desirable to isolate the API programmer from these changes. This chapter will focus on the API
for the C++ Toolkit. A few different search classes will be discussed. These include the
CLocalBlast class, typically used for searching a query (or queries) against a BLAST database;
CRemoteBlast, used for sending searches to the NCBI servers; as well as CBl2Seq, useful for
searching target sequences that have not been formatted as a BLAST database.

Chapter Outline

CLocalBlast
! Query Sequence
! Options
! Target Sequences
! Results

CRemoteBlast
! Query Sequence
! Options
! Target Sequences
! Results

The Uniform Interface

CBl2Seq
! Query Sequence
! Options and Program Type
! Target Sequences
! Results

C++ BLAST Options Cookbook

CLocalBlast
The class CLocalBlast can be used for searches that run locally on a machine (as opposed to
sending the request over the network to use the CPU of another machine) and search a query
(or queries) against a preformatted BLAST database, which holds the target sequence data in
a format optimal for BLAST searches. The demonstration program blast_demo.cpp illustrates
the use of CLocalBlast. There are a few different CLocalBlast constructors, but they always
take three arguments reflecting the need for a query sequence, a set of BLAST options, and a
set of target sequences (e.g., BLAST database). First we discuss how to construct these
arguments and then we discuss how to access results.

Query Sequence
The classes that perform BLAST searches expect to be given query sequences in one of a few
formats. Each is a container for one or more query sequences expressed as CSeq_loc objects,
along with ancillary information. In this document we will only discuss classes that take either
a SSeqLoc or a TSeqLocVector, which is just a collection of SSeqLoc’s.

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/algo/blast/api/local_blast.hpp#L54
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/blast_opts_cookbook.html

CBlastInput is a class that converts an abstract source of sequence data into a format suitable
for use by the BLAST search classes. This class may produce either a TSeqLocVector container
or a CBlastQueryVector container to represent query sequences. As mentioned above we limit
our discussion to the TSeqLocVector class here.

CBlastInput can produce a single container that includes all the query sequences, or can output
a batch of sequences at a time (the combined length of the sequences within each batch can be
specified) until all of the sequences within the data source have been consumed.

Sources of sequence data are represented by a CBlastInputSource, or a class derived from it.
CBlastInput uses these classes to read one sequence at a time from the data source and convert
to a container suitable for use by the BLAST search classes.

An example use of CBlastInputSource is CBlastFastaInputSource, which represents a stream
containing fasta-formatted biological sequences. Usually this class represents a collection of
sequences residing in a text file. One sequence at a time is read from the file and converted
into a BLAST input container.

CBlastFastaInputSource uses CBlastInputConfig to provide more control over the file reading
process. For example, the read process can be limited to a range of each sequence, or sequence
letters that appear in lowercase can be scheduled for masking by BLAST. CBlastInputConfig
can be used by other classes to provide the same kind of control, although not all class members
will be appropriate for every data source.

Options
The BLAST options classes were designed to allow a programmer to easily set the options to
values appropriate to common tasks, but then modify individual options as needed. Table 1
lists the supported tasks.

The CBlastOptionsFactory class offers a single static method to create CBlastOptionsHandle
subclasses so that options applicable to all variants of BLAST can be inspected or modified.
The actual type of the CBlastOptionsHandle returned by Create is determined by its EProgram
argument (see Table 1). The return value of this function is guaranteed to have reasonable
defaults set for the selected task.

The CBlastOptionsHandle class encapsulates options that are common to all variants of
BLAST, from which more specific tasks can inherit the common options. The subclasses of
CBlastOptionsHandle should present an interface that is more specific, i.e.: only contain
options relevant to the task at hand, although it might not be an exhaustive interface for all
options available for the task. Please note that the initialization of this class' data members
follows the template method design pattern, and this should be followed by subclasses also.
Below is an example use of the CBlastOptionsHandle to create a set of options appropriate to
“blastn” and then to set the expect value to non-default values

using ncbi::blast;
 CRef<CBlastOptionsHandle> opts_handle(CBlastOptionsFactory::Create
(eBlastn));
 ...
 opts_handle->SetEvalueThreshold(1e-10);
 blast(query, opts_handle, db);

The CBlastOptionsHandle classes offers a Validate method in its interface which is called by
the BLAST search classes prior to performing the actual search, but users of the C++ BLAST

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastOptionsHandle.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/algo/blast/api/sseqloc.hpp#L74
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/algo/blast/api/sseqloc.hpp#L173
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastOptionsHandle.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastOptionsHandle.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastOptionsHandle.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCRef.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/group__AlgoBlast.html#g59eed1e74b8c89243ae
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/blast__types_8hpp.html#e1c0ad647974cd781398
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/struct__dp__demo_8cpp.html#I8bb76a03a06523f3046

options APIs might also want to invoke this method to ensure that any exceptions thrown by
the BLAST search classes do not originate from an incorrect setting of BLAST options. Please
note that the Validate method throws a CBlastException in case of failure.

If the same type of search (e.g., nucleotide query vs. nucleotide database) will always be
performed, then it may be preferable to create an instance of the derived classes of the
CBlastOptionsHandle. These classes expose an interface that is relevant to the task at hand,
but the popular options can be modified as necessary:

using
 ncbi::blast; CRef<CBlastNucleotideOptionsHandle
> nucl_handle(new
CBlastNucleotideOptionsHandle); nucl_handle->SetTraditionalBlastnDefaults
(); nucl_handle->SetStrandOption(objects::eNa_strand_plus
); CRef<CBlastOptionsHandle> opts = CRef<CBlastOptionsHandle> (&*
nucl_handle); CLocalBlast blast(query_factory, opts
, db);

The CBlastOptionsHandle design arranges the BLAST options in a hierarchy. For example all
searches that involve protein-protein comparisons (including proteins translated from a
nucleotide sequence) are handled by CBlastProteinOptionsHandle or a subclass (e.g.,
CBlastxOptionsHandle). A limitation of this design is that the introduction of new algorithms
or new options that only apply to some programs may violate the class hierarchy. To allow
advanced users to overcome this limitation the GetOptions and SetOptions methods of the
CBlastOptionsHandle hierarchy allow access to the CBlastOptions class, the lowest level class
in the C++ BLAST options API which contains all options available to all variants of the
BLAST algorithm. No guarantees about the validity of the options are made if this interface is
used, therefore invoking Validate is strongly recommended.

Target Sequences
One may specify a BLAST database to search with the CSearchDatabase class. Normally it is
only necessary to provide a string for the database name and state whether it is a nucleotide or
protein database. It is also possible to specify an entrez query or a vector of GI’s that will be
used to limit the search.

Results
The “Run” method of CLocalBlast returns a CSearchResultSet that may be used to obtain
results of the search. The CSearchResultSet class is a random access container of
CSearchResults objects, one for each query submitted in the search. The CSearchResult class
provides access to alignment (as a CSeq_align_set), the query Cseq_id, warning or error
messages that were generated during the run, as well as the filtered query regions (assuming
query filtering was set).

CRemoteBlast
The CRemoteBlast class sends a BLAST request to the SPLITD system at the NCBI. This can
be advantageous in many situations. There is no need to download the (possibly) large BLAST
databases to the user’s machine; the search may be spread across many machines by the
SPLITD system at the NCBI, making it very fast; and the results will be kept on the NCBI
server for 36 hours in case the users wishes to retrieve them again the next day. On the other
hand the user must select one of the BLAST databases maintained by the NCBI since it is not
possible to upload a custom database for searching. Here we discuss a CRemoteBlast

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/algo/blast/api/uniform_search.hpp#L232
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastException.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastOptionsHandle.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/group__AlgoBlast.html#g6b3c0e438d4c6cbc400
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastNucleotideOptionsHandle.html#f8b6653245a785b49df5
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/group__dataspec__NCBI__Seqloc.html#gg2d4d48fde1d3f62563
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastOptionsHandle.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCBlastOptions.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/algo/blast/api/uniform_search.hpp#L106

constructor that takes three arguments, reflecting the need for a query sequence(s), a set of
BLAST options, and a BLAST database. Readers are advised to read the CLocalBlast section
before they read this section.

Query Sequence
A TSeqLocVector should be used as input to CRemoteBlast. Please see the section on
CLocalBlast for details.

Options
CBlastOptionsFactory
::
Create can again be used to create options for CRemoteBlast. In this case though it is necessary
to set the second (default) argument of Create to “CBlastOptions::eRemote”.

Target Sequences
One may use the CSearchDatabase class to specify a BLAST database, similar to the method
outlined in the CLocalBlast section. In this case it is important to remember though that the
user must select from the BLAST databases available on the NCBI Web site and not one built
locally.

Results
After construction of the CRemoteBlast object the user should call one of the SubmitSync
methods. After this returns the method GetResultSet will return a CSearchResultSet which the
user can interrogate using the same methods as in CLocalBlast. Additionally the user may
obtain the request identifier (RID) issued by the SPLITD system with the method GetRID.

Finally CRemoteBlast provides a constructor that takes a string, which it expects to be an RID
issued by the SPLITD system. This RID might have been obtained by an earlier run of
CRemoteBlast or it could be one that was obtained from the NCBI SPLITD system via the
web page. Note that the SPLITD system will keep results on it’s server for 36 hours, so the
RID cannot be older than that.

The Uniform Interface
The ISeqSearch class is an abstract interface class. Concrete subclasses can run either local
(CLocalSeqSearch) or remote searches (CRemoteSeqSearch). The concrete classes will only
perform an intersection of the tasks that CLocalBlast and CRemoteBlast can perform. As an
example, there is no method to retrieve a Request identifier (RID) from subclasses of
ISeqSearch as this is supported only for remote searches but not for local searches. The methods
supported by the concrete subclasses and the return values are similar to those of CLocalBlast
and CRemoteBlast.

CBl2Seq
CBl2Seq is a class useful for searching a query (or queries) against one or more target sequences
that have not been formatted as a BLAST database. These sequences may, for example, come
from a user who pasted them into a web page or be fetched from the Entrez or ID1 services at
the NCBI. The CBl2Seq constructors all take three arguments, reflecting the need for a set of
query sequences, a set of target sequences, and some information about the BLAST options or
program type to use. In this section it is assumed the reader has already read the previous section
on CLocalBlast.

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/algo/blast/api/bl2seq.hpp#L51
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=ISeqSearch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CLocalSeqSearch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CRemoteSeqSearch

The BLAST database holds the target sequence data in a format optimal for BLAST searches,
so that if a target sequence is to be searched more than a few times it is best to convert it to a
BLAST database and use CLocalBlast.

Query Sequence
The query sequence (or sequences) is represented either as a SSeqLoc (for a single query
sequence) or as a TSeqLocVector (in the case of multiple query sequences). The CBlastInput
class, described in the CLocalBlast section, can be used to produce a TSeqLocVector.

Options and Program Type
The CBl2Seq constructor takes either an EProgram enum (see Table 1) or
CBlastOptionsHandle (see relevant section under CLocalBlast). In the former case the default
set of options for the given EProgram are used. In the latter case it is possible for the user to
set options to non-default values.

Target Sequences
The target sequence(s) is represented either as a SSeqLoc or TSeqLocVector.

Results
The Run method of the CBl2Seq class returns a collection of CSeq_align_set’s. The method
GetMessages may be used to obtain any error or warning messages generated during the search.

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CBlastOptionsHandle
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=EProgram

Table 1: List of tasks supported by the CBlastOptionsHandle. “Translated nucleotide” means that the
input was nucleotide, but the comparison is based upon the protein. PSSM is a “position-specific scoring
matrix”. The “EProgram” can be used as an argument to CBlastOptionsFactory::Create

EProgram (enum) Default Word-size Query type Target type Notes

eBlastN 11 Nucleotide Nucleotide

eMegablast 28 Nucleotide Nucleotide Optimized for speed and closely related
sequences

eDiscMegablast 11 Nucleotide Nucleotide Optimized for cross-species matches

eBlastp 3 Protein Protein

eBlastx 3 Translated nucleotide Protein

eTblastn 3 Protein Translated nucleotide

eTblastx 3 Translated nucleotide Translated nucleotide

eRPSBlast 3 Protein PSSM Can very quickly identify domains

eRPSTblastn 3 Translated nucleotide PSSM

ePSIBlast 3 PSSM Protein Extremely sensitive method to find distant
homologies

ePHIBlastp 3 Protein Protein Uses pattern in query to start alignments

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Access to NCBI data
[17]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This chapter describes access to the NCBI data using the NCBI C++ Toolkit.

Chapter Outline
! Object Manager: Generic API for retrieving and manipulating biological sequence data
! E-Utils: Access to Entrez Data

Object Manager: Generic API for retrieving and manipulating biological
sequence data

The information about Object Manager library is here

E-Utils: Access to Entrez Data
EUtils requests

The base class for all requests is CEUtils_Request. Derived request classes provide Get/Set
methods to specify arguments for each request. The returned data can be read in several ways:
! Read() - reads the data returned by the server into a string.
! GetStream() - allows to read plain data returned by the server.
! GetObjectIStream() - returns serial stream for reading data (in most cases it's an XML

stream).

Connection context
CEUtils_ConnContext allows transferring EUtils context from one request to another. It
includes user-provided information (tool, email) and history data (WebEnv, query_key). If no
context is provided for a request (the ctx argument is NULL), a temporary context will be
created while executing the request.

EUtils objects
Most requests return specific data types described in EUtils DTDs. The C++ classes generated
from the DTDs can be found in include/objtools/eutils/ <util-name>.

Sample application
An example of using EUtils API can be found in sample/app/eutils/eutils_sample.cpp.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/sample/app/eutils/eutils_sample.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CEUtils_Request
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CEUtils_ConnContext
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/objtools/eutils

Biological Sequence Alignment
[18]

The Global Alignment Library [xalgoalign:include | src]
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

The library contains C++ classes encapsulating global pairwise alignment algorithms frequently
used in computational biology.
! CNWAligner is the base class for the global alignment algorithm classes. The class

provides an implementation of the generic Needleman-Wunsch for computing global
alignments of nucleotide and amino acid sequences. The implementation uses an affine
scoring scheme. An optional end-space free variant is supported, which is useful in
applications where one of sequences is expected to align in the interior of the other
sequences, or the suffix of one string to align with a prefix of the other.

The classical Needleman-Wunsch algorithm is known to have memory and CPU
requirements of the order of the sequence lengths' product. If consistent partial alignments
are available, the problem is split into smaller subproblems taking fewer operations and
less space to complete. CNWAligner provides a way to specify such partial alignments
(ungapped).

! CBandAligner encapsulates the banded variant of the global alignment algorithm which
is applicable when the number of differences in the target alignment is limited ('the band
width'). The computational cost of the algorithm is of the order of the band width
multiplied by the length of the query sequence.

! CMMAligner follows Hirschberg's divide-and-conquer approach under which the
amount of space required to align two sequences globally becomes a linear function of
the sequences' lengths. Although the latter is achieved at a cost of up to twice longer
running time, a multithreaded version of the algorithm can run even faster than the
classical Needleman-Wunsch algorithm in a multiple-CPU environment.

! CSplicedAligner is an abstract base for algorithms computing cDNA-to-genome, or
spliced alignments. Spliced alignment algorithms specifically account for splice signals
in their dynamic programming recurrences resulting in better alignments for these
particular but very important types of sequences.

Chapter Outline

The following is an outline of the chapter topics:
! Computing pairwise global sequence alignments

" Initialization
" Parameters of alignment
" Computing
" Alignment transcript

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! Computing multiple sequence alignments
! Aligning sequences in linear space

" The idea of the algorithm
" Implementation

! Computing spliced sequences alignments
" The problem
" Implementation

! Formatting computed alignments
" Formatter object

Demo Cases [src/algo/align/nw/demo/nwa] [src/algo/align/splign/demo/splign]

Computing pairwise global sequence alignments
Generic pairwise global alignment functionality is provided by CNWAligner.

NOTE:CNWAligner.is not a multiple sequence aligner. The example of using CNWAligner
can be seen here.

This functionality is discussed in the following topics:
! Initialization
! Parameters of alignment
! Computing
! Alignment transcript

Initialization
Two constructors are provided to initialize the aligner:

CNWAligner(const char* seq1, size_t len1,

 const char* seq2, size_t len2,

 const SNCBIPackedScoreMatrix* scoremat = 0);

CNWAligner(void);

The first constructor allows specification of the sequences and the score matrix at the time of
the object's construction. Note that the sequences must be in the proper strands, because the
aligners do not build reverse complementaries. The last parameter must be a pointer to a
properly initialized SNCBIPackedScoreMatrix object or zero. If it is a valid pointer, then the
sequences are verified against the alphabet contained in the SNCBIPackedScoreMatrix object,
and its score matrix is further used in dynamic programming recurrences. Otherwise, sequences
are verified against the IUPACna alphabet, and match/mismatch scores are used to fill in the
score matrix.

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/nw_aligner
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/align/nw/demo/nwa
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/algo/align/splign/demo/splign

The default constructor is provided to support reuse of an aligner object when many sequence
pairs share the same type and alignment parameters. In this case, the following two functions
must be called before computing the first alignment to load the score matrix and the sequences:

void SetScoreMatrix(const SNCBIPackedScoreMatrix* scoremat = 0);

void SetSequences(const char* seq1, size_t len1,

 const char* seq2, size_t len2,

 bool verify = true);

where the meaning of scoremat is the same as above.

Parameters of alignment
CNWAligner realizes affine gap penalty model, which means that every gap of length L (with
the possible exception of end gaps) contributes Wg+L*Ws to the total alignment score, where
Wg is a cost to open the gap and Ws is a cost to extend the gap by one basepair. These two
parameters are always in effect when computing sequence alignments and can be set with

void SetWg (TScore value); // set gap opening score

void SetWs (TScore value); // set gap extension score

To indicate penalties, both gap opening and gap extension scores are assigned with negative
values.

Many applications (such as the shotgun sequence assembly) benefit from a possibility to avoid
penalizing end gaps of alignment, because the relevant sequence's ends may not be expected
to align. CNWAligner supports this through a built-in end-space free variant controlled with
a single function:

void SetEndSpaceFree(bool Left1, bool Right1, bool Left2, bool Right2);

The first two arguments control the left and the right ends of the first sequence. The other two
control the second sequence's ends. True value means that end spaces will not be penalized.
Although an arbitrary combination of end-space free flags can be specified, judgment should
be used to get plausible alignments.

The following two functions are only meaningful when aligning nucleotide sequences:

void SetWm (TScore value); // set match score

void SetWms (TScore value); // set mismatch score

The first of them sets a bonus associated with every matching pair of nucleotides. The second
function assigns a penalty for every mismatching aligned pair of nucleotides. It is important

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

that values set with these two functions will only take effect after SetScoreMatrix() is called
(with a zero pointer, whichis the default).

One thing that could limit the scope of global alignment applications is that the classical
algorithm takes quadratic space and time to evaluate the alignment. One wayto deal with it is
to use the linear-space algorithm encapuslated in CMMAligner. However, when some pattern
of alignment is known or desired, it is worthwhile to explicitly specify "mile posts" through
which the alignment should pass. Long high-scoring pairs with 100% identity (no gaps or
mismatches) are typically good candidates for them. From the algorithmic point of view, the
pattern splits the dynamic programming table into smaller parts, thus alleviating space and
CPU requirements. The following function is provided to let the aligner know about such
guiding constraints:

void SetPattern(const vector<size_t>& pattern);

Pattern is a vector of hits specified by their zero-based coordinates, as in the following example:

// the last parameter omitted to indicate nucl sequences

CNWAligner aligner (seq1, len1, seq2, len2);

// we want coordinates [99,119] and [129,159] on seq1 be aligned

// with [1099,1119] and [10099,10129] on seq2.

const size_t hits [] = { 99, 119, 1099, 1119, 129, 159, 10099, 10129 };

vector<size_t> pattern (hits, hits + sizeof(hits)/sizeof(hits[0]));

aligner.SetPattern(pattern);

Computing
To start computations, call Run(), which returns the overall alignment score having aligned
the sequences. Score is a scalar value associated with the alignment and depends on the
parameters of the alignment. The global alignment algorithms align two sequences so that the
score is the maximum over all possible alignments.

Alignment transcript
The immediate output of the global alignment algorithms is a transcript.The transcript serves
as a basic representation of alignments and is simply a string of elementary commands
transforming the first sequence into the second one on a per-character basis. These commands
(transcript characters) are (M)atch, (R)eplace, (I)nsert, and (D)elete. For example, the
alignment

TTC-ATCTCTAAATCTCTCTCATATATATCG

||| |||||| |||| || ||| ||||

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

TTCGATCTCT-----TCTC-CAGATAAATCG

has a transcript

MMMIMMMMMMDDDDDMMMMDMMRMMMRMMMM

Several functions are available to retrieve and analyze the transcript:

// raw transcript

const vector<ETranscriptSymbol>* GetTranscript(void) const {

 return &m_Transcript;

}

// converted transcript vector

void GetTranscriptString(vector<char>* out) const;

// transcript parsers

size_t GetLeftSeg(size_t* q0, size_t* q1,

 size_t* s0, size_t* s1,

 size_t min_size) const;

size_t GetRightSeg(size_t* q0, size_t* q1,

 size_t* s0, size_t* s1,

 size_t min_size) const;

size_t GetLongestSeg(size_t* q0, size_t* q1,

 size_t* s0, size_t* s1) const;

The last three functions search for a continuous segment of matching characters and return it
in sequence coordinates through q0, q1, s0, s1.

The alignment transcript is a simple yet complete representation of alignments that can be used
to evaluate virtually every characteristic or detail of any particular alignment. Some of them,
such as the percent identity or the number of gaps or mismatches, could be easily restored from
the transcript alone, whereas others, such as the scores for protein alignments, would require
availability of the original sequences.

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Computing multiple sequence alignments
COBALT (COnstraint Based ALignment Tool) is an experimental multiple alignment
algorithm whose basic idea was to leverage resources at NCBI, then build up a set of pairwise
constraints, then perform a fairly standard iterative multiple alignment process (with many
tweaks driven by various benchmarks). A precompiled binary, with the data files needed to
run it, is available at

ftp://ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt/

The work is being done on an improved COBALT tool.

The paper reference for this algorithm is

J.S. Papadopoulos, R. Agarwala, "COBALT: Constraint-Based Alignment Tool for Multiple
Protein Sequences". Bioinformatics, May 2007

Aligning sequences in linear space
CMMAligner is an interface to a linear space variant of the global alignment algorithm. This
functionality is discussed in the following topics:
! The idea of the algorithm
! Implementation

The idea of the algorithm
That the classical global alignment algorithm requires quadratic space could be a serious
restriction in sequence alignment. One way to deal with it is to use alignment patterns. Another
approach was first introduced by Hirschberg and became known as a divide-and-conquer
strategy. At a coarse level, it suggests computating of scores for partial alignments starting
from two opposite corners of the dynamic programming matrix while keeping only those
located in the middle rows or columns. After the analysis of the adjacent scores, it is possible
to determine cells on those lines through which the global alignment's back-trace path will go.
This approach reduces space to linear while only doubling the worst-case time bound. For
details see, for example, Dan Gusfield's "Algorithms on Strings, Trees and Sequences".

Implementation
CMMAligner inherits its public interface from CNWAligner. The only additional method
allows us to toggle multiple-threaded versions of the algorithm.

The divide-and-conquer strategy suggests natural parallelization, where blocks of the dynamic
programming matrix are evaluated simultaneously. A theoretical acceleration limit imposed
by the current implementation is 0.5. To use multiple-threaded versions, call
EnableMultipleThreads(). The number of simultaneously running threads will not exceed the
number of CPUs installed on your system.

When comparing alignments produced with the linear-space version with those produced by
CNWAligner, be ready to find many of them similar, although not exactly the same. This is
normal, because several optimal alignments may exist for each pair of sequences.

Computing spliced sequences alignments
This functionality is discussed in the following topics:
! The problem

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nlm.nih.gov/pub/agarwala/cobalt

! Implementation

The problem
The spliced sequence alignment arises as an attempt to address the problem of eukaryotic gene
structure recognition. Tools based on spliced alignments exploit the idea of comparing genomic
sequences to their transcribed and spliced products, such as mRNA, cDNA, or EST sequences.
The final objective for all splice alignment algorithms is to come up with a combination of
segments on the genomic sequence that:
! makes up a sequence very similar to the spliced product, when the segments are

concatenated
! satisfies certain statistically determined conditions, such as consensus splice sites and

lengths of introns
According to the classical eukaryotic transcription and splicing mechanism, pieces of genomic
sequence do not get shuffled. Therefore, one way of revealing the original exons could be to
align the spliced product with its parent gene globally. However, because of the specificity of
the process in which the spliced product is constructed, the generic global alignment with the
affine penalty model may not be enough. To address this accurately, dynamic programming
recurrences should specifically account for introns and splice signals.

Algorithms described in this chapter exploit this idea and address a refined splice alignment
problem presuming that
! the genomic sequence contains only one location from which the spliced product could

have originated
! the spliced product and the genomic sequence are in the plus strand
! the poly(A) tail and any other chunks of the product not created through the splicing

were cut off, although a moderate level of sequencing errors on genomic, spliced, or
both sequences is allowed

In other words, the library classes provide basic splice alignment algorithms to be used in more
sophisticated applications. One real-life application, Splign, can be found under demo cases
for the library.

Implementation
There is a small hierarchy of three classes involved in spliced alignment facilitating a quality/
performance trade-off in the case of distorted sequences:
! CSplicedAligner - abstract base for spliced aligners.
! CSplicedAligner16 - accounts for the three conventional splices (GT/AG, GC/AG,

AT/AC) and a generic splice; uses 2 bytes per back-trace matrix cell. Use this class
with high-quality genomic sequences.

! CSplicedAligner32 - accounts for the three conventionals and splices that could be
produced by damaging bases of any conventional; uses 4 bytes per back-trace matrix
cell. Use this class with distorted genomic sequences.

The abstract base class for spliced aligners, CNWSplicedAligner, inherites an interface from
its parent, CNWAligner, adding support for two new parameters: intron penalty and minimal
intron size (the default is 50).

All classes assume that the spliced sequence is the first of the two input sequences passed. By
default, the classes do not penalize gaps at the ends of the spliced sequence. The default intron

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

penalties are chosen so that the 16-bit version is able able to pick out short exons, whereas the
32-bit version is generally more conservative.

As with the generic global alignment, the immediate output of the algorithms is the alignment
transcript. For the sake of spliced alignments, the transcript's alphabet is augmented to
accommodate introns as a special sequence-editing operation.

Formatting computed alignments
This functionality is discussed in the following topics:
! Formatter object

Formatter object
CNWFormatter is a single place where all different alignment representations are created. The
only argument to its constructor is the aligner object that actually was or will be used to align
the sequences.

The alignment must be computed before formatting. If the formatter is unable to find the
computed alignment in the aligner that was referenced to the constructor, an exception will be
thrown.

To format the alignment as a CSeq_align structure, call

void AsSeqAlign(CSeq_align* output) const;

To format it as text, call

void AsText(string* output, ETextFormatType type, size_t line_width = 100)

Supported text formats and their ETextFormatType constants are:
! Type 1 (eFormatType1):TTC-ATCTCTAAATCTCTCTCATATATATCG

TTCGATCTCT-----TCTC-CAGATAAATCG

^ ^
! Type 2 (eFormatType2):TTC-ATCTCTAAATCTCTCTCATATATATCG

||| |||||| |||| || ||| ||||

TTCGATCTCT-----TCTC-CAGATAAATCG
! Gapped FastA (eFormatFastA):>SEQ1

TTC-ATCTCTAAATCTCTCTCATATATATCG

>SEQ2

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

TTCGATCTCT-----TCTC-CAGATAAATCG
! Table of exons (eFormatExonTable) - spliced alignments only. The exons are listed

from left to right in tab-separated columns. The columns represent sequence IDs,
alignment lengths, percent identity, coordinates on the query (spliced) and the subject
sequences, and a short annotation including splice signals.

! Extended table of exons (eFormatExonTableEx) - spliced alignments only. In addition
to the nine columns, the full alignment transcript is listed for every exon.

! ASN.1 (eFormatASN)

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

GUI and Graphics
[19]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This section is intended as an overview of GUI and graphics development in NCBI.

Chapter Outline

GUI [include/gui | src/gui]

GUI [Library gui: include | src]
! GUI Development
! FLTK Documentation
! Sequence View

NCBI C++ GUI Development
We have decided to use FLTK and OpenGL for our GUI needs.

Presently, we use FLTK Release 1.1. Internal developers can use pre-built FLTK from $NCBI/
fltk/ on UNIX platforms, and from \\DISSY\public\fltk\ on MS-Windows. Its full source
archive is available internally at $NCBI/fltk/share/src/fltk-1.1.0-source.tar.bz2.

GUI part of the NCBI C++ Toolkit defines its own namespace: "gui". GUI namespace will
also include NCBI namespace. In your code use BEGIN_GUI_SCOPE and
END_GUI_SCOPE when working on GUI projects

GUI part of the NCBI C++ Toolkit introduces the type definitions shown in Table 1.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.opengl.org/
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/gui
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/gui
http://www.fltk.org/documentation.php
http://www.fltk.org/documentation.php

Table 1
Type Definitions

Type Description

TColor used to deal with colors in GUI. Sequence View stores the color that is either an index into a color palette of 256 colors (like
FL_YELLOW) or a 24-bit RGB color. The color palette is not the X or WIN32 color map, but instead is an FLTK internal table
with fixed contents. Currently defined as Fl_Color. Take a look into FL/Enumerations.H in the FLTK for complete list of definitions.
Take a look into FLTK documentation on how to define new colors.

TKey used to store the values for keyboard keys like FL_Left, 'c', 'A', FL_Page_Up. Currently defined as integer. Take a look into FL/
Enumerations.H in the FLTK for complete list of definitions.

TKeyState used to store the values for keyboard keys modifiers like Control, Alt or Shift (FL_CTRL, FL_ALT, FL_SHIFT). Currently defined
as integer. Take a look into FL/Enumerations.H in the FLTK for complete list of definitions.

TLineNo used to store line numbers in the Sequence View. Currently defined as integer.

TCharNo used to store character positions in the Sequence View. Currently defined as integer.

TDimension used to store various measurements in the Sequence View. Currently defined as integer.

TPosition used to store X or Y coordinates in the Sequence View. Currently defined as integer.

Sequence View (SeqView) Control
! Overview.
! The SeqView architecture.

" Classes overview.
! Setting up the Sequence View.

" Setting up SeqView with FLUID
" Setting up SeqView manually

! Sequence View Data Source
" Creating a data source
" Displaying molecule features

! Using NCBI C++ Toolkit Object Manager to implement data source
" Implementing GetSequenceLength with Object Manager
" Implementing GetSequence with Object Manager
" Implementing GetFeatures with Object Manager

! Handling keyboard and mouse events
" Keyboard events
" Cut/Copy/Paste events
" Double-click event

! Sequence View Methods
" Assigning a data source
" Feature display
" Sequence Selection
" Sequence Cursor
" Sequence View Colors

! Sequence View Demo Application

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Overview
The NCBI GUI SEQ library describes and implements a set of objects needed to display and
navigate molecule sequences and features. The basic functionality allows to display a molecule
sequence and features, use mouse or keyboard to select parts of the sequence, get feature
information, change features shape, change various interface colors. The main advantage of
using the SeqView is that you can have multiple sequence data sources and can easily and fast
switch between them (see Figure 1).

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Sequence View

The SeqView architecture
The Sequence View relies on two external components: OpenGL and FLTK. OpenGL is used
for all drawing, FLTK is used to layout and display GUI elements.

Classes overview—The SeqView consists of a three classes:

CSeqPanel OpenGL panel inherited from Fl_Gl_Window. Actual drawing is done here.
CSeqView The Sequence View itself. Contains CSeqPanel and Fl_Scrollbar.
CSeqDataSource A Sequence View data source. Used by CSeqPanel to get sequence and
features to draw. All mouse and keyboard events are also handled here. Inherit your data source
implementation from this class.

Setting up the Sequence View
These three steps are required to use SeqView in your code:

1 Create an instance of Sequence View Widget.
2 Define your data source (inherit CSeqDataSource and implement required methods)
3 Register the data source with Sequence View.

Setting up SeqView with FLUID—The easiest way to setup a Sequence View is to use
FLUID - FLTK interface designer:

1 Add new Fl_Group (New->group->Group in FLUID menu) to your window.
2 Enter CSeqView as a class name in the C++ tab of the Property dialog.
3 Enter m_SeqView as a member name.
4 Enter #include "gui/seq/view.hpp" in the "extra code" field below

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 FLUID will generate code to create an instance of CSeqView and to add it to your
window.

Setting up SeqView manually—To setup Sequence View manually use the standard FLTK
widgets constructor. Something like:

CSeqView* m_SeqView = new CSeqView(10, 40, 850, 390);

Sequence View Data Source
Creating a data source—The data source is required to provide Sequence View with the
actual sequence data to display. To create a data source:

1 Inherit your data source from CSeqDataSource
2 Implement the 4 required methods.

TSeqPos GetSequenceLength() to return the sequence lengthvoid GetSequence
(TSeqPos from, TSeqPos to, string& buffer) to fill buffer with molecule sequence
within a given regionvoid GetFeatures(TSeqPos from, TSeqPos to, vector& vec) to
fill vector of features within a given region

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 Implement optional methods, such as keyboard and mouse events handling.
4 Register your data source with Sequence View by calling SetDataSource() method of

the Sequence View.

Displaying molecule features—Sequence View is capable of displaying four different
kinds of feature shapes. These shapes are defined in the CVisibleFeature class.

enum EType {
 eBox, // a rectangle
 eRightArrow, // a right facing arrow
 eLeftArrow, // a left facing arrow
 eMulti // a feature with multiple features on it
};

Attributes of each feature are shown in Table 2.

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2
Sequence View Features and Attributes

Feature Attribute

string m_Id Unique ID to identify feature

TseqPos m_From Feature start

TseqPos m_To Feature finish

TColor m_Color Feature color

EType m_Type Shape to represent the feature.

TDimension m_Height Height of the feature bar. Two extra margin pixels (on top and bottom) will be automatically added
to this value.

vector< CVisibleFeature > m_SubIntervals Define sub-intervals for multi features (eMulti type). For all other feature types this will be ignored.

Table 3 demonstrates various kinds of shapes, height and colors to customize feature display.

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 3
Feature Display

Type Appearance (Heights from 1 to 5)

eBox

eRightArrow

eLeftArrow

eMulti

Using NCBI C++ Toolkit Object Manager to implement data source
The NCBI C++ Toolkit Object Manager is ideally suited for use in the Sequence View data
sources.

Implementing GetSequenceLength with Object Manager—

TSeqPos GetSequenceLength()
CSeqVector seq_vect =
 bioseq_handle.GetSeqVector(EVectorCoding ::eCoding_Iupac,
 EVectorStrand::eStrand_Plus);
return seq_vect.size();

Implementing GetSequence with Object Manager—

void GetSequence(TSeqPos from, TSeqPos to, string& buffer)
seq_vect.GetSeqData (from, to, buffer);

Implementing GetFeatures with Object Manager—

void GetFeatures(TSeqPos from, TSeqPos to, vector& vec)

for (CFeat_CI feat_it(bioseq_h, from, to, CSeqFeatData::e_Genes);

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 feat_it; ++feat_it) {
 const CSeq_feat& feat = *feat_it;

 CVisibleFeature vf;
 vf.m_Id = "Gene: " + feat.GetTitle();
 vf.m_From = feat.GetLocation().GetTotalRange().GetFrom();
 vf.m_To = feat.GetLocation().GetTotalRange().GetTo();
 vf.m_Height = 3;
 vf.m_Color = FL_RED;
 vf.m_Type = CVisibleFeature::eBox;
 vec.push_back(vf);
}

Features will be shown in the Sequence View in the exact order of features in "vec" vector.
The best way to group features by type is to iterate through one kind of feature after another
in the order you would like them to appear in the Sequence View.

Handling keyboard and mouse events
The support for keyboard and mouse events is implemented in the Sequence View data source.
One can override any of the following virtual functions and implement its own handlers for
these events, which are:

KeyPressed, Cut, Copy, Paste, DoubleClick

enum ERedraw {
 eRedraw, - Redraw the view after event
 eNoRedraw - Do not redraw the view after event
}

If a method modifies the data it should return an "eRedraw" – a notice to Sequence View to
redraw itself. eNoRedraw indicates that no changes to the data was made and therefore redraw
is not necessary.

Keyboard events—The KeyPressed method will be called each time a key is pressed in the
Sequence View.

ERedraw KeyPressed(TKey key, TKeyState key_state, TSeqPos cursor);

In this call "key" is FLTK definition for a key pressed and "key_state" contains keyboard states
for Shift, Control, Alt and some other keys. Please refer to FL/Enumerations.H in FLTK for
complete list of keys and keystate definitions. The "cursor" contains current position of a
Sequence Cursor in the view.

One of possible uses of this method is to implement an "inline" editing of a molecule sequence.

Cut/Copy/Paste events—Separately from the keyboard events handler, methods for
clipboard shortcuts are implemented. These methods will be called each time a Cut, Copy or
Paste key combination is pressed in the Sequence View. These key combinations are platform-
dependent and handled by FLTK engine. (For example: Ctrl-C, for Copy on Windows and
Option-C on Mac).

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ERedraw Cut (TSeqPos from, TSeqPos to, TSeqPos cursor);
ERedraw Copy (TSeqPos from, TSeqPos to, TSeqPos cursor);
ERedraw Paste(TSeqPos from, TSeqPos to, TSeqPos cursor);

In these calls "from" and "to" define the position of the sequence selection in the View and
"cursor" is a current cursor position. Don't forget to return eRedraw if the sequence data is
modified by those methods.

Double-click event—DoubleClick method is called each time when double-click event
occurs in the valid area of the Sequence View.

ERedraw DoubleClick(TSeqPos at, const string& feature_id);

In this call "at" is a sequence position of the double click and "feature_id" contains the ID of
a feature if feature was clicked on.

Sequence View Methods
The following ten methods are available in Sequence View:

SetDataSource, ShowFeatures, HideFeatures, SetSelection, GetSelectionStart,
GetSelectionFinish, SetCursor, GetCursor, SetColor and GetColor.

Setting up a data source—Use SetDataSource method to register a new DataSource with
Sequence View.

void SetDataSource(CSeqDataSource* ds)

In this call "ds" is a user data source inherited from CSeqDataSource.

Feature display—To enable or disable display of a sequence features use the following pair
of Sequence View methods.

void ShowFeatures() – to enable features display.
void HideFeatures() – to disable features display.

By default, features are not shown.

Sequence Selection—Region of the sequence can be selected programmatically using:

void SetSelection(TSeqPos start, TSeqPos finish)

To obtain the current sequence selection region, use the following pair of methods:

TSeqPos GetSelectionStart() - get start of selected region
TSeqPos GetSelectionFinish() - get finish of selected region

Page 10

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Sequence Cursor—Position of the cursor in the sequence can be set or retrieved using:

void SetCursor(TSeqPos pos)
TSeqPos GetCursor()

Sequence View Colors—Sequence view allows customizing the color of the following
display elements:

enum EDisplayElement {
 /// the Sequence View background color. The default is FL_BLACK.
 eBackground,
 /// the color of grid lines. The default is FL_GRAY.
 eGrid,
 /// the color of sequence numbers. The default is FL_YELLOW.
 eNumbers,
 /// the color of sequence letters. The default is FL_WHITE.
 eSequence,
 /// the color of sequence selection. The default is FL_BLUE.
 eSelection,
 /// the color of sequence cursor. The default is FL_GREEN.
 eCursor
};

Please refer to FLTK documentation for a complete list of fixed color definitions or use
fl_rgb_color() call to create your own color:

Fl_Color c = fl_rgb_color(85, 170, 255);

The following pair of methods allows setting and retrieving the color of a particular display
element of a Sequence View.

void SetColor(EDisplayElement elem, TColor color)
TColor GetColor(EDisplayElement elem)

Sequence View Demo Application
Demo View is small application to demonstrate the basics of the Sequence View.

demo_view.cpp - code generated by FLUID (Fast Light User Interface Designer). Please use
FLUID to open demo_view.fl template file.

CSeqViewTestDS - is a sample data source that uses NCBI C++ Toolkit Object Manager to
get real molecules from DB.

The demo data source also implements a sample Cut/Copy/Paste operations and double-click
handling.

Page 11

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Using the Boost Unit Test Framework
[20]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This chapter discusses the Boost Unit Test Framework and how to use it within NCBI. The NCBI
C++ Toolkit has incorporated and extended the open source Boost.Test Library, and provides a
simplified way for the developers to create Boost-based C++ unit tests.

The NCBI extensions add the ability to:
! execute the code in a standard (CNcbiApplication -like) environment;
! disable test cases or suites, using one of several methods;
! establish dependencies between test cases and suites;
! use NCBI command-line argument processing;
! add initialization and finalization functions; and
! use convenience macros for combining NO_THROW with other test tools.

While the framework may be of interest to outside organizations, this chapter is intended for NCBI
C++ developers. See also the Doxygen documentation for tests.

Chapter Outline

The following is an outline of the topics presented in this chapter:
! Why Use the Boost Unit Test Framework?
! How to Use the Boost Unit Test Framework

" Creating a New Unit Test
" Customizing an Existing Unit Test

Modifying the Makefile
Modifying the Source File

! Using Testing Tools
! Adding Initialization and/or Finalization
! Handling Timeouts
! Handling Command-Line Arguments in Test Cases
! Creating Test Suites
! Managing Dependencies
! Unit Tests with Multiple Files

Disabling Tests
! Disabling Tests with Configuration File Entries

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov:6224/ieb/ToolBox/CPP_DOC/doxyhtml/group__Tests.html
http://www.boost.org/doc/libs/1_37_0/libs/test/doc/html/index.html

! Disabling Tests with Variables
! Disabling Tests Explicitly in Code

" Viewing Unit Tests Results from the Nightly Build
" Running Unit Tests from a Command-Line
" Limitations Of The Boost Unit Test Framework

Why Use the Boost Unit Test Framework?
#...I would like to see a practical plan for every group in Internal Services to move toward
standardized testing. Then, in addition to setting an example for the other coding groups, I
hope that you will have guidance for them as well about how best to move ahead in this
direction. Once you have that, and are adhering to it yourselves, I will start pushing the other
coding groups in that direction.”
! Jim Ostell, April 21, 2008

The value of unit testing is clearly recognized at the highest levels of management at NCBI.
Here are some of the ways that using the Boost Unit Test Framework will directly benefit the
developer:
! The framework provides a uniform (and well-supported) testing and reporting

environment.
! Using the framework simplifies the process of creating and maintaining unit tests:

" The framework helps keep tests well-structured, straightforward, and easily
expandable.

" You can concentrate on the testing of your functionality, while the framework
takes care of all the testing infrastructure.

! The framework fits into the NCBI nightly build system:
" All tests are run nightly on many platforms.
" All results are archived and available through a web interface.

How to Use the Boost Unit Test Framework
Creating a New Unit Test

On UNIX or MS Windows, use the new_project script to create a new unit test project:

new_project <name> app/unit_test

For example, to create a project named foo, type this in a command shell:

new_project foo app/unit_test

This creates a directory named foo and then creates two projects within the new directory. One
project will be the one named on the command-line (e.g. foo) and will contain a sample unit
test using all the basic features of the Boost library. The other project will be named
unit_test_alt_sample and will contain samples of advanced techniques not required in most
unit tests.

You can build and run these projects immediately to see how they work:

Page 2

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet/ieb/ToolBox/STAT/test_stat/test_stat_ext.cgi

cd foo
make
make check

Once your unit test is created, you must customize it to meet your testing requirements. This
involves editing these files:

File Purpose

Makefile Main makefile for this directory - builds both the foo and unit_test_alt_sample unit tests.

Makefile.builddir Contains the path to a pre-built C++ Toolkit.

Makefile.foo_app Makefile for the foo unit test.

Makefile.in

Makefile.unit_test_alt_sample_app Makefile for the unit_test_alt_sample unit test.

foo.cpp Source code for the foo unit test.

unit_test_alt_sample.cpp Source code for the unit_test_alt_sample unit test.

unit_test_alt_sample.ini Configuration file for the unit_test_alt_sample unit test.

Customizing an Existing Unit Test
This section contains the following topics:
! Modifying the Makefile
! Modifying the Source File

" Using Testing Tools
" Adding Initialization and/or Finalization
" Handling Timeouts
" Handling Command-Line Arguments in Test Cases
" Creating Test Suites
" Managing Dependencies
" Unit Tests with Multiple Files

! Disabling Tests
" Disabling Tests with Configuration File Entries
" Disabling Tests with Variables
" Disabling Tests Explicitly in Code

Modifying the Makefile—The new_project script generates a new unit test project that
includes everything needed to use the Boost Unit Test Framework, but it won’t include anything
specifically needed to build the library or application you are testing.

Therefore, edit the unit test makefile (e.g. Makefile.foo_app) and add the appropriate paths
and libraries needed by your library or application. Note that while the new_project script
creates five makefiles, you will generally need to edit only one.

By default, your unit test will be incorporated into the nightly test system. If you don’t want it
included, comment out the CHECK_CMD line in Makefile.foo_app. It is possible to put
multiple CHECK_CMD lines in a single makefile - for example, if your unit test program needs
to be run multiple times with different command-line arguments.

Page 3

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

If your project has a configuration file and/or any data files, add a CHECK_COPY line (see
Makefile.unit_test_alt_sample_app for an example).

A unit test timeout can also be specified by adding a CHECK_TIMEOUT line to the makefile.

Modifying the Source File—A unit test is simply a test of a unit of code, such as a class.
Because each unit has many requirements, each unit test has many test cases. Your unit test
code should therefore consist of a test case for each testable requirement. Each test case should
be as small and independent of other test cases as possible. For information on how to handle
dependencies between test cases, see the section on managing dependencies.

Starting with an existing unit test source file, simply add, change, or remove test cases as
appropriate for your unit test. Test cases are defined by the BOOST_AUTO_TEST_CASE
macro, which looks similar to a function. The macro has a single argument (the test case name)
and a block of code that implements the test. Test case names must be unique at each level of
the test suite hierarchy (see managing dependencies). Test cases should contain code that will
succeed if the requirement under test is correctly implemented, and fail otherwise.
Determination of success is made using Boost testing tools such as BOOST_REQUIRE and
BOOST_CHECK.

The following sections discuss modifying the source file in more detail:
! Using Testing Tools
! Adding Initialization and/or Finalization
! Handling Timeouts
! Handling Command-Line Arguments in Test Cases
! Creating Test Suites
! Managing Dependencies
! Unit Tests with Multiple Files

Using Testing Tools: Testing tools are macros that are used to detect errors and determine
whether a given test case passes or fails.

While at a basic level test cases can pass or fail, it is useful to distinguish between those failures
that make subsequent testing pointless or impossible and those that don’t. Therefore, there are
two levels of testing: CHECK (which upon failure generates an error but allows subsequent
testing to continue), and REQUIRE (which upon failure generates a fatal error and aborts the
current test case). In addition, there is a warning level, WARN, that can report something of
interest without generating an error, although by default you will have to set a command-line
argument to see warning messages.

If the failure of one test case should result in skipping another then you should add a dependency
between them.

Many Boost testing tools have variants for each error level. The most common Boost testing
tools are:

Page 4

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Testing Tool Purpose

BOOST_<level>(predicate) Fails if the Boolean predicate (any logical expression) is false.

BOOST_<level>_EQUAL(left, right) Fails if the two values are not equal.

BOOST_<level>_THROW(expression, exception) Fails if execution of the expression doesn’t throw an exception of the given type (or one
derived from it).

BOOST_<level>_NO_THROW(expression) Fails if execution of the expression throws any exception.

Note that BOOST_<level>_EQUAL(var1,var2) is equivalent to BOOST_<level>
(var1==var2), but in the case of failure it prints the value of each variable, which can be helpful.
Also, it is not a good idea to compare floating point values directly - instead, use
BOOST_<level>_CLOSE(var1,var2,tolerance).

See the Boost testing tools reference page for documentation on these and other testing tools.

The NCBI extensions to the Boost library add a number of convenience testing tools that
enclose the similarly-named Boost testing tools in a NO_THROW test:

Boost Testing Tool NCBI "NO_THROW " Extension

BOOST_<level>(predicate) NCBITEST_<level>(predicate)

BOOST_<level>_EQUAL(left, right) NCBITEST_<level>_EQUAL(left, right)

BOOST_<level>_NE(left, right) NCBITEST_<level>_NE(left, right)

BOOST_<level>_MESSAGE(pred, msg) NCBITEST_<level>_MESSAGE(pred, msg)

Adding Initialization and/or Finalization: If your unit test requires initialization prior to
executing test cases, or if finalization / clean-up is necessary, use these functions:

NCBITEST_AUTO_INIT()
{
 // Your initialization code here...
}

NCBITEST_AUTO_FINI()
{
 // Your finalization code here...
}

Handling Timeouts: If exceeding a maximum execution time constitutes a failure for your
test case, use this:

// change the second parameter to the duration of your timeout in seconds
BOOST_AUTO_TEST_CASE_TIMEOUT(TestTimeout, 3);
BOOST_AUTO_TEST_CASE(TestTimeout)
{
 // Your test code here...
}

Handling Command-Line Arguments in Test Cases: It is possible to retrieve command-line
arguments from your test cases using the standard C++ Toolkit argument handling API. The

Page 5

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.boost.org/doc/libs/1_37_0/libs/test/doc/html/utf/testing-tools/reference.html

first step is to initialize the unit test to expect the arguments. Add code like the following to
your source file:

NCBITEST_INIT_CMDLINE(descrs)
{
 // Add calls like this for each command-line argument to be used.
 descrs->AddOptionalPositional("some_arg",
 "Sample command-line argument.",
 CArgDescriptions::eString);
}

For more examples of argument processing, see test_ncbiargs_sample.cpp.

Next, add code like the following to access the argument from within a test case:

BOOST_AUTO_TEST_CASE(TestCaseName)
{
 const CArgs& args = CNcbiApplication::Instance()->GetArgs();
 string arg_value = args["some_arg"].AsString();
 // do something with arg_value ...
}

Adding your own command-line arguments will not affect the application’s ability to process
other command-line arguments such as -help or -dryrun.

Creating Test Suites: Test suites are simply groups of test cases. The test cases included in a
test suite are those that appear between the beginning and ending test suite declarations:

BOOST_AUTO_TEST_SUITE(TestSuiteName)

BOOST_AUTO_TEST_CASE(TestCase1)
{
 //...
}

BOOST_AUTO_TEST_CASE(TestCase2)
{
 //...
}

BOOST_AUTO_TEST_SUITE_END();

Note that the beginning test suite declaration defines the test suite name and does not include
a semicolon.

Managing Dependencies: Test cases and suites can be dependent on other test cases or suites.
This is useful when it doesn’t make sense to run a test after some other test fails:

NCBITEST_INIT_TREE()
{
 // define individual dependencies
 NCBITEST_DEPENDS_ON(test_case_dep, test_case_indep);

Page 6

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/test_ncbiargs_sample.cpp

 NCBITEST_DEPENDS_ON(test_case_dep, test_suite_indep);
 NCBITEST_DEPENDS_ON(test_suite_dep, test_case_indep);
 NCBITEST_DEPENDS_ON(test_suite_dep, test_suite_indep);

 // define multiple dependencies
 NCBITEST_DEPENDS_ON_N(item_dep, 2, (item_indep1, item_indep2));
}

When an independent test item (case or suite) fails, all of the test items that depend on it will
be skipped.

Unit Tests with Multiple Files: The new_project script is designed to create single-file unit
tests by default, but using multiple files for one unit test is easy to setup. Decide which file
you’d like main() to be in, and then in all the other source files of your unit test, define macro
NCBI_BOOST_NO_AUTO_TEST_MAIN prior to including <corelib/test_boost.hpp>:

#define NCBI_BOOST_NO_AUTO_TEST_MAIN
#include <corelib/test_boost.hpp>

Disabling Tests—The Boost Unit Test Framework was extended by NCBI to provide several
ways to disable test cases and suites:

Disabling Tests with Configuration File Entries

Disabling Tests with Variables

Disabling Tests Explicitly in Code

Disabling Tests with Configuration File Entries: The new_project script generates a
configuration file for the unit_test_alt_sample unit test, but not for the project you name on the
command-line (e.g. foo). However, you are free to simply add foo.ini and modify it for greater
control of your unit test.

The [UNITTESTS_DISABLE] section of the configuration file can be customized to disable
test cases or suites. Lines in this section should specify a test case or suite name and a logical
expression for disabling it (expressions that evaluate to true disable the test). The logical
expression can be formed from the logical constants true and false, numeric constants, and
variables. There are many predefined variables for things like operating system, compiler,
configuration, etc., for example COMPILER_GCC, OS_Unix, PLATFORM_Bits32, and
BUILD_Dll. For the complete list of predefined variables, see test_boost.cpp. You can also
define your own variables.

For example, to disable all test cases for Cygwin, change:

[UNITTESTS_DISABLE]
GLOBAL = false

to:

[UNITTESTS_DISABLE]
GLOBAL = OS_Cygwin

To disable specific tests, use commands like:

Page 7

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/ident?i=x_InitCommonParserVars

[UNITTESTS_DISABLE]
SomeTestCaseName = OS_Windows && PLATFORM_BigEndian
SomeTestSuiteName = (OS_Linux || OS_Solaris) && COMPILER_GCC

Disabling Tests with Variables: You can use your own variables in the configuration file to
provide finer control on disabling tests.

First, define the variable in your source file:

NCBITEST_INIT_VARIABLES(parser)
{
 parser->AddSymbol("my_ini_var", <some bool expression goes here>);
}

Then add a line to the configuration file to disable a test based on the value of the new variable:

[UNITTESTS_DISABLE]
MyTestName = my_ini_var

One way to use configuration file variables is in conjunction with command-line arguments:

NCBITEST_INIT_VARIABLES(parser)
{
 const CArgs& args = CNcbiApplication::Instance()->GetArgs();
 parser->AddSymbol("my_ini_var", args["my_arg"].HasValue());
}

Then, passing the argument on the command-line controls the disabling of the test case:

./foo my_arg # test is disabled

./foo # test is not disabled (at least via command-line / config file)

NOTE: If the configuration file contains either a test name or a variable name that has not been
defined (e.g. due to a typo) then the test program will throw an exception.

Disabling Tests Explicitly in Code: The NCBI extensions include a macro,
NCBITEST_DISABLE, to unconditionally disable a test case or suite. This macro must be
placed in the NCBITEST_INIT_TREE function:

NCBITEST_INIT_TREE()
{
 NCBITEST_DISABLE(test_case_name);
 NCBITEST_DISABLE(test_suite_name);
}

The extensions also include two functions for globally disabling or skipping all tests. These
functions should be called only from within the NCBITEST_AUTO_INIT or
NCBITEST_INIT_TREE functions:

NCBITEST_INIT_TREE()
{
 NcbiTestSetGlobalDisabled(); // A given unit test might include one or

Page 8

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the
 NcbiTestSetGlobalSkipped(); // other of these, not both. Most unit
tests
 // won’t use either.
}

The difference between these functions is that globally disabled unit tests will report the status
DIS to check scripts while skipped tests will report the status SKP.

Viewing Unit Tests Results from the Nightly Build
The Boost Unit Test Framework provides more than just command-line testing. Each unit test
built with the framework becomes incorporated into nightly testing and is tested on multiple
platforms and under numerous configurations. All such results are archived in the database and
available through a web interface.

The main page (see Figure 1) provides many ways to narrow down the vast quantity of statistics
available. The top part of the page allows you to select test date, test result, build configuration
(branch, compiler, operating system, etc), debug/release, and more. The page also has a column
for selecting tests, and a column for configurations. For best results, refine the selection as
much as possible, and then click on the “See test statistics” button.

The “See test statistics” button retrieves the desired statistics in a second page (see Figure 2).
The results are presented in tables: one for each selected date, with unit tests down the left side
and configurations across the top. Further refinements of the displayed results can be made by
removing rows, columns, or dates; and by selecting whether all columns, all cells, or only
selected cells are displayed.

Each cell in the results tables represents a specific unit test performed on a specific date under
a specific configuration. Clicking on a cell retrieves a third page (see Figure 3) that shows
information about that test and its output.

Running Unit Tests from a Command-Line
To run one or more selected test cases from a command-line, use this:

./foo --run_test=TestCaseName1,TestCaseName2

Multiple test cases can be selected by using a comma-separated list of names.

To see all test cases in a unit test, use this:

./foo -dryrun

To see exactly which test cases passed and failed, use this:

./foo --report_level=detailed

To see warning messages, use this:

./foo --log_level=warning

Additional runtime parameters can be set. For a complete list, see the online documentation.

Page 9

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.boost.org/doc/libs/1_37_0/libs/test/doc/html/utf/user-guide/runtime-config/reference.html
http://intranet/ieb/ToolBox/STAT/test_stat/test_stat_ext.cgi

Limitations of the Boost Unit Test Framework
The currently known limitations are:
! It is not suitable for most multi-threaded tests.
! It is not suitable for "one-piece" applications (such as server or CGI). Such applications

should be tested via their clients (which would preferably be unit test based).

Page 10

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 1. Test Interface

Page 11

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 2. Test Matrix

Page 12

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 3. Test Result

Page 13

C++ Toolkit Library Reference

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Debugging, Exceptions, and Error Handling
[21]

Debugging
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This chapter discusse the debugging mechanisms available in the NCBI C++ toolkit. There are
two approaches to getting more information about an application, which does not behave
correctly:
! Investigate the application's log without recompiling the program,
! Add more diagnostics and recompile the program.

Of course, there is always the third method which is to run the program under an external debugger.
While using an external debugger is a viable option, this method relies on an external program
and not on a log or diagnostics produced by the program itself which in many cases is customized
to reflect the program behavior, and can, therefore, more quickly reveal the source of errors.

Chapter Outline

The following is an outline of the topics presented in this chapter:
! Extracting Debug Data

" Command Line Parameters.
" Getting More Trace Data.

Tracing
Diagnostic Messages

" Tracing in the Connection Library
" NCBI C++ Toolkit Diagnostics
" Object state dump
" Exceptions

! NCBI C++ Error Handling and Diagnostics
" Debug-mode for Internal Use
" C++ Exceptions

Standard C++ Exception Classes, and Two Useful NCBI Exception
Classes (CErrnoTemplException, CParseTemplException)

Using STD_CATCH*(...) to catch and report exceptions
Using THROW*_TRACE(...) to throw exceptions
THROWS*(...) -- Exception Specification

" Standard NCBI C++ Message Posting
Formatting and Manipulators

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! ERR_POST macro
! Turn on the Tracing

" DebugDump: Take an Object State Snapshot
Terminology
Requirements
Architecture
Implementation

! CDebugDumpable
! CDebugDumpContext
! CDebugDumpFormatter

Examples
" Exception Handling (*) in the NCBI C++ Toolkit

NCBI C++ Exceptions
! Requirements
! Architecture
! Implementation

" CException
" Derived exceptions
" Reporting an exception
" CExceptionReporter
" Choosing and analyzing error codes

! Examples
" Throwing an exception
" Reporting an exception

The CErrnoTemplException Class
The CParseTemplException Class
Macros for Standard C++ Exception Handling
Exception Tracing

Extracting Debug Data
The C++ Toolkit has several mechanisms which can be used by a programmer to extract
information about the program usage, printing trace and diagnostic messages, and examining
the object state dump. The following sections discuss these topics in more detail:
" Command Line Parameters.
" Getting More Trace Data.
" Tracing in the Connection Library
" NCBI C++ Toolkit Diagnostics
" Object state dump
" Exceptions

Page 2

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Command Line Parameters
There are several command line parameters (see Table 1), which are applicable to any program
which utilizes NCBI C++ toolkit, namely CNcbiApplication class. They provide with the
possibility
! to obtain a general description of the program as well as description of all available

command line parameters (-h flag),
! to redirect the program's diagnostic messages into a specified file (-logfile key),
! to read the program's configuration data from a specified file (-conffile key).

Page 3

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 1
Command line parameters available for use to any program that uses CNcbiApplication

Flag Description Example

-h Print description of the application's command line parameters. theapp -h

-logfile Redirect program's log into the specified file theapp -logfile theapp_log

-conffile Read the program's configuration data from the specified file theapp -conffile theapp_cfg

Getting More Trace Data
All NCBI C++ toolkit libraries produce a good deal of diagnostic messages. Still, many of
them remain "invisible" - as long as the tracing is disabled. Some tracing data is only available
in debug builds - see _TRACE macro for example. Other - e.g., the one produced by
ERR_POST or LOG_POST macros - could be disabled. There are three ways to manipulate
these settings, that is enable or disable tracing, or set the severity level of messages to print:
! from the application itself,
! from the application's configuration file,
! with the help of environment variables.

The following additional topics relating to trace data are presented in the subsections that
follow:
! Tracing
! Diagnostic Messages

Tracing—There are two ways to post trace messages: using _TRACE or ERR_POST macro
Trace messages produced with the help of _TRACE macro are only available in debug mode,
while those posted by ERR_POST are available in both release and debug builds. By default,
tracing is disabled. See Table 2 for settings to enable tracing.

Page 4

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2
Enabling Tracing

C++ toolkit API Configuration file Environment

call SetDiagTrace(eDT_Enable); define DIAG_TRACE entry in the DEBUG section:
[DEBUG]DIAG_TRACE=1

define DIAG_TRACE environment variable: set
DIAG_TRACE=1

Please note, when enabling trace from a configuration file, some trace messages could be lost:
before configuration file is found and read the application may assume that the trace was
disabled. The only way to enable tracing from the very beginning is by setting the environment
variable.

Diagnostic Messages—Diagnostic messages produced by ERR_POST macro are available
both in debug and release builds. Such messages have a severity level, which defines whether
the message will be actually printed or not, and whether the program will be aborted or not.
To change the severity level threshold for posting diagnostic messages, see Table 3.

Page 5

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 3
Changing severity level for diagnostic messages

C++ toolkit API Configuration file Environment

call SetDiagPostLevel(EDiagSev
postSev);Valid arguments are
eDiag_Info, eDiag_Warning,
eDiag_Error, eDiag_Critical,
eDiag_Fatal.

define DIAG_POST_LEVEL entry in the
DEBUG section: [DEBUG]
DIAG_POST_LEVEL=InfoValid values areInfo,
Warning, Error, Critical, Fatal.

define DIAG_POST_LEVEL environment
variable: set DIAG_POST_LEVEL=InfoValid
values areInfo, Warning, Error, Critical, Fatal.

Only those messages, which severity is equal or exceeds the threshold will be posted. By
default, messages posted with Fatal severity level also abort execution of the program. This
can be changed by SetDiagDieLevel(EDiagSev dieSev) API function.

Tracing in the Connection Library
The connection library has its own tracing options. It is possible to print the connection
parameters each time the link is established, and even log all data transmitted through the socket
during the life of the connection (see Table 4.

Page 6

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 4
Setting up trace options for connection library

Configuration file Environment

Connection parameters: define DEBUG_PRINTOUT entry in the CONN
section: [CONN]DEBUG_PRINTOUT=TRUE
Valid values areTRUE, or YES, or SOME.

define CONN_DEBUG_PRINTOUT environment variable:
set CONN_DEBUG_PRINTOUT=TRUEValid values are
TRUE, or YES, or SOME.

All data: define DEBUG_PRINTOUT entry in the CONN
section: [CONN]DEBUG_PRINTOUT=ALL
Valid values areALL, or DATA.

define CONN_DEBUG_PRINTOUT environment variable:
set CONN_DEBUG_PRINTOUT=ALLValid values areALL,
or DATA.

NCBI C++ Toolkit Diagnostics
NCBI C++ toolkit provides with a sophisticated diagnostic mechanism. Diagnostic messages
could be redirected to different output channels. It is possible to set up what additional
information should be printed with a message, for example date/time stamp, file name, line
number etc. Some macros are defined only in debug mode:_TRACE, _ASSERT, _TROUBLE.
Others are also defined in release mode as well: _VERIFY, THROW*_TRACE.

Object state dump
Potentially useful technique in case of trouble is to use object state dump API. In order to use
it, the object's class must be derived from CDebugDumpable class, and implementation of the
class should supply meaningful dump data in its DebugDump function. Debug dump gives an
object's state snapshot, which can help in identifying the cause of problem at run time.

Exceptions
NCBI C++ toolkit defines its own type of C++ exceptions. Unlike standard ones, this class
! makes it possible to define error codes (specific to each exception class), which could

be analyzed from a program,
! provides with more information about where a particular exception has been thrown

from (file name and line number),
! gives the possibility to create a stack of exceptions to accumulate a backlog of events

(unfinished jobs) which caused the problem,
! has elaborated, customizable reporting mechanism,
! supports using standard diagnostic mechanism with all the configuration options it

provides.

NCBI C++ Error Handling and Diagnostics
The following topics are discussed in this section:
! Debug-mode for Internal Use
! C++ Exceptions
! Standard NCBI C++ Message Posting

Debug-mode for Internal Use
#include <corelib/ncbidbg.hpp> [also included in <corelib/ncbistd.hpp>]

There are four preprocessor macros (_TROUBLE, _ASSERT, _VERIFY and _TRACE) to
help the developer to catch some (logical) errors on the early stages of code development and
to hardcode some assertions on the code and data behaviour for internal use. All these macros
gets disabled in the non-debug versions lest to affect the application performance and
functionality; to turn them on, one must #define the _DEBUG preprocessor variable. Developer

Page 7

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

must be careful and do not use any code with side effects in _ASSERT or _TRACE as this will
cause a discrepancy in functionality between debug and non-debug code. For example,
_ASSERT(a++) and _TRACE("a++ = " << a++) would increment "a" in the debug version but
do nothing in the non-debug one).
! _TROUBLE -- Has absolutely no effect if _DEBUG is not defined; otherwise,

unconditionally halt the application.
! _ASSERT(expr) -- Has absolutely no effect if _DEBUG is not defined; otherwise,

evaluate expression expr and halt the application if expr resulted in zero(or "false").
! _VERIFY(expr) -- Evaluate expression expr; if _DEBUG is defined and expr resulted

in zero(or "false") then halt the application.
! _TRACE(message) -- Has absolutely no effect if _DEBUG is not defined; otherwise,

it outputs the message using Standard NCBI C++ message posting. NOTE: as a matter
of fact, the tracing is turned off by default, even if _DEBUG is defined, and you still
have to do a special configuration to really turn it on.

All these macros automatically report the file name and line number to the diagnostics. For
example, this code located in file "somefile.cpp" at line 333:

int x = 100;
_TRACE("x + 5 = " << (x + 5));

will output:

"somefile.cpp", line 333: Trace: x + 5 = 105

C++ Exceptions
#include <corelib/ncbiexpt.hpp> [also included in <corelib/ncbistd.hpp>]

The following additional topics are discussed in this section:
! Standard C++ Exception Classes, and Two Useful NCBI Exception Classes

(CErrnoTemplException, CParseTemplException)
! Using STD_CATCH*(...) to catch and report exceptions
! Using THROW*_TRACE(...) to throw exceptions
! THROWS*(...) -- Exception Specification

Standard C++ Exception Classes, and Two Useful NCBI Exception Classes
(CErrnoTemplException, CParseTemplException)—One must use standard C++
exceptions as much as possible. There is also a couple of auxiliary exception classes derived
from std::runtime_error:
! CErrnoException -- to report failure in a standard C library function; it automatically

appends to the user message a system-specific description reported by errno
! CParseException -- to report an erroneous position (passed in the additional

constructor parameter) along with the user message
Then, it is strictly recommended that when the basic functionality provided by standard C+
+ exceptions is unsufficient for some reason, one must derive the new ad hoc exception classes
from one of the standard exception classes. -- This is to provide a more uniform way of

Page 8

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.cplusplus.com/doc/tutorial/tut5-3.html
http://www.cplusplus.com/doc/tutorial/tut5-3.html

exceprion handling, for we could smartly catch/handle most of thrown exceptions using
STD_CATCH(message) and STD_CATCH_ALL(message) preprocessor macros.

Using STD_CATCH*(...) to catch and report exceptions—You can use STD_CATCH
(message) macro to catch an exception derived from the standard exception class
(std::exception) -- when all you want to do about this exception is just to print out the "message"
along with the info passed with the std::exception::what(). STD_CATCH_ALL(message) first
tries to catch a std::exception-derived exception (with STD_CATCH(message)); and if the
thrown exception is not "standard" then it posts the "message".

The "message" argument can be of any form acceptable by the diagnostic class CNcbiDiag.

This way, the easy way of dealing with exception in the NCBI C++ code will be like:

class foreign_exception { };
class exception_derived_user : public exception { };
........... char arg1 = "qqq";
int arg2 = 888;
try {
 SomeFunc(arg1, arg2);
} catch (foreign_exception& fe) {
 // do something special with the particular "non-standard"
 // (not derived from "std::exception") exception "foreign_exception"
} catch (exception_derived_user& eu) {
 // do something special with the particular "standard"
 // (derived from "std::exception") exception "exception_derived_user"
}
// handle all the rest "standard" exceptions in a uniform way
STD_CATCH ("in SomeFunc(" << arg1 << "," << arg2 << ")");

Here, if SomeFunc do throw std::runtime_error("Invalid Arg2"); then the application will print
out (to its diagnostic stream) something like:

Error: [in SomeFunc(qqq,888)] Exception: Invalid Arg2

Using THROW*_TRACE(...) to throw exceptions—If you use one of
THROW*_TRACE(...) macros to throw an exception, and the source was compiled in a debug
mode (i.e. with the preprocessor _DEBUG defined), then you can turn on the following features
that proved to be very useful for debugging:
! If the tracing is on, then the location of the throw in the source code and the thrown

exception will be printed out to the current diagnostic stream, e.g.:

THROW_TRACE(CParseException, ("Failed parsing(at pos. 123)", 123));

"coretest.cpp", line 708: Trace: CParseException: {123}
Failed parsing(at pos. 123)

Page 9

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

strtod("1e-999999", 0);
THROW1_TRACE(CErrnoException, "Failed strtod('1e-999999', 0)");

"coretest.cpp", line 718: Trace: CErrnoException:
Failed strtod('1e-999999', 0): Result too large

! Sometimes, it can be convenient to just abort the program execution at the place where
you throw an exception, e.g. in order to examine the program stack and overall state
that led to this throw. By default, this feature is not activated. You can turn it on for
your whole application by either setting the environment variable
$ABORT_ON_THROW to an arbitrary non-empty string, or by setting the
application's registry entry ABORT_ON_THROW (in the [DEBUG] section) to an
arbitrary non-empty value. You also can turn it on and off in your program code, calling
function SetThrowTraceAbort().

NOTE: if the source was not compiled in the debug mode, then the THROW*_TRACE(...)
would just throw the specified exception, without doing any of the "fancy stuff" we just
described.

THROWS*(...) -- Exception Specification—One is encouraged to write exception
specifications for NCBI C++ functions. However, due to some discrepancy in how different
compilers handle unexpected exception events we decided to use THROWS_NONE and
THROWS() preprocessor macros for the case of "poor" compilers.

Thus, you must use:

void f1(int i) THROWS_NONE;
int f2(void) THROWS((e0));
int f3(long) THROWS((e1,e2));

in the place of:

void f1(int i) throw();
int f2(void) throw(e0);
int f3(long) throw(e1,e2);

respectively. -- Please note the double parenthesis for THROWS().

Standard NCBI C++ Message Posting
#include <corelib/ncbidiag.hpp> [also included in <corelib/ncbistd.hpp>]

Standard diagnostics is provided with the CNcbiDiag class. A given application can have as
many objects of this class as needed. An important point to remember is that each instance of
the CNcbiDiag class actually stores (and allows to append to) only one message at a time.
When the message controlled by an instance of CNcbiDiag is complete, CNcbiDiag invokes
the Post() method of a global handler object (of type CDiagHandler) and passes the message
(along with its severity level) as the method's argument.

Usually, this global object would merely dump the message to a diagnostic stream, and there
is an auxiliary function SetDiagStream() that can be used to specify the output stream for the
diagnostics. One can call SetDiagStream(&NcbiCerr) to dump the diagnostics to the standard
error output stream:

Page 10

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.gamedev.net/reference/articles/article953.asp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/ncbiexpt_8cpp.html#a2
http://www.gamedev.net/reference/articles/article953.asp

/// Set diagnostic stream.
///
/// Error diagnostics are written to output stream "os".
/// This uses the SetDiagHandler() functionality.
NCBI_XNCBI_EXPORT
extern void SetDiagStream
(CNcbiOstream* os,
 bool quick_flush = true,///< Do stream flush after every message
 FDiagCleanup cleanup = 0, ///< Call "cleanup(cleanup_data)" if diag.
 void* cleanup_data = 0 ///< Stream is changed (see
SetDiagHandler)
);

Using SetDiagHandler(), one can install a custom handler object of type CDiagHandler to
process the messages posted via CNcbiDiag. The implementation of the CStreamDiagHandler
in "ncbidiag.cpp" is a good example of how to do this.

///
///
/// CDiagHandler --
///
/// Base diagnostic handler class.

class NCBI_XNCBI_EXPORT CDiagHandler
{
public:
 /// Destructor.
 virtual ~CDiagHandler(void) {}

 /// Post message to handler.
 virtual void Post(const SDiagMessage& mess) = 0;
};

/// Set the diagnostic handler using the specified diagnostic handler class.
NCBI_XNCBI_EXPORT
extern void SetDiagHandler(CDiagHandler* handler,
 bool can_delete = true);

/// Get the currently set diagnostic handler class.
NCBI_XNCBI_EXPORT
extern CDiagHandler* GetDiagHandler(bool take_ownership = false);

where:

///
///

Page 11

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/// SDiagMessage --
///
/// Diagnostic message structure.
///
/// Defines structure of the "data" message that is used with message handler
/// function("func"), and destructor("cleanup").
/// The "func(..., data)" to be called when any instance of "CNcbiDiagBuffer"
/// has a new diagnostic message completed and ready to post.
/// "cleanup(data)" will be called whenever this hook gets replaced and
/// on the program termination.
/// NOTE 1: "func()", "cleanup()" and "g_SetDiagHandler()" calls are
/// MT-protected, so that they would never be called simultaneously
/// from different threads.
/// NOTE 2: By default, the errors will be written to standard error stream.

struct SDiagMessage {
 /// Initalize SDiagMessage fields.
 SDiagMessage(EDiagSev severity, const char* buf, size_t len,
 const char* file = 0, size_t line = 0,
 TDiagPostFlags flags = eDPF_Default, const char* prefix = 0,
 int err_code = 0, int err_subcode = 0,
 const char* err_text = 0);

 mutable EDiagSev m_Severity; ///< Severity level
 const char* m_Buffer; ///< Not guaranteed to be '\0'-terminated!
 size_t m_BufferLen; ///< Length of m_Buffer
 const char* m_File; ///< File name
 size_t m_Line; ///< Line number in file
 int m_ErrCode; ///< Error code
 int m_ErrSubCode; ///< Sub Error code
 TDiagPostFlags m_Flags; ///< Bitwise OR of "EDiagPostFlag"
 const char* m_Prefix; ///< Prefix string
 const char* m_ErrText; ///< Sometimes 'error' has no numeric
code,
 ///< but can be represented as text

 // Compose a message string in the standard format(see also "flags"):
 // "<file>", line <line>: <severity>: [<prefix>] <message> [EOL]
 // and put it to string "str", or write to an output stream "os".

 /// Which write flags should be output in diagnostic message.
 enum EDiagWriteFlags {
 fNone = 0x0, ///< No flags
 fNoEndl = 0x01 ///< No end of line
 };

 typedef int TDiagWriteFlags; /// Binary OR of "EDiagWriteFlags"

 /// Write to string.
 void Write(string& str, TDiagWriteFlags flags = fNone) const;

Page 12

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 /// Write to stream.
 CNcbiOstream& Write(CNcbiOstream& os, TDiagWriteFlags flags = fNone)
const;
};

Installing a new handler typically destroys the previous handler, which can be a problem if you
need to keep the old handler around for some reason. There are two ways to address this issue:
! Declare an object of class CDiagRestorer at the top of the block of code in which you

will be using your new handler. This will protect the old handler from destruction, and
automatically restore it -- along with any other diagnostic settings -- when the block
exits in any fashion. As such, you can safely use the result of calling GetDiagHandler
() at the beginning of the block even if you have changed the handler within the block.

! Call GetDiagHandler(true) and then destroy the old handler yourself when done with
it. This works in some circumstances in which CDiagRestorer is unsuitable, but places
much more responsibility on your code.

For compatibility with older code, the diagnostic system also supports specifying simple
callbacks:

/// Diagnostic handler function type.
typedef void (*FDiagHandler)(const SDiagMessage& mess);

/// Diagnostic cleanup function type.
typedef void (*FDiagCleanup)(void* data);

/// Set the diagnostic handler using the specified diagnostic handler class.
NCBI_XNCBI_EXPORT
extern void SetDiagHandler(CDiagHandler* handler,
 bool can_delete = true);

However, it is better to use the object-based interface for new code.

The following additional topics are discussed in this section:
! Formatting and Manipulators
! ERR_POST macro
! Turn on the Tracing

Formatting and Manipulators—To compose a diagnostic message with CNcbiDiag you
can use the formatting operator "<<". It works practically the same way as operator "<<" for
standard C++ output streams. CNcbiDiag class also has some CNcbiDiag-specific
manipulators to control the message severity level:
! Info -- set severity level to eDiag_Info
! Warning -- set severity level to eDiag_Warning
! Error -- set severity level to eDiag_Error [default]
! Fatal -- set severity level to eDiag_Fatal
! Trace -- set severity level to eDiag_Trace

Page 13

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

NOTE: whenever the severity level is changed, CNcbiDiag also automatically executes the
following two manipulators:
! Endm -- means that the message is complete and to be flushed(via the global callback

as described above)
! Reset -- directs to discard the content of presently composed message

The Endm manipulator also gets executed on the CNcbiDiag object destruction.

For example, this code:

int iii = 1234;
CNcbiDiag diag1;

diag1 << "Message1_Start " << iii;
 // message 1 is started but not ready yet
{ CNcbiDiag diag2; diag2 << Info << "Message2"; }
 // message 2 flushed in destructor
diag1 << "Message1_End" << Endm;
 // message 1 finished and flushed by "Endm"
diag1 << "Message1_1"; // will be flushed by the following "Warning"
diag1 << Warning << "Discard this warning" << ++iii << Reset;
 // message discarded
diag1 << "This is a warning " << iii;
diag1 << Endm;

will write to the diagnostic stream(if the latter was set with SetDiagStream()):

Error: Message1_Start 1234
Info: Message2
Error: Message1_End
Error: Message1_1
Warning: This is a warning 1235

ERR_POST macro—There is an ERR_POST(message) macro that can be used to shorten
the error posting code. This macro is discussed in the chapter on Core Library.

Turn on the Tracing—The tracing (messages with severity level eDiag_Trace) is considered
to be a special, debug-oriented feature, and therefore it is not affected by SetDiagPostLevel()
and SetDiagDieLevel(). To turn the tracing on or off in your code you can use function
SetDiagTrace().

By default, the tracing is off -- unless you assign environment variable $DIAG_TRACE to an
arbitrary non-empty string (or, alternatively, you can set DIAG_TRACE entry in the [DEBUG]
section of your registry to any non-empty value).

DebugDump: Take an Object State Snapshot
The following topics are discussed in this section:
! Terminology
! Requirements

Page 14

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/ncbidiag_8cpp.html#a22

! Architecture
! Implementation
! Examples

Debugging is an inevitable part of software development. When it comes to a "mystical"
problem, one can spend days and days hunting for a glitch. So, being prepared is not just a
"nice thing to have", it is a requirement.

When a system being developed crashes consistently, debugging is easy in the sense that the
problem is reproducable. Were that all bugs like this! It is much more "fun", when the system
crashes intermittently, under circumstances about which we have only a vague idea, if any, of
the symptoms or the cause. What the developer needs in this case is information - the more the
better. One short message ("Assertion failed") is good and a coredump is better, but we typically
need a more user-friendly reporting of the program status at the point of failure.

One possible idea is to make the object tell about itself. That is, in case of trouble (but not
necessarily trouble), an object could call a function that would report as much as possible about
itself and other object it contains or to which it refers. During such operation the object should
not do anything important, something that could potentially cause other problems. The
diagnostic must of course be safe - it should only take a snapshot of an object's state and never
alter that data.

Sure, DebugDump may cause problems by itself, even if everything is "correct". Let us say
there are two objects, which "know" each other: Object A refers to Object B, while Object B
refers to Object A (very common scenario in fact). Now dumping contents of Object A will
cause dumping of Object B, which in turn will cause dumping of Object A, and so on until the
stack overflows.

Terminology
So, dumping the object contents should look as a single function call, i.e. something like this:

Object name;
...
name.DebugDump(?);

The packet of information produced by such operation we call bundle. The class Object is most
likely derived from other classes. The function should be called sequentially for each subclass,
so it could print its data members. The piece of information produced by the subclass we call
frame. The object may refer to other objects. Dumping of such object produces a sub-bundle,
which consists of its own frames. To help fight cyclicity, we introduce depth of the dump.
When an object being dumped wants to dump other objects it refers to, it should reduce the
depth by one. If the depth is already zero, other objects should not be dumped.

Requirements
! The dump data should be separated from its representation. That is, the object should

only supply data, something else should format it. Examples of formatting may include
generating human-readable text or file in a special format (HTML, XML), or even
transmitting the data over the network.

! Debug and release libraries should be compatible.
! It should be globally configurable as to whether the dump produces any output or not,

Page 15

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Architecture
Class CDebugDumpable is a special abstract base class. Its purpose is to define a virtual
function DebugDump, which any derived class should implement. Another purpose is to store
any global dump options. Any real dump should be initiated through a non-virtual function of
this class - so, global option could be applied. Class CObject is derived from this class. So, any
classes based on CObject may benefit from this functionality right away. Other classes may
use this class as a base later on (e.g. using multiple inheritance).

Class CDebugDumpContext provides a generic dump interface for dumpable objects. The class
has nothing to do with data representation. Its purpose is the ability to describe the location of
where the data comes from, accept it from the object and transfer to the data formatter.

Class CDebugDumpFormatter defines the dump formatting interface. It is an abstract class.

Class CDebugDumpFormatterText is derived from CDebugDumpFormatter. Based on
incoming data, it generates a human-readable text and passes it into any output stream
(ostream).

In general, the system works like this:
1 Client creates DebugDump formatter object (it could be an object of class

CDebugDumpFormatterText or any other class derived from
CDebugDumpFormatter) and passes it to a proper, non-virtual function of the object
to be dumped. Bundle name is to be defined here - it can be anything, but a reasonable
guess would be to specify the location of the call and the name of the object being
dumped.

2 CDebugDumpable analyses global settings, creates CDebugDumpContext object and
calls virtual DebugDump() function of the object.

3 DebugDump function of each subclass defines a frame name (which must be the type
of the subclass), calls DebugDump function of a base class and finally logs its own
data members. From within the DebugDump(), the object being dumped "sees" only
CDebugDumpContext. It does not know any specifics about target format in which
dump data will be eventually represented.

Implementation
The following topics are discussed in this section:
! CDebugDumpable
! CDebugDumpContext
! CDebugDumpFormatter

CDebugDumpable—The class is an abstract one. Global options are stored as static variable
(s).

public:
 // Enable/disable debug dump
 static void EnableDebugDump(bool on);

 // Dump using text formatter
 void DebugDumpText(ostream& out,
 const string& bundle,

Page 16

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 unsigned int depth) const;
 // Dump using external dump formatter
 void DebugDumpFormat(CDebugDumpFormatter& ddf,
 const string& bundle,
 unsigned int depth) const;

 // Function that does the dump - to be overloaded
 virtual void DebugDump(CDebugDumpContext ddc,
 unsigned int depth) const = 0;

Any derived class must impelement a relevant DebugDump function.

CDebugDumpContext—The class defines a public dump interface for a client object. It
receives the data from the object and decides when and what functions of dump formatter to
call.

The dump interface looks like this:

public:
 CDebugDumpContext(CDebugDumpFormatter& formatter,
 const string& bundle);
 // This is not exactly a copy constructor -
 // this mechanism is used internally to find out
 // where are we on the Dump tree
 CDebugDumpContext(CDebugDumpContext& ddc);
 CDebugDumpContext(CDebugDumpContext& ddc, const string& bundle);

public:
 // First thing in DebugDump() function - call this function
 // providing class type as the frame name
 void SetFrame(const string& frame);
 // Log data in the form [name, data, comment]
 // All data is passed to a formatter as string, still sometimes
 // it is probably worth to emphasize that the data is REALLY a
 // string
 void Log(const string& name,
 const string& value,
 bool is_string = true,
 const string& comment = kEmptyStr
);
 void Log(const string& name,
 bool value,
 const string& comment = kEmptyStr
);
 void Log(const string& name,
 long value,
 const string& comment = kEmptyStr
);
 void Log(const string& name,
 unsigned long value,
 const string& comment = kEmptyStr

Page 17

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

);
 void Log(const string& name,
 double value,
 const string& comment = kEmptyStr
);
 void Log(const string& name,
 const void* value,
 const string& comment = kEmptyStr
);
 void Log(const string& name,
 const CDebugDumpable* value,
 unsigned int depth
);

A number of overloaded Log functions is provided for convenience only.

CDebugDumpFormatter—This abstract class defines dump formatting interface:

public:
 virtual bool StartBundle(unsigned int level, const string& bundle) = 0;
 virtual void EndBundle(unsigned int level, const string& bundle) = 0;

 virtual bool StartFrame(unsigned int level, const string& frame) = 0;
 virtual void EndFrame(unsigned int level, const string& frame) = 0;

 virtual void PutValue(unsigned int level, const string& name,
 const string& value, bool is_string,
 const string& comment) = 0;

Examples
Supposed that there is an object m_ccObj of class CSomeObject derived from CObject. In
order to dump it into the standard cerr stream, one should do one of the following:

m_ccObj.DebugDumpText(cerr, "m_ccObj", 0);

or

{
 CDebugDumpFormatterText ddf(cerr);
 m_ccObj.DebugDumpFormat(ddf, "m_ccObj", 0);
}

The DebugDump function should look like this:

void CSomeObject::DebugDump(CDebugDumpContext ddc, unsigned int depth) const
{
 ddc.SetFrame("CSomeObject");

Page 18

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 CObject::DebugDump(ddc,depth);
 ddc.Log("m_1", m_1);
 ddc.Log("m_2", m_2);
 ... etc for each data member
}

Exception Handling (*) in the NCBI C++ Toolkit
The following topics are discussed in this section:
! NCBI C++ Exceptions
! The CErrnoTemplException Class
! The CParseTemplException Class
! Macros for Standard C++ Exception Handling
! Exception Tracing

NCBI C++ Exceptions
C++ exceptions is a standard mechanism of communicating abnormal or unexpected events to
a higher execution context. By throwing an exception a piece of code says it was unable to
complete the task and it is up to others to decide what to do next.

What the standard mechanism lacks is backlog, history of unfinished tasks and its
consequences. Say for instance, a program tries to load some data from a database. An
exception occurs, which says a connection to some port could not be created -- so what? How
meaningfull is it? What did the program try to do? Where did the request for the connection
come from?

Another problem is analyzing and handling exceptions in a program. When an exception is
caught, what is known for sure is only that something bad has happened -- but what exactly?
The standard exception has only type (exception class) and a text message. The latter probably
makes sense for a human, but not for a program. The former does not seem to be clear enough.

The following topics are discussed in this section:
! Requirements
! Architecture
! Implementation
! Examples

Requirements—In order for exceptions to be more useful, they should meet the following
requirements:
! Exceptions should contain information about where exactly has it been thrown -- for

a human.
! Exceptions should have a numeric id -- for a program.
! It should be possible to create a stack of exceptions -- to accumulate a backlog of events

(unfinished jobs) which caused the problem. Still, for a client, it should look like a
single exception. That is, a client should be able to ignore completely the compound
structure of the exception being thrown and still get some meaningful information.

! The system should provide for the ability to analyze the exception backlog and possibly
print information about each exception separately.

Page 19

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/corelib/ncbiexpt.hpp

! It should be possible to report the exception data into an arbitrary output channel and
possibly format it differently for each channel.

Architecture—Each subsystem (library) has its own type of exceptions. It may have several
types, if necessary, but all of them should be derived from a single base class (which in turn is
derived from a system-wide base class). So, the type of an exception uniquely identifies the
library which produced it.

Each exception has a numeric id, which is unique throughout the subsystem. Such an id gives
an unambiguous description of the problem occurred. Each id is associated with a text message.
Strictly speaking, there is only one message associated with a given id, so there is no need to
include the message in the exception itself -- it could be taken from an external source. Still,
we suggest using the message -- it serves as an additional comment. Also, it does not restrict
us from using an external source of messages in the future.

Each exception has information about the location where it has been thrown -- file name and
line number.

An exception can have a reference to the "lower level" one, which makes it possible to analyze
the backlog. Naturally, such a backlog cannot be created automatically - it is a developer's
responsibility. The system only provides the mechanism, it does not solve problems by itself.
The developer is supposed to catch exceptions in proper places and re-throw them with the
backlog information added.

The exception constructor's mandatory parameters include location information, exception id
and a message. This constructor is to be used at the lower level, when the exception is thrown
initially. At higher levels we need a constructor, which would accept the exception from the
lower level as one of its parameters.

The NCBI exception mechanism has a sophisticated reporting mechanism -- the standard
exception::what() function is definitely not enough. There are three groups of reporting
mechanisms:
! exception formats its data by itself and either returns the result as a string or puts it

into an output stream;
! client provides an external exception data formatter;
! NCBI standard diagnostic mechanism is used.

Implementation—The following topics are discussed in this section:
! CException
! Derived exceptions
! Reporting an exception
! CExceptionReporter
! Choosing and analyzing error codes

CException: There is a single system-wide exception base class -- CException. Each
subsystem must implement its own type of exceptions, which must be be derived from this
class. The class defines basic requirements of an exception construction, backlog and reporting
mechanisms.

Page 20

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CException&d=C

The CException constructor includes location information, exception id and a message. Each
exception class defines its own error codes. So, the error code "by itself" is meaningless -- one
should also know the the exception class, which produced it.

 /// Constructor.
 ///
 /// When throwing an exception initially, "prev_exception" must be 0.
 CException(const char* file, int line,
 const CException* prev_exception,
 EErrCode err_code,const string& message) throw();

To make it easier to throw/re-throw an exception, the following macros are defined:

NCBI_THROW(exception_class, err_code, message)
NCBI_RETHROW(prev_exception, exception_class, err_code,message)
NCBI_RETHROW_SAME(prev_exception, message)

The last one (NCBI_RETHROW_SAME) re-throws the same exception with backlog
information added.

The CException class has numerous reporting methods (the contents of reports is defined by
diagnostics post flags):

 /// Standard report (includes full backlog).
 virtual const char* what(void) const throw();

 /// Report the exception.
 ///
 /// Report the exception using "reporter" exception reporter.
 /// If "reporter" is not specified (value 0), then use the default
 /// reporter as set with CExceptionReporter::SetDefault.
 void Report(const char* file, int line,
 const string& title, CExceptionReporter* reporter = 0,
 TDiagPostFlags flags = eDPF_Trace) const;

 /// Report this exception only.
 ///
 /// Report as a string this exception only. No backlog is attached.
 string ReportThis(TDiagPostFlags flags = eDPF_Trace) const;

 /// Report all exceptions.
 ///
 /// Report as a string all exceptions. Include full backlog.
 string ReportAll (TDiagPostFlags flags = eDPF_Trace) const;

 /// Report "standard" attributes.

Page 21

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 ///
 /// Report "standard" attributes (file, line, type, err.code, user
message)
 /// into the "out" stream (this exception only, no backlog).
 void ReportStd(ostream& out, TDiagPostFlags flags = eDPF_Trace) const;

 /// Report "non-standard" attributes.
 ///
 /// Report "non-standard" attributes (those of derived class) into the
 /// "out" stream.
 virtual void ReportExtra(ostream& out) const;

 /// Enable background reporting.
 ///
 /// If background reporting is enabled, then calling what() or ReportAll
()
 /// would also report exception to the default exception reporter.
 /// @return
 /// The previous state of the flag.
 static bool EnableBackgroundReporting(bool enable);

Also, the following macro is defined that calls the CExceptionReporter::ReportDefault()
method to produce a report for the exception:

NCBI_REPORT_EXCEPTION(title,e)

Finally, the following data access functions help to analyze exception from a program:

 /// Get class name as a string.
 virtual const char* GetType(void) const;

 /// Get error code interpreted as text.
 virtual const char* GetErrCodeString(void) const;

 /// Get file name used for reporting.
 const string& GetFile(void) const;

 /// Get line number where error occurred.
 int GetLine(void) const;

 /// Get error code.
 EErrCode GetErrCode(void) const;

 /// Get message string.
 const string& GetMsg (void) const;

 /// Get "previous" exception from the backlog.
 const CException* GetPredecessor(void) const;

Page 22

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Derived exceptions: The only requirement for a derived exception is to define error codes as
well as its textual representation. Implementation of several other functions (e.g. constructors)
are, in general case, pretty straightforward -- so we put it into a macro definition,
NCBI_EXCEPTION_DEFAULT. Please note, this macro can only be used when the derived
class has no additional data members. Here is an example of an exception declaration:

class CSubsystemException : public CException
{
public:
 /// Error types that subsystem can generate.
 enum EErrCode {
 eType1, ///< Meaning of eType1
 eType2 ///< Meaning of eType2
 };

 /// Translate from the error code value to its string representation.
 virtual const char* GetErrCodeString(void) const
 {
 switch (GetErrCode()) {
 case eType1: return "eType1";
 case eType2: return "eType2";
 default: return CException::GetErrCodeString();
 }
 }

 // Standard exception boilerplate code.
 NCBI_EXCEPTION_DEFAULT(CSubsystemException, CException);
};

In case the derived exception has data members not found in the base class, it should also
implement its own ReportExtra method -- to report this non-standard data.

Reporting an exception: There are several way to report an NCBI C++ exception:
1 An exception is capable of formatting its own data, returning a string (or a pointer to

a string buffer). Each exception report occupies one line. Still, since an exception may
contain a backlog of previously thrown exceptions, the resulting report could contain
several lines of text - one for each exception thrown. The report normally contains
information about the location from which the exception has been thrown, the text
representation of the exception class and error code, and a description of the error.
The content of the report is defined by diagnostics post flags. The following methods
generate reports of this type:

 /// Standard report (includes full backlog).
 virtual const char* what(void) const throw();

 /// Report the exception.
 ///
 /// Report the exception using "reporter" exception reporter.
 /// If "reporter" is not specified (value 0), then use the
default

Page 23

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 /// reporter as set with CExceptionReporter::SetDefault.
 void Report(const char* file, int line,
 const string& title, CExceptionReporter* reporter =
0,
 TDiagPostFlags flags = eDPF_Trace) const;

 /// Report this exception only.
 ///
 /// Report as a string this exception only. No backlog is
attached.
 string ReportThis(TDiagPostFlags flags = eDPF_Trace) const;

 /// Report all exceptions.
 ///
 /// Report as a string all exceptions. Include full backlog.
 string ReportAll (TDiagPostFlags flags = eDPF_Trace) const;

 /// Report "standard" attributes.
 ///
 /// Report "standard" attributes (file, line, type, err.code, user
message)
 /// into the "out" stream (this exception only, no backlog).
 void ReportStd(ostream& out, TDiagPostFlags flags = eDPF_Trace)
const;

Functions what() and ReportAll() may also generate a background report - the one
generated by a default exception reporter. This feature can be disabled by calling the
static method

CException::EnableBackgroundReporting(false);

2 A client can provide its own exception reporter. An object of this class may either use
exception data access functions to create its own reports, or redirect reports into its
own output channel(s). While it is possible to specify the reporter in the
CException::Report() function, it is better if the same reporting functions are used for
exceptions, to install the reporter as a default one instead, using

CExceptionReporter::SetDefault(const CExceptionReporter* handler);

static function, and use the standard NCBI_REPORT_EXCEPTION macro in the
program.

3 Still another way to report an exception is to use the standard diagnostic mechanism
provided by NCBI C++ toolkit. In this case the code to generate the report would look
like this:

try {

Page 24

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 ...
} catch (CException& e) {
 ERR_POST("your message here" << e);
}

CExceptionReporter: One of possible ways to report an exception is to use an external
"reporter" modeled by the CExceptionReporter abstract class. The reporter is an object that
formats exception data and sends it to its own output channel. A client can install its own,
custom exception reporter. This is not required, though. In case the default was not set, the
standard NCBI diagnostic mechanism is used.

The CExceptionReporter is an abstract class, which defines the reporter interface:

 /// Set default reporter.
 static void SetDefault(const CExceptionReporter* handler);

 /// Get default reporter.
 static const CExceptionReporter* GetDefault(void);

 /// Enable/disable using default reporter.
 ///
 /// @return
 /// Previous state of this flag.
 static bool EnableDefault(bool enable);

 /// Report exception using default reporter.
 static void ReportDefault(const char* file, int line,
 const string& title, const CException& ex,
 TDiagPostFlags flags = eDPF_Trace);

 /// Report exception with _this_ reporter
 virtual void Report(const char* file, int line,
 const string& title, const CException& ex,
 TDiagPostFlags flags = eDPF_Trace) const = 0;

Choosing and analyzing error codes: Choosing and interpreting error codes can potentially
create some problems because each exception class has its own error codes, and interpretation.
Error codes are implemented as an enum type, EErrCode, and the enumerated values are stored
internally in a program as numbers. So, the same number can be interpreted incorrectly for a
different exception class than the one in which the enum type was defined. Say for instance,
there is an exception class, which is derived from CSubsystemException -- let us call it
CBiggersystemException -- which also defines two error codes: eBigger1 and eBigger2:

class CBiggersystemException : public CSubsystemException
{
public:

Page 25

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 /// Error types that subsystem can generate.
 enum EErrCode {
 eBigger1, ///< Meaning of error code, eBigger1
 eBigger2 ///< Meaning of error code, eBigger2
 };

 /// Translate from the error code value to its string representation.
 virtual const char* GetErrCodeString(void) const
 {
 switch (GetErrCode()) {
 case eBigger1: return "eBigger1";
 case eBigger2: return "eBigger2";
 default: return CException::GetErrCodeString();
 }
 }

 // Standard exception boilerplate code.
 NCBI_EXCEPTION_DEFAULT(CBiggersystemException, CSubsystemException);
};

Now, suppose an exception CBiggersystemException has been thrown somewhere. On a higher
level it has been caught as CSubsystemException. It is easy to see that the error code returned
by the CSubsystemException object would be completely meaningless: the error code of
CBiggersystemException cannot be interpreted in terms of CSubsystemException.

One reasonable solution seems to be isolating error codes of different exception classes -- by
assigning different numeric values to them. And this has to be done by the developer. Such
isolation should only be done within each branch of derivatives only. Another solution is to
make sure that the exception in question does belong to the desired class, not to any intermediate
classes in the derivation hierarchy. The template function UppermostCast() can be used to
perform this check:

/// Return valid pointer to uppermost derived class only if "from" is
really
/// the object of the desired type.
///
/// Do not cast to intermediate types (return NULL if such cast is
attempted).
template <class TTo, class TFrom>
const TTo* UppermostCast(const TFrom& from)
{
 return typeid(from) == typeid(TTo) ? dynamic_cast<const TTo*>(&from) : 0;
}

UppermostCast() utilizes the runtime information using the typeid() function, and dynamic
cast conversion to return either a pointer to "uppermost" exception object or NULL.

Page 26

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=UppermostCast

The following shows how UppermostCast() can be used to catch the correct error types:

try {
 ...
 NCBI_THROW(CBiggersystemException,eBigger1,"your message here");
 ...
}
catch (CSubsystemException& e) {
 // call to UppermostCast<CSubsystemException>(e) would return 0 here!
 // which means that "e" was actually the object of a different class
 const CBiggersystemException *p = UppermostCast<CBiggersystemException>
(e);
 if (p) {
 switch (p->GetErrCode()) {
 case CBiggersystemException::eBigger1:
 ...
 break;
 case CBiggersystemException::eBigger2:
 ...
 break;
 default:
 ...
 break;
 }
 }
 NCBI_RETHROW_SAME(e,"your message here");
}

It is possible to use the runtime information to do it even better. Since GetErrCode function is
non-virtual, it might check the type of the object, for which it has been called, against the type
of the class to which it belong. If these two do not match, the function returns invalid error
code. Such code only means that the caller did not know the correct type of the exception, and
the function is unable to interpret it.

Examples—The following topics are discussed in this section:
! Throwing an exception
! Reporting an exception

Throwing an exception: It is important to remember that the system only provides a
mechanism to create a backlog of unfinished tasks, it does not create this backlog automatically.
It is up to developer to catch exceptions and re-throw them with the backlog information added.
Here is an example of throwing CSubsystemException exception:

... // your code
NCBI_THROW(CSubsystemException,eType1,"your message here");
...

The code that catches, and possibly re-throws the exception might look like this:

Page 27

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

try {
 ... // your code
} catch (CSubsystemException& e) {
 if (e.GetErrCode() == CSubsystemException::eType2) {
 ...
 } else {
 NCBI_RETHROW(e, CSubsystemException, eType1, " your message here")
 }
} catch (CException& e) {
 NCBI_RETHROW(e, CException, eUnknown, "your message here")
}

Reporting an exception: There are a number of ways to report CException, for example:

try {
 ... // your code
} catch (CSubsystemException& e) {
 NCBI_REPORT_EXCEPTION("your message here", e);
 ERR_POST(e);
 cerr << e.ReportAll();
 cerr << e.what();
 e.Report(__FILE__, __LINE__, "your message here");
}

We suggest using NCBI_REPORT_EXCEPTION(title,e) macro (which is equivalent to
calling e.Report(__FILE__,__LINE__,title)) - it redirects the output into standard diagnostic
channels and is highly configurable.

The CErrnoTemplException Class
The CErrnoTemplException class is a template class used for generating error exception
classes:

///
///
/// CErrnoTemplException --
///
/// Define template class for easy generation of Errno-like exception
classes.

template<class TBase> class CErrnoTemplException :
 public CErrnoTemplExceptionEx<TBase,
CStrErrAdapt::strerror>
{
public:
 /// Parent class type.
 typedef CErrnoTemplExceptionEx<TBase, CStrErrAdapt::strerror> CParent;

Page 28

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 /// Constructor.
 CErrnoTemplException<TBase>(const char* file,int line,
 const CException* prev_exception,
 typename CParent::EErrCode err_code,const string& message) throw()
 : CParent(file, line, prev_exception,
 (typename CParent::EErrCode) CException::eInvalid, message)
 NCBI_EXCEPTION_DEFAULT_IMPLEMENTATION_TEMPL(CErrnoTemplException<TBase>,
CParent)
};

The template class is derived form another template class, the ErrnoTemplExceptionEx which
implements a parent class with the template parameter TBase. The parent
ErrnoTemplExceptionEx class implements the basic exception methods such as ReportExtra
(), GetErrCode(), GetErrno(), GetType(). The ErrnoTemplExceptionEx class has an int data
member called m_Errno. The constructor automatically adds information about the most recent
error state as obtained via the global system variable errno to this data member.

The constructor for the derived CErrnoTemplException class is defined in terms of the
NCBI_EXCEPTION_DEFAULT_IMPLEMENTATION_TEMPL macro which defines the
program code for implementing the constructor.

The TBase template parameter is an exception base class such as CException or
CCoreException, or another class similar to these. The CStrErrAdapt::strerror template
parameter is a function defined in an adaptor class for getting the error description string. The
CErrnoTemplException has only one error core - eErrno defined in the parent class,
ErrnoTemplExceptionEx. To analyze the actual reason of the exception one should use
GetErrno() method:

int GetErrno(void) const;

The CErrnoTemplException is used to create exception classes. Here is an example of how
the CExecException class is created from CErrnoTemplException. In this example, the TBase
template parameter is the exception base class CCoreException:

///
///
/// CExecException --
///
/// Define exceptions generated by CExec.
///
/// CExecException inherits its basic functionality from
/// CErrnoTemplException<CCoreException> and defines additional error codes
/// for errors generated by CExec.

class NCBI_XNCBI_EXPORT CExecException :
 public CErrnoTemplException<CCoreException>
{
public:

Page 29

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 /// Error types that CExec can generate.
 enum EErrCode {
 eSystem, ///< System error
 eSpawn ///< Spawn error
 };

 /// Translate from the error code value to its string representation.
 virtual const char* GetErrCodeString(void) const
 {
 switch (GetErrCode()) {
 case eSystem: return "eSystem";
 case eSpawn: return "eSpawn";
 default: return CException::GetErrCodeString();
 }
 }

 // Standard exception boilerplate code.
 NCBI_EXCEPTION_DEFAULT(CExecException,
 CErrnoTemplException<CCoreException>);
};

The CParseException Class
The CParseTemplException is a template class whose parent class is the template parameter
TBase. The CParseTemplException class includes an additional int data member, called
m_Pos. This class was specifically defined to support complex parsing tasks, and its constructor
requires that positional information be supplied along with the description message. This makes
it impossible to use the standard NCBI_THROW macro to throw it, so we defined two
additional macros:

/// Throw exception with extra parameter.
///
/// Required to throw exceptions with one additional parameter
/// (e.g. positional information for CParseException).
#define NCBI_THROW2(exception_class, err_code, message, extra) \
 throw exception_class(__FILE__, __LINE__, \
 0,exception_class::err_code, (message), (extra))

/// Re-throw exception with extra parameter.
///
/// Required to re-throw exceptions with one additional parameter
/// (e.g. positional information for CParseException).
#define NCBI_RETHROW2(prev_exception,exception_class,err_code,message,extra)
\
 throw exception_class(__FILE__, __LINE__, \
 &(prev_exception), exception_class::err_code, (message), (extra))

Page 30

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Macros for Standard C++ Exception Handling
The C++ throw() statement provides a mechanism for specifying the types of exceptions that
may be thrown by a function. Functions that do not include a throw() statement in their
declaration can throw any type of exception, but where the throw() statement is used,
undeclared exception types that are thrown will cause std::unexpected() to be raised. Various
compilers handle these events differently, and the first two macros listed in Table 5, (THROWS
(()), THROWS_NONE, are provided to support platform-independent exception
specifications.

Page 31

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 5
Platform Independent Exception Macros

Macro C++ Equivalent Synopsis

THROWS((types)) throw(types) Defines the type of exceptions thrown by the given function. types may be a single
object type or a comma delimited list.

THROWS_NONE throw() Specifies that the given function throws no exceptions.

STD_CATCH(message) catch(std::exception) Provides uniform handling of all exceptions derived from std::exception.

STD_CATCH_ALL(message) catch(...) Applies STD_CATCH() to std::exception derived objects; catches non-standard
exceptions and generates an "Unknown exception" message.

The catch macros provide uniform, routine exception handling with minimal effort from the
programmer. We provide a convenient STD_CATCH() macro to print formatted messages to
the application's diagnostic stream. For example, if F() throws an exception of the form:

throw std::runtime_error(throw-msg)

then

try {F();}
STD_CATCH(catch-msg);

will generate a message of the form:

Error: [catch-msg] Exception: throw-msg

In this example, the generated message starts with the Error tag, as that is the severity level for
the default diagnostic stream. User-defined classes that are derived from std::exception will be
treated uniformly in the same manner. The throw clause in this case creates a new instance of
std::runtime_error whose data member desc is initialized to throw-msg. When the exception
is then caught, the exception's member function what() can be used to retrieve that message.

The STD_CATCH_ALL macro catches all exceptions. If however, the exception caught is
not derived from std::exception, then the catch clause cannot assume that what() has been
defined for this object, and a default message is generated:

Error: [catch-msg] Exception: Unknown exception

Exception Tracing
Knowing exactly where an exception first occurs can be very useful for debugging purposes.
CException class has this functionality built in, so it is highly recommended to use exceptions
derived from it. In addition to this a set of THROW*_TRACE() macros defined in the NCBI
C++ Toolkit combine exception handling with trace mechanisms to provide such information.

The most commonly used of these macros, THROW1_TRACE(class_name, init_arg),
instantiates an exception object of type class_name using init_arg to initialize it. The definition
of this macro is:

Page 32

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/// Throw trace.
///
/// Combines diagnostic message trace and exception throwing. First the
/// diagnostic message is printed, and then exception is thrown.
///
/// Arguments can be any exception class with the specified initialization
/// argument. The class argument need not be derived from std::exception as
/// a new class object is constructed using the specified class name and
/// initialization argument.
///
/// Example:
/// - THROW1_TRACE(runtime_error, "Something is weird...");
define THROW1_TRACE(exception_class, exception_arg) \
 throw NCBI_NS_NCBI::DbgPrint(__FILE__, __LINE__, \
 exception_class(exception_arg), #exception_class)

From the throw() statement here, we see that the object actually being thrown by this macro is
the value returned by DbgPrint(). DbgPrint() in turn calls DoDbgPrint(). The latter is an
overloaded function that simply creates a diagnostic stream and writes the file name, line
number, and the exception's what() message to that stream. The exception object (which is of
type class_name) is then the value returned by DbgPrint().

More generally, three sets of THROW*_TRACE macros are defined:
! THROW0_TRACE(exception_object)
! THROW0p_TRACE(exception_object)
! THROW0np_TRACE(exception_object)
! THROW1_TRACE(exception_class, exception_arg)
! THROW1p_TRACE(exception_class, exception_arg)
! THROW1np_TRACE(exception_class, exception_arg)
! THROW_TRACE(exception_class, exception_args)
! THROWp_TRACE(exception_class, exception_args)
! THROWnp_TRACE(exception_class, exception_args)

The first three macros (THROW0*_TRACE) take a single argument, which may be a newly
constructed exception, as in:

THROW0_TRACE(runtime_error("message"))

or simply a printable object to be thrown, as in:

THROW0_TRACE("print this message")

The THROW0_TRACE macro accepts either an exception object or a string as the argument
to be thrown. The THROW0p_TRACE macro generalizes this functionality by accepting any
printable object, such as complex(1,3), as its single argument. Any object with a defined output
operator is, of course, printable. The third macro generalizes this one step further, and accepts

Page 33

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DbgPrint
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=DbgPrint

aggregate arguments such as vector<T>, where T is a printable object. Note that in cases where
the object to be thrown is not a std::exception, you will need to use STD_CATCH_ALL or a
custom catch to catch the thrown object.

The remaining six macros accept two arguments: an "exception" class name and an
initialization argument, where both arguments are also passed to the trace message. The class
argument need not actually be derived from std::exception, as the pre-processor simply uses
the class name to construct a new object of that type using the initialization argument. All of
the THROW1*_TRACE macros assume that there is a single initialization argument. As in the
first three macros, THROW1_TRACE(), THROW1p_TRACE() and THROW1np_TRACE()
specialize in different types of printable objects, ranging from exceptions and numeric and
character types, to aggregate and container types.

The last three macros parallel the previous two sets of macros in their specializations, and may
be applied where the exception object's constructor takes multiple arguments. (See also the
discussion on Exception handling).

It is also possible to specify that execution should abort immediately when an exception occurs.
By default, this feature is not activated, but the SetThrowTraceAbort() function can be used to
activate it. Alternatively, you can turn it on for the entire application by setting either the
$ABORT_ON_THROW environment variable, or the application's registry
ABORT_ON_THROW entry (in the [DEBUG] section) to an arbitrary non-empty value.

Page 34

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetThrowTraceAbort

Distributed Computing
[22]

Distributed Computing
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This chapter describes the NCBI GRID framework. This framework allows creating, running and
maintaining a scalable, load-balanced and fault-tolerant pool of network servers (Worker
Nodes).

Chapter Outline

The documentation for NCBI GRID is in working progress. It is available for NCBI users here.

Section Placeholder
This section is only here for technical purposes. All meaningful content is above.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/GRID_Overview
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/GRID_Nodes
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/GRID_Nodes

Applications
[23]

Overview
! Introduction
! Chapter Outline

Introduction

Most of the applications discussed in this chapter are built on a regular basis, at least once a day
from the latest sources, and if you are in NCBI, then you can find the latest version in the directory:
$NCBI/c++/Release/bin/ (or $NCBI/c++/Debug/bin/).

Chapter Outline

The following is an outline of the topics presented in this chapter:
! DATATOOL: code generation and data serialization utility

" Invocation
Main arguments
Code generation arguments

" Data specification conversion
Scope prefixes
Modular DTD and Schemata
Converting XML Schema into ASN.1

" Definition file
Common definitions
Definitions that affect specific types

! INTEGER, REAL, BOOLEAN, NULL
! ENUMERATED
! OCTET STRING
! SEQUENCE OF, SET OF
! SEQUENCE, SET
! CHOICE

Examples
" Module file
" Generated code

Normalized name
ENUMERATED types

" Class diagrams
Specification analysis

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! ASN.1 specification analysis
! DTD specification analysis

" Data types
" Data values
" Code generation

! Load Balancing
Overview
Load Balancing Service Mapping Daemon (LBSMD)

" Overview
" Configuration
" Signals
" Automatic Configuration Distribution
" Monitoring and Control

! Service Search
! lbsmc Utility
! NCBI Intranet Web Utilities
! Server Penalizer API and Utility

" SVN Reposirory
" Log Files
" Configuration Examples

Cookie / Argument Affinity Module (MOD_CAF)
" Overview
" Configuration
" Configuration Examples
" Arguments Matching

! Argument Matching Examples
" Log File
" Monitoring

DISPD Network Dispatcher
" Overview
" Protocol Description

! Client Request to DISPD
! DISPD Client Response
! Communication Schemes

NCBID Server Launcher
" Overview

Firewall Daemon (FWDaemon)
" Overview

! FWDaemon Behind a "Regular" Firewall

Page 2

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! FWDaemon Behind a "Non-Transparent" Firewall
" Monitoring
" Log Files
" FWDaemon and NCBID Dispatcher Data Exchange

Launcherd Utility
Monitoring Tools
Quality Assurance Domain

! NCBI Genome Workbench
Design goals
Design

! NCBI NetCache Service
What is NetCache?
What it can be used for?
Getting started
Available samples
Sample configuration file (netcached.ini)

DATATOOL: Code Generation and Data Serialization Utility
DATATOOL source code is located at c++/src/serial/datatool; this application can perform the
following:

1 Generate C++ data storage classes based on ASN.1, DTD or XML Schema
specification to be used with NCBI data serialization streams.

2 Convert ASN.1 specification into a DTD or XML Schema specification and vice
versa.

3 Convert data between ASN.1 and XML formats, and write data in JSON format.
Note: Because ASN.1, XML and JSON are, in general, incompatible, the last two functions
are supported only partially.

The following additional topics are discussed in subsections:
! Invocation
! Data specification conversion
! Definition file
! Module file
! Generated code
! Class diagrams

Invocation
The following topics are discussed in this section:
! Main arguments
! Code generation arguments

Page 3

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.w3.org/XML/Schema
http://www.itu.int/ITU-T/studygroups/com17/languages
http://www.w3.org/TR/REC-xml

Main Arguments—See Table 1.

Code Generation Arguments—See Table 2.

Data Specification Conversion
When parsing data specification, DATATOOL identifies specification format by source file
extension – ASN, DTD or XSD.

Scope Prefixes—Initially, DATATOOL and serial library supported serialization in ASN.
1 and XML format, and conversion of ASN.1 specification into DTD. Comparing with ASN,
DTD is a very sketchy specification in a sense that there is only one primitive type – string,
and all elements are defined globally. The latter feature of DTD led to a decision to use ‘scope
prefixes’ in XML output to avoid potential name conflicts. For example, consider the following
ASN.1 specification:

Date ::= CHOICE {
 str VisibleString,
 std Date-std
}
Time ::= CHOICE {
 str VisibleString,
 std Time-std
}

Here, accidentally, element str is defined identically both in Date and Time productions; while
the meaning of element std depends on the context. To avoid ambiguity, this specification
translates into the following DTD:

<!ELEMENT Date (Date_str | Date_std)>
<!ELEMENT Date_str (#PCDATA)>
<!ELEMENT Date_std (Date-std)>
<!ELEMENT Time (Time_str | Time_std)>
<!ELEMENT Time_str (#PCDATA)>
<!ELEMENT Time_std (Time-std)>

Accordingly, these scope prefixes made their way into XML output.

Later, DTD parsing was added into DATATOOL. Here, scope prefixes were not needed. Also,
since these prefixes considerably increase the size of the XML output, they could be omitted
when it is known in advance that there can be no ambiguity. So, DATATOOL has got command
line flags, which would enable that.

With the addition of XML Schema parser and generator, when converting ASN.1 specification,
elements can be declared in Schema locally if needed, and scope prefixes make almost no
sense. Still, they are preserved for compatibility.

Modular DTD and Schemata—Here, ‘module’ means ASN.1 module. Single ASN.1
specification file may contain several modules. When converting it into DTD or XML schema,
it might be convenient to put each module definitions into a separate file. To do so, one should
specify a special file name in –fx or –fxs command line parameter. The names of output DTD
or Schema files will then be chosen automatically – they will be named after ASN modules

Page 4

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

defined in the source. ‘Modular’ output does not make much sense when the source
specification is DTD or Schema.

You can find a number of DTD and Schemata converted by DATATOOL from NCBI public
ASN.1 specifications here.

Converting XML Schema into ASN.1—There are two major problems in converting XML
schema into ASN.1 specification: how to define XML attributes and how to convert complex
content models. The solution was greatly affected by the underlying implementation of data
storage classes (classes which DATATOOL generates based on a specification). So, for
example the following Schema

<xs:element name="Author">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="LastName" type="xs:string"/>
 <xs:choice minOccurs="0">
 <xs:element name="ForeName" type="xs:string"/>
 <xs:sequence>
 <xs:element name="FirstName" type="xs:string"/>
 <xs:element name="MiddleName" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 </xs:choice>
 <xs:element name="Initials" type="xs:string" minOccurs="0"/>
 <xs:element name="Suffix" type="xs:string" minOccurs="0"/>
 </xs:sequence>
 <xs:attribute name="gender" use="optional">
 <xs:simpleType>
 <xs:restriction base="xs:string">
 <xs:enumeration value="male"/>
 <xs:enumeration value="female"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
</xs:element>

translates into this ASN.1:

Author ::= SEQUENCE {
 attlist SET {
 gender ENUMERATED {
 male (1),
 female (2)
 } OPTIONAL
 },
 lastName VisibleString,
 fF CHOICE {
 foreName VisibleString,
 fM SEQUENCE {
 firstName VisibleString,
 middleName VisibleString OPTIONAL

Page 5

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/data_specs

 }
 } OPTIONAL,
 initials VisibleString OPTIONAL,
 suffix VisibleString OPTIONAL
}

Each unnamed local element gets a name. When generating C++ data storage classes from
Schema, DATATOOL marks such data types as anonymous.

It is possible to convert source Schema into ASN.1, and then use DATATOOL to generate C
++ classes from the latter. In this case DATATOOL and serial library provide compatibility
of ASN.1 output. If you generate data storage classes from Schema, and use them to write data
in ASN.1 format (binary or text), if you then convert that Schema into ASN.1, generate classes
from it, and again write same data in ASN.1 format using this new set of classes, then these
two files will be identical.

Definition File
It is possible to tune up the C++ code generation by using a definition file, which could be
specified in the -od argument. The definition file uses the generic NCBI configuration format
also used in the configuration (*.ini) files found in NCBI's applications.

DATATOOL looks for code generation parameters in several sections of the file in the
following order:

1 [ModuleName.TypeName]
2 [TypeName]
3 [ModuleName]
4 [-]

The prefix of a parameter name in the section is determined from the location of an element
in the data format specification (ASN.1, DTD or Schema). For the root element, the prefix is
empty. For an element of type SET OF or SEQUENCE OF, add E. to the prefix. For an element
of type SET, SEQUENCE, or CHOICE, add the element name and dot (".") to the prefix.

The following additional topics are discussed in this section:
! Common definitions
! Definitions that affect specific types
! Examples

Common Definitions—Some definitions refer to the generated class as a whole.

_file Defines the base filename for the generated or referenced C++ class.

For example, the following definitions:

[ModuleName.TypeName]_file=AnotherName

Or

[TypeName]
_file=AnotherName

Page 6

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

would put the class CTypeName in files with the base name AnotherName, whereas these two:

[ModuleName]
_file=AnotherName

Or

[-]
_file=AnotherName

put all the generated classes into a single file with the base name AnotherName.

_extra_headers Specify additional header files to include.

For example, the following definition:

[-]
_extra_headers=name1 name2 "name3"

would put the following lines into all generated headers:

#include <name1>
#include <name2>
#include "name3"

Note the name3 clause. Putting name3 in quotes instructs DATATOOL to use the quoted syntax
in generated files.

_dir Subdirectory in which the generated C++ files will be stored (in case _file not specified)
or a subdirectory in which the referenced class from an external module could be found.

_class The name of the generated class (if _class=- is specified, then no code is generated
for this type).

For example, the following definitions:

[ModuleName.TypeName]
_class=AnotherName

Or

[TypeName]
_class=AnotherName

would cause the class generated for the type TypeName to be named CAnotherName, whereas
these two:

[ModuleName]
_class=AnotherName

Or

Page 7

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

[-]
_class=AnotherName

would result in all the generated classes having the same name CAnotherName (which is
probably not what you want).

_namespace The namespace in which the generated class (or classes) will be placed.
_parent_class The name of the base class from which the generated C++ class is derived.

_parent_type Derive the generated C++ class from the class, which corresponds to the
specified type (in case _parent_class is not specified).

It is also possible to specify a storage-class modifier, which is required on Microsoft Windows
to export/import generated classes from/to a DLL. This setting affects all generated classes in
a module. An appropriate section of the definition file should look like this:

[-]
_export = EXPORT_SPECIFIER

Because this modifier could also be specified in the command line, the DATATOOL code
generator uses the following rules to choose the proper one:

1 If no -oex flag is given in the command line, no modifier is added at all.
2 If -oex "" (that is, an empty modifier) is specified in the command line, then the

modifier from the definition file will be used.
3 The command-line parameter in the form -oex FOOBAR will cause the generated

classes to have a FOOBAR storage-class modifier, unless another one is specified in
the definition file. The modifier from the definition file always takes precedence.

Definitions That Affect Specific Types—The following additional topics are discussed
in this section:
! INTEGER, REAL, BOOLEAN, NULL
! ENUMERATED
! OCTET STRING
! SEQUENCE OF, SET OF
! SEQUENCE, SET
! CHOICE

INTEGER, REAL, BOOLEAN, NULL: _type C++ type: int, short, unsigned, long, etc.

ENUMERATED: _type C++ type: int, short, unsigned, long, etc.

_prefix Prefix for names of enum values. The default is "e".

OCTET STRING: _char Vector element type: char, unsigned char, or signed char.

SEQUENCE OF, SET OF: _type STL container type: list, vector, set, or multiset.

SEQUENCE, SET: memberName._delay Mark the specified member for delayed reading.

Page 8

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CHOICE: _virtual_choice If not empty, do not generate a special class for choice. Rather
make the choice class as the parent one of all its variants. variantName._delay Mark the
specified variant for delayed reading.

Examples—If we have the following ASN.1 specification:

 Date ::= CHOICE {
 str VisibleString, std Date-std
 }
 Date-std ::= SEQUENCE {
 year INTEGER,
 month INTEGER OPTIONAL
 }
 Dates ::= SEQUENCE OF Date
 Int-fuzz ::= CHOICE { p-m INTEGER,
 range SEQUENCE { max INTEGER,
 min INTEGER
 },
 pct INTEGER,
 lim ENUMERATED {
 unk (0),
 gt (1),
 lt (2),
 tr (3),
 tl (4),
 circle (5),
 other (255) },
 alt SET OF INTEGER
 }

Then the following definitions:

[Date]str._type = string

would affect the generation of the str member of the Date structure.

[Dates]E._pointer = true

would affect the generation of elements of the Dates container.

[Int-fuzz]range.min._type = long

would affect the generation of the min member of the range member of the Int-fuzz structure.

[Int-fuzz]alt.E._type = long

would affect the generation of elements of the alt member of the Int-fuzz structure.

Module File
Module files are not used directly by DATATOOL, but they are input for new_module.sh and
project_tree_builder and therefore determine what DATATOOL's command line will be during
the build process.

Page 9

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Module files simply consist of lines of the form "KEY = VALUE". Only the key
MODULE_IMPORT is currently used (and is the only key ever recognized by
project_tree_builder). Other keys used to be recognized by module.sh and still harmlessly
remain in some files. The possible keys are:

MODULE_IMPORT These definitions contain a space-delimited list of other modules to
import. The paths should be relative to .../src and should not include extensions.

For example, a valid entry could be:

MODULE_IMPORT = objects/general/general objects/seq/seq

MODULE_ASN, MODULE_DTD, MODULE_XSD These definitions explicitly set the
specification filename (normally foo.asn, foo.dtd, or foo.xsd for foo.module). Almost no
module files contain this definition. It is no longer used by the project_tree_builder and is
therefore not necessary

MODULE_PATH Specifies the directory containing the current module, again relative
to .../src. Almost all module files contain this definition, however it is no longer used by either
new_module.sh or the project_tree_builder and is therefore not necessary.

Generated Code
The following additional topics are discussed in this section:
! Normalized name
! ENUMERATED types

Normalized Name—Everywhere in generated code, we use NormalizedName, which is
produced from an ASN.1-type name by replacing all hyphens ("-") with underscores ("_") and
capitalizing the first letter.

ENUMERATED Types—By default, for every ENUMERATED type, DATATOOL will
produce a C++ enum type with the name ENormalizedName.

Class Diagrams
The following topics are discussed in this section:
! Specification analysis
! Data types
! Data values
! Code generation

Specification Analysis—The following topics are discussed in this section:
! ASN.1 specification analysis
! DTD specification analysis

ASN.1 Specification Analysis: See Figure 1.

DTD Specification Analysis: See Figure 2.

Data Types—See CDataType.

Page 10

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/classCDataType.html

Data Values—See Figure 3.

Code Generation—See Figure 4.

Load Balancing
! Overview
! Load Balancing Service Mapping Daemon (LBSMD)
! Cookie / Argument Affinity Module (MOD_CAF)
! DISPD Network Dispatcher
! NCBID Server Launcher
! Firewall Daemon (FWDaemon)
! Launcherd Utility
! Monitoring Tools
! Quality Assurance Domain

Note: For security reasons not all links in the public version of this document are accessible
by the outside NCBI users.

The section covers the following topics:
! The purpose of load balancing
! All the separate components’ purpose, internal details, configuration
! Communications between the components
! Monitoring facilities

Overview
The purpose of load balancing is distributing the load among the service providers available
on the NCBI network basing on certain rules. The load is generated by the users who are
connected to the NCBI network locally and by the users who are connected to the NCBI
network from the Internet. The figures below show the most typical usage scenarios.

Page 11

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 5. Local Clients

Please note that the figure is simplified slightly to remove unnecessary details for the time
being.

In case of local access to the NCBI resources there are two NCBI developed components which
are involved into the interactions. These are LBSMD daemon (Load Balancing Service
Mapping Daemon) and mod_caf (Cookie/Argument Affinity module) – an Apache web server
module.

The LBSMD daemon is running on each host in the NCBI network. The daemon reads its
configuration file with all the services available on the host described. Then the LBSMD
daemon broadcasts the available services and the current host load to the adjacent LBSMD
daemons on a regular basis. The data received from the other LBSMD daemons are stored in
a special table. So at some stage the LBSMD daemon on each host has a full description of the
services available on the network as well as the current hosts’ load.

Page 12

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The mod_caf Apache’s module analyses special cookies, query line arguments and reads data
from the table populated by the LBSMD daemon. Basing on the best match it makes a decision
of where to pass a request further.

Suppose for a moment that a local NCBI client runs a web browser, points to an NCBI web
page and initiates a DB request via the web interface. At this stage the mod_caf analyses the
request line and makes a decision where to pass the request. The request is passed to the
ServiceProviderN host which performs the corresponding database query. Then the query
results are delivered to the client. The data exchange path is shown on the figure above using
solid lines.

Another typical scenario for the local NCBI clients is when client code is run on a user
workstation. That client code might require a long term connection to a certain service, to a
database for example. The browser is not able to provide this kind of connection so a direct
connection is used in this case. The data exchange path is shown on the figure above using
dashed lines.

The communication scenarios become more complicated in case when clients are located
outside of the NCBI network. The figure below describes the interactions between modules
when the user requested a service which does not suppose a long term connection.

Page 13

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 6. Internet Clients. Short Term Connection

The clients have no abilities to connect to front end Apache web servers directly. The
connection is done via a router which is located in DMZ (Demilitarized Zone). The router
selects one of the available front end servers and passes the request to that web server. Then
the web server processes the request very similar to how it processes requests from a local
client.

The next figure explains the interactions for the case when an Internet client requests a service
which supposes a long term connection.

Page 14

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 7. Internet Clients. Long Term Connection

In opposite to the local clients the internet clients are unable to connect to the required service
directly because of the DMZ zone. This is where DISPD, FWDaemon and a proxy come to
help resolving the problem.

The data flow in the scenario is as follows. A request from the client reaches a front end Apache
server as it was discussed above. Then the front end server passes the request to the DISPD
dispatcher. The DISPD dispatcher communicates to FWDaemon (Firewall Daemon) to provide
the required service facilities. The FWDaemon answers with a special ticket for the requested
service. The ticket is sent to the client via the front end web server and the router. Then the
client connects to the NAT service in the DMZ zone providing the received ticket. The NAT
service establishes a connection to the FWDaemon and passes the received earlier ticket. The
FWDaemon, in turn, provides the connection to the required service. It is worth to mention
that the FWDaemon is running on the same host as the DISPD dispatcher and neither DISPD
nor FWDaemon can work without each other.

Page 15

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The most complicated scenario comes to the picture when an arbitrary UNIX filter program is
used as a service provided for the outside NCBI users. The figure below shows all the
components involved into the scenario.

Figure 8. NCBID at Work

The data flow in the scenario is as follows. A request from the client reaches a front end Apache
server as it was discussed above. Then the front end server passes the request to the DISPD
dispatcher. The DISPD communicates to both the FWDaemon and the NCBID utility on
(possibly) the other host and requests to demonize a requested UNIX filter program (Service
X on the figure). The demonized service starts listening on the certain port for a network
connection. The connection attributes are delivered to the FWDaemon and to the client via the
web front end and the router. The client connects to the NAT service and the NAT service
passes the request further to the FWDaemon. The FWDaemon passes the request to the
demonized Service X on the Service Provider K host. Since that moment the client is able to

Page 16

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

start data exchange with the service. The described scenario is purposed for long term
connections oriented tasks.

Further sections describe all the components in more detail.

Load Balancing Service Mapping Daemon (LBSMD)
Overview—As it was mentioned earlier the purpose of LBSMD daemon is running on each
host which carries either public or private servers which, in turn, implement NCBI services.
The services include CGI programs or standalone servers to access NCBI data.

Each service has a unique name assigned to it. The “TaxServer” would be an example of such
name. The name not only identifies a service. It also implies a protocol which is used for data
exchange with the certain service. For example, any client which connects to the “TaxServer”
service knows how to communicate with that service regardless the way the service is
implemented. In other words the service could be implemented as a standalone server on host
X and as a CGI program on the same host or on another host Y (please note, however, that
there are exceptions and for some service types it is forbidden to have more than one service
type on the same host).

A host can advertize many services. For example, one service (such as “Entrez2”) can operate
with binary data only while another one (such as “Entrez2Text”) can operate with text data
only. The distinction between those two services could be made by using a content type
specifier in the LBSMD daemon configuration file.

The main purpose of the LBSMD daemon is to maintain a table of all services available at
NCBI at the moment. In addition the LBSMD daemon keeps track of servers that are found to
be nonfunctional (dead servers). The daemon is also responsible for propagating trouble
reports, obtained from applications. The application trouble reports are based on their
experience with advertised servers (e.g., an advertised server is not technically dead but
generates some sort of garbage). Further in this document, the latter kind of feedback is called
a penalty.

The principle of load balancing is simple: each server which implements a service is assigned
a (calculated) rate. The higher the rate, the better the chance for that server to be chosen when
a request for a service comes up. Note that load balancing is thus almost never deterministic.

The LBSMD daemon calculates two parameters for the host on which it is running. The
parameters are a normal host status and a BLAST host status (based on the instant load of the
system). These parameters are then used to calculate the rate of all (non static) servers on the
host. The rates of all other hosts are not calculated but received and stored in the LBSDM table.

The LBSMD daemon is started from crontab every few minutes on all the production hosts to
ensure that the daemon is always running. This technique is safe because no more than one
instance of the daemon is permitted on a certain host and any attempt to start more than one is
rejected.

The main loop of the LBSMD daemon comprises periodic checking of the configuration file
and reloading the configuration if necessary, checking and processing the incoming messages
from neighbor LBSMD daemons running on other hosts, and generation and broadcasting the
messages to the other hosts about the load of the system and configured services. The LBSMD
daemon also checks periodically whether the configured servers are alive by trying to connect
to them and then disconnect immediately, without sending/receiving any data. This is the only
way how the daemon is able to check whether the network port is working.

Page 17

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Configuration—The LBSMD daemon is configured via command line options and via a
configuration file. The full list of command line options can be retrieved by issuing the
following command:

/opt/machine/lbsm/sbin/lbsmd --help

The local NCBI users can also visit the following link:

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmd.cgi

The default name of the LBSMD daemon configuration file is /etc/lbsmd/servrc.cfg. Each line
can be one of the following:
! a part of the host environment
! an include directive
! a service definition
! an empty line (the one entirely blank or containing a comment only)

Empty lines are ignored in the file. Any single configuration line can be split into several
physical lines by inserting backslash symbols (\) before the line breaks. A comment is
introduced by the pound symbol (#).

A configuration line of the form

name=value

goes into the host environment. The host environment can be accessed by clients when they
perform the service name resolution. The host environment is designed to help the client to
know about limitations/options that the host has, and based on this additional information the
client can make a decision whether the server (despite the fact that it implements the service)
is suitable for carrying out the client's request. For example, the host environment can give the
client an idea about what databases are available on the host. The host environment is not
interpreted or used in any way by either the daemon or by the load balancing algorithm, except
that the name must be a valid identifier. The value may be practically anything, even empty.
It is left solely to the client to parse the environment and to look for the information of interest.
The host environment can be obtained from the service iterator by a call to
SERV_GetNextInfoEx() (http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?
i=SERV_GetNextInfoEx), which is documented in service mapping API

Note: White space characters which surround the name are not preserved but they are preserved
in the value i.e. when they appear after the “=” sign.

A configuration line of the form

%include filename

causes the filename file content be inserted here. The daemon always assumes that relative file
names (those with names that do not start with the slash character (/)) are given with the daemon
startup directory as a base. This is true for any level of nesting.

Once started, the daemon first assigns the configuration file name as /etc/lbsmd/servrc.cfg and
then tries to read it. If the file is not found (or is not readable) the daemon looks for the

Page 18

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_GetNextInfoEx
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmd.cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_GetNextInfoEx

configuration file servrc.cfg in the directory from which the server has been started. If the file
is found then the file is used as a configuration file. This fallback mechanism is not used when
the configuration file name is explicitly stated in the command line. The daemon periodically
checks the configuration file and all of its descendants and reloads (discards) their contents if
some of the files have been either updated, (re-)moved, or added.

A configuration line of the form

service_name [check_specifier] server_descriptor [| launcher_info]

introduces a service. The detailed description of the individual fields is given below.
! service_name introduces the service name, for example TaxServer.
! [check_specifier] is an optional parameter (if omitted, the surrounding square brackets

must not be used). The parameter is a comma separated list and each element in the
list can be one of the following.
" [-]N[/[-]M] where N and M are integers. This will lead to checking every N

seconds with backoff time of M seconds if failed. The “-“ character is used
when it is required to check dependencies only but not the primary connection
point.

" [!][host[:port]][+[service]] which describes a dependency. The “!” character
means negation. The service is a service name the describing service depends
on and runs on host:port. The pair host:port is required if no service is specified.
The host, :port, or both can be missing if service is specified (in that case the
missing parts are read as “any”). The “+” character alone means “this
service” (the one currently being defined). There could be multiple
dependency specifications for a service.

" [~][DOW[-DOW]][@H[-H]] which defines a schedule. The “~” character
means negation. The service runs from DOW to DOW (DOW is one of Su,
Mo, Tu, We, Th, Fr, Sa) or any if not specified and between hours H to H (9-5
means 9:00am thru 5:59pm, 9-22 means 9:00am thru 10:59pm). Single DOW
and / or H are allowed and mean the exact day of week and / or the exact hour.
There could be multiple schedule specifications.

" email@ncbi.nlm.nih.gov which makes the LBSMD daemon to send an e-mail
to the specified address whenever this server changes its status (e.g. from up
to down). There could be many e-mail specifications. The ncbi.nlm.nih.gov
part is fixed and is not allowed to be changed.

" user which makes the LBSMD daemon to add the specified user be added into
the list of users who are authorized to change the server rate on the fly (e.g.
post a penalty, issue re-rate command etc.). By default these actions are
allowed to the root and lbsmd users. There could be many user specifications.

" script which specifies a path to a local executable which checks whether the
server is operational. The LBSMD daemon starts this script periodically as
specified by the check time parameter(s) above. A single script specification
is allowed.

! server_descriptor specifies the address of the server and supplies additional
information, which is described in details later. An example of the server_descriptor:
 STANDALONE somehost:1234 R=3000 L=yes S=yes B=-20

Page 19

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! launcher_info is basically a command line preceded by a pipe symbol (|) which plays
a role of a delimiter from the server_descriptor. It is only required for the NCBID type
of service which are configured on the local host.

The server_descriptor, also detailed in connect/ncbi_server_info.h (http://
www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/
ncbi_server_info.h), consists of the following fields:

server_type [host][:port] [arguments] [flags]

where:
! server_type is one of the following keywords (more info):

" NCBID for servers launched by ncbid.cgi
" STANDALONE for standalone servers listening to incoming connections on

dedicated ports
" HTTP_GET for servers, which are the CGI programs accepting only the GET

request method
" HTTP_POST for servers, which are the CGI programs accepting only the

POST request method
" HTTP for servers, which are the CGI programs accepting either GET or POST

request methods
" DNS for introduction of a name (fake service), which can be used later in load-

balancing for domain name resolution
" NAMEHOLD for declaration of service names that cannot be defined in any

other configuration files except for the current configuration file. Note: The
FIREWALL server specification may not be used in a configuration file (i.e.,
may neither be declared as services nor as service name holders).

! both host and port parameters are optional. Defaults are local host and port 80, except
for STANDALONE and DNS servers, which do not have a default port value. If host
is specified (by either of the following: keyword localhost, localhost IP address
127.0.0.1, real host name, or IP address) then the described server is not a subject for
variable load balancing but is a static server. Such server always has a constant rate,
independent of any host load.

! arguments are required for HTTP* servers and must specify the local part of the URL
of the CGI program and, optionally, parameters such as /somepath/somecgi.cgi?
param1¶m2=value2¶m3=value3. If no parameters are to be supplied, then
the question mark (?) must be omitted, too. For NCBID servers, arguments are
parameters to pass to the server and are formed as arguments for CGI programs, i.e.,
param1¶m2¶m3=value. As a special rule, '' (two single quotes) may be used
to denote an empty argument for the NCBID server. STANDALONE and DNS servers
do not take any arguments.

! flags can come in no specific order (but no more than one instance of a flag is allowed)
and essentially are the optional modifiers of values used by default. The following
flags are recognized:
" load calculation keyword:

Blast to use special algorithm for rate calculation acceptable for
BLAST (http://www.ncbi.nlm.nih.gov/blast/Blast.cgi) applications.
The algorithm uses instant values of the host load and thus is less
conservative and more reactive than the ordinary one.

Page 20

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/blast/Blast.cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_server_info.h

! Regular to use an ordinary rate calculation (default, and the only load
calculation option allowed for static servers).

" base rate:
! R=value sets the base server reachability rate (as a floating point

number); the default is 1000. Any negative value makes the server
unreachable, and a value 0 is used. The range of the base rate is
between 0.001 and 100000.

" locality markers
(Note: If necessary, both L and P markers can be combined in a particular service definition):
L={yes|no} sets (if yes) the server to be local only. The default is no. Service mapping

API returns local only servers in the case of mapping with the use of LBSMD running
on the same - local - host (direct mapping), or if the dispatching (indirect mapping)
occurs within the NCBI Intranet. Otherwise, if the service mapping occurs using a non-
local network (certainly indirectly, by exchange with dispd.cgi) then servers that are
local only are not seen.

P={yes|no} sets (if yes) the server to be private. The default is no. Private servers are
not seen by the outside NCBI users (exactly like local servers), but in addition these
servers are not seen from the NCBI Intranet if requested from a host, which is different
from one where the private server runs. This flag cannot be used for DNS servers.

Note: If several configuration lines for a particular service have a Q=value flag, then the quorum
is the minimal value among those specified. Q=no or Q=0 defines an active service entry (as
if the Q flag were not specified at all).

Server descriptors of type NAMEHOLD are special. As arguments, they have only a server
type keyword. The namehold specification informs the daemon that the service of this name
and type is not to be defined later in any configuration file except for the current one. Also, if
the host is specified, then this protection works only for the service name on the particular host.
The port number is ignored (if specified).

Note: it is recommended that a dummy port number (such as :0) is always put in the namehold
specifications to avoid ambiguities with treating the server type as a host name. The following
example disables TestService of type DNS from being defined in all other configuration files
included later, and TestService2 to be defined as a NCBID service on host foo:

TestService NAMEHOLD :0 DNS

TestService2 NAMEHOLD foo:0 NCBID

Signals—The table below describes the LBSMD daemon signal processing.

Signal Reaction

SIGHUP reload the configuration

SIGINT quit

SIGTERM quit

SIGUSR1 toggle the verbosity level between less verbose (default) and more verbose (when every warning generated is stored) modes

Automatic Configuration Distribution—The configuration files structure is unified for
all the hosts in the NCBI network. It is shown on the figure below.

Page 21

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 9. LBSMD Configuration Files Structure

The common for all the configuration file prefix /etc/lbsmd is omitted on the figure. The arrows
on the diagram show how the files are included.

The files servrc.cfg and servrc.cfg.systems have fixed structure and should not be changed at
all. The purpose of the file local/servrc.cfg.systems is to be modified by the systems group
while the purpose of the file local/servrc.cfg.ieb isto be modified by the delegated members of
the respected groups. To make it easier for changes all the local/servrc.cfg.ieb files from all
the hosts in the NCBI network are stored in a centralized SVN repository. The repository can
be received by issuing the following command:

svn co svn+ssh://subvert.be-md.ncbi.nlm.nih.gov/export/home/LBSMD_REPO

The file names in that repository match the following pattern:

hostname.{be-md|st-va}[.qa]

where be-md is used for Bethesda, MD site and st-va is used for Sterling, VA site. The
optional .qa suffix is used for quality assurance department hosts.

Page 22

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

So, if it is required to change the /etc/lbsmd/local/servrc.cfg.ieb file on the sutils1 host in
Bethesda the sutils1.be-md file is to be changed in the repository.

As soon as the modified file is checked in the file will be delivered to the corresponding host
with the proper name automatically. The changes will take effect in a few minutes. The process
of the configuration distribution is illustrated on the figure below.

Figure 10. Automatic Configuration Distribution

Monitoring and Control
Service Search: The following web page can be used to search for a service:

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi

The following screen will appear

Page 23

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi

Figure 11. NCBI Service Search Page

As an example of usage a user might enter the partial name of the service like "TaxService"
and click on the “Go” button. The search results will display "TaxService", "TaxService3" and
"TaxService3Test" if those services are available (see http://intranet.ncbi.nlm.nih.gov/ieb/
ToolBox/NETWORK/lbsmc/search.cgi?
key=rb_svc&service=TaxService&host=&button=Go&db=).

lbsmc Utility: Another way of monitoring the LBSMD daemon is using the lbsmc (http://
intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsmc.c)
utility. The utility periodically dumps onto the screen a table which represents the current
content of the LBSMD daemon table. The utility output can be controlled by a number of
command line options. The full list of available options and their description can be obtained
by issuing the following command:

lbsmc -h

The NCBI intranet users can also get the list of options by clicking on this link: http://
intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc.cgi?-h.

For example, to print a list of hosts which names match the pattern “sutil*” the user can issue
the following command:

 >./lbsmc -h sutil* 0
LBSMC - Load Balancing Service Mapping Client R100432

Page 24

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc.cgi?-h
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi?key=rb_svc&service=TaxService&host=&button=Go&db=
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi?key=rb_svc&service=TaxService&host=&button=Go&db=
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi?key=rb_svc&service=TaxService&host=&button=Go&db=
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsmc.c
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsmc.c
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc.cgi?-h

03/13/08 16:20:23 ====== widget3.be-md.ncbi.nlm.nih.gov (00:00) ======= [2]
V1.2
Hostname/IPaddr Task/CPU LoadAv LoadBl Joined Status StatBl
sutils1 151/4 0.06 0.03 03/12 13:04 397.62 3973.51
sutils2 145/4 0.17 0.03 03/12 13:04 155.95 3972.41
sutils3 150/4 0.20 0.03 03/12 13:04 129.03 3973.33

Service T Type Hostname/IPaddr:Port LFS B.Rate Coef
Rating
bounce +25 NCBID sutils1:80 L 1000.00
397.62
bounce +25 HTTP sutils1:80 1000.00
397.62
bounce +25 NCBID sutils2:80 L 1000.00
155.95
bounce +25 HTTP sutils2:80 1000.00
155.95
bounce +27 NCBID sutils3:80 L 1000.00
129.03
bounce +27 HTTP sutils3:80 1000.00
129.03
dispatcher_lb 25 DNS sutils1:80 1000.00
397.62
dispatcher_lb 25 DNS sutils2:80 1000.00
155.95
dispatcher_lb 27 DNS sutils3:80 1000.00
129.03
MapViewEntrez 25 STANDALONE sutils1:44616 L S 1000.00
397.62
MapViewEntrez 25 STANDALONE sutils2:44616 L S 1000.00
155.95
MapViewEntrez 27 STANDALONE sutils3:44616 L S 1000.00
129.03
MapViewMeta 25 STANDALONE sutils2:44414 L S 0.00
0.00
MapViewMeta 27 STANDALONE sutils3:44414 L S 0.00
0.00
MapViewMeta 25 STANDALONE sutils1:44414 L S 0.00
0.00
sutils_lb 25 DNS sutils1:80 1000.00
397.62
sutils_lb 25 DNS sutils2:80 1000.00
155.95
sutils_lb 27 DNS sutils3:80 1000.00
129.03
TaxService 25 NCBID sutils1:80 1000.00
397.62
TaxService 25 NCBID sutils2:80 1000.00
155.95
TaxService 27 NCBID sutils3:80 1000.00

Page 25

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

129.03
TaxService3 +25 HTTP_POST sutils1:80 1000.00
397.62
TaxService3 +25 HTTP_POST sutils2:80 1000.00
155.95
TaxService3 +27 HTTP_POST sutils3:80 1000.00
129.03
test +25 HTTP sutils1:80 1000.00
397.62
test +25 HTTP sutils2:80 1000.00
155.95
test +27 HTTP sutils3:80 1000.00
129.03
testgenomes_lb 25 DNS sutils1:2441 1000.00
397.62
testgenomes_lb 25 DNS sutils2:2441 1000.00
155.95
testgenomes_lb 27 DNS sutils3:2441 1000.00
129.03
testsutils_lb 25 DNS sutils1:2441 1000.00
397.62
testsutils_lb 25 DNS sutils2:2441 1000.00
155.95
testsutils_lb 27 DNS sutils3:2441 1000.00
129.03

* Hosts:4\747, Srvrs:44/1223/23 | Heap:249856, used:237291/249616, free:240
*
LBSMD PID: 17530, config: /etc/lbsmd/servrc.cfg

NCBI Intranet Web Utilities: The NCBI intranet users can also visit the following quick
reference links:
! Dead servers list: http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/

lbsmc.cgi?-h+none+-w+-d
! Search engine for all available hosts, all services and database affiliation: http://

intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi?
key=rb_svc&service=&host=&button=Go&db=

If the lbsmc utility is run with the –f option then the output contains two parts:
! The host table. The table is accompanied by raw data which are printed in the order

they appear in the LBSMD daemon table.
! The service table

The output is provided in either long or short format. The format depends on whether the –w
option was specified in the command line (the option requests the long (wide) output). The
wide output occupies about 130 columns, while the short (normal) output occupies 80 which
is the standard terminal width.

In case if the service name is more than the allowed number of characters to display the trailing
characters will be replaced with “>”. When there is more information about the host / service
to be displayed the “+” character is put beside the host / service name (this additional

Page 26

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi?key=rb_svc&service=&host=&button=Go&db=
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc.cgi?-h+none+-w+-d
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc.cgi?-h+none+-w+-d
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi?key=rb_svc&service=&host=&button=Go&db=
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmc/search.cgi?key=rb_svc&service=&host=&button=Go&db=

information can be retrieved by adding the –i option). When both “+” and “>” are to be shown
they are replaced with the single character “*”. In the case of wide-output format the “#”
character shown in the service line means that there is no host information available for the
service (similar to the static servers). The “!” character in the service line denotes that the
service was configured / stored with an error (this character actually should never appear in
the listings and should be reported whenever encountered). Wide output for hosts contains the
time of bootup and startup. If the startup time is preceded by the “~” character then the host
was gone for a while and then came back while the lbsmc utility was running. The “+” character
in the times is to show that the date belongs to the past year(s).

Server Penalizer API and Utility: The utility allows to report problems of accessing a certain
server to the LBSMD daemon, in a form of a penalty which is a value in the range [0..100] that
shows, in percentages, how bad the server is. The value 0 means that the server is completely
okay, whereas 100 means that the server (is misbehaving and) should not be used at all. The
penalty is not a constant value: once set, it starts to decrease in time, at first slowly, then faster
and faster until it reaches zero. This way, if a server was penalized for some reason and later
the problem has been resolved, then the server becomes available gradually as its penalty (not
being reset by applications again in the absence of the offending reason) becomes zero. The
figure below illustrates how the value of penalty behaves.

Figure 12. Penalty Value Characteristics

Technically, the penalty is maintained by a daemon, which has the server configured, i.e.,
received by a certain host, which may be different from the one where the server was put into
the configuration file. The penalty first migrates to that host, and then the daemon on that host
announces that the server was penalized.

Note: Once a daemon is restarted, the penalty information is lost.

Service mapping API has a call SERV_Penalize() (http://www.ncbi.nlm.nih.gov/IEB/
ToolBox/CPP_DOC/lxr/ident?i=SERV_Penalize) declared in connect/ncbi_service.h (http://

Page 27

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_Penalize
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SERV_Penalize

www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h),
which can be used to set the penalty for the last server obtained from the mapping iterator.

For script files (similar to the ones used to start/stop servers), there is a dedicated utility program
called lbsm_feedback (http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/
src/connect/daemons/lbsm_feedback.c), which sets the penalty from the command line. This
command should be used with extreme care because it affects the load-balancing mechanism
substantially,.

lbsm_feedback is a part of the LBSM set of tools installed on all hosts which run LBSMD. As
it was explained above, penalizing means to make a server less favorable as a choice of the
load balancing mechanism. Because of the fact that the full penalty of 100% makes a server
unavailable for clients completely, at the time when the server is about to shut down (restart),
it is wise to increase the server penalty to the maximal value, i.e. to exclude the server from
the service mapping. (Otherwise, the LBSMD daemon might not immediately notice that the
server is down and may continue dispatching to that server.) Usually, the penalty takes at most
5 seconds to propagate to all participating network hosts. Before an actual server shutdown,
the following sequence of commands can be used:

> /opt/machine/lbsm/sbin/lbsm_feedback 'Servicename STANDALONE host 100 120'
> sleep 5
now you can shutdown the server

The effect of the above is to set the maximal penalty 100 for the service Servicename (of type
STANDALONE) running on host host for at least 120 seconds. After 120 seconds the penalty
value will start going down steadily and at some stage the penalty becomes 0. The default hold
time equals 0. It takes some time to deliver the penalty value to the other hosts on the network
so ‘sleep 5’ is used. Please note the single quotes surrounding the penalty specification: they
are required in a command shell because lbsm_feedback takes only one argument which is the
entire penalty specification.

As soon as the server is down, the LBSMD daemon detects it in a matter of several seconds
(if not instructed otherwise by the configuration file) and then does not dispatch to the server
until it is back up. In some circumstances, the following command may come in handy:

 > /opt/machine/lbsm/sbin/lbsm_feedback 'Servicename STANDALONE host 0'

The command resets the penalty to 0 (no penalty) and is useful when, as for the previous
example, the server is restarted and ready in less than 120 seconds, but the penalty is still held
high by the LBSMD daemon on the other hosts.

The formal description of the lbsm_feedback utility parameters is given below.

Page 28

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsm_feedback.c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_service.h
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/connect/daemons/lbsm_feedback.c

Figure 13. lbsm_feedback Arguments

The servicename can be an identifier with ‘*’ for any symbols and / or ‘?’ for a single character.
The penalty value is an integer value in the range 0 … 100. The port number and time are
integers. The host name is an identifier and the rate value is floating point value.

SVN Repository—The SVN repository where the LBSMD daemon source code is located
can be retrieved by issuing the following command:

svn co https://svn.ncbi.nlm.nih.gov/repos/toolkit/trunk/c++

The daemon code is in this file:

c++/src/connect/daemons/lbsmd.c

Log Files—The LBSMD daemon stores its log files at the following location:

Page 29

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

/var/log/lbsmd

The file is formed locally on a host where LBSMD daemon is running. The log file size is
limited to prevent the disk being flooded with messages. A standard log rotation is applied to
the log file so you may see the files

/var/log/lbsmd.X.gz

where X is a number of the previous log file.

The log file size can be controlled by the -s command line option. By default, -s 0 is the active
flag, which provides a way to create (if necessary) and to append messages to the log file with
no limitation on the file size whatsoever. The -s -1 switch instructs indefinite appending to the
log file, which must exist. Otherwise, log messages are not stored. -s positive_number restricts
the ability to create (if necessary) and to append to the log file until the file reaches the specified
size in kilobytes. After that, message logging is suspended, and subsequent messages are
discarded. Note that the limiting file size is only approximate, and sometimes the log file can
grow slightly bigger. The daemon keeps track of log files and leaves a final logging message,
either when switching from one file to another, in case the file has been moved or removed, or
when the file size has reached its limit.

NCBI intranet users can get few (no more than 100) recent lines of the log file on host ray. It
is also possible to visit the following link:

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmd.cgi?log

Configuration Examples—Here is an example of a LBSMD configuration file:

Id

#

This is a configuration file of new NCBI service dispatcher

#

#

DBLB interface definitions

%include /etc/lbsmd/servrc.cfg.db

IEB's services

testHTTP /Service/test.cgi?Welcome L=no

Entrez2[0] HTTP_POST www.ncbi.nlm.nih.gov /entrez/eutils/entrez2server.fcgi \

C=x-ncbi-data/x-asn-binary L=no

Entrez2BLAST[0] HTTP_POST www.ncbi.nlm.nih.gov /entrez/eutils/entrez2server.cgi \

C=x-ncbi-data/x-asn-binary L=yes

CddSearch [0] HTTP_POST www.ncbi.nlm.nih.gov /Structure/cdd/c_wrpsb.cgi \

Page 30

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmd.cgi?log

C=application/x-www-form-urlencoded L=no

CddSearch2 [0] HTTP_POST www.ncbi.nlm.nih.gov /Structure/cdd/wrpsb.cgi \

C=application/x-www-form-urlencoded L=no

StrucFetch [0] HTTP_POST www.ncbi.nlm.nih.gov /Structure/mmdb/mmdbsrv.cgi \

C=application/x-www-form-urlencoded L=no

bounce[60]HTTP /Service/bounce.cgi L=no C=x-ncbi-data/x-unknown

Services of old dispatcher

bounce[60]NCBID '' L=yes C=x-ncbi-data/x-unknown | \

/web/public/htdocs/Service/bounce

NCBI intranet users can also visit the following link to get a sample configuration file:

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmd.cgi?cfg

Cookie / Argument Affinity Module (MOD_CAF)
Overview—The cookie / argument affinity module (CAF module in the further discussion)
helps to virtualize and to dispatch a web site by modifying the way how Apache resolves host
names. It is done by superseding conventional gethostbyname*() API. The CAF module is
implemented as an Apache web server module and uses the LBSMD daemon collected data to
make a decision how to dispatch a request. The data exchange between the CAF module and
the LBSMD daemon is done via a shared memory segment as shown on the figure below.

Page 31

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/NETWORK/lbsmd.cgi?cfg

Figure 14. CAF Module and LBSMD daemon data exchange

The LBSMD daemon stores all the collected data in a shared memory segment and the CAF
module is able to read data from that segment.

The CAF module looks for special cookies and query line arguments, and analyses the LBSMD
daemon data to resolve special names which can be configured in ProxyPass directives of
mod_proxy.

The CAF module maintains a list of proxy names, cookies, and arguments (either 4 predefined,
see below, or set forth via Apache configuration file by CAF directives) associated with
cookies. Once a URL is translated to the use of one of the proxies (generally, by ProxyPass of
mod_proxy) then the information from related cookie (if any) and argument (if any) is used to
find the best matching real host that corresponds to the proxy. Damaged cookies and arguments,
if found in the incoming HTTP request, are ignored.

Page 32

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

A special host name is meant under proxy and the name contains a label followed by string
".lb" followed by an optional domain part. Such names trigger gethostbyname() substitute,
supplied by the module, to consult load-balancing daemon's table, and to use both the
constraints on the arguments and the preferred host information, found in the query string and
the cookie, respectively.

For example, the name "pubmed.lb.nlm.nih.gov" is an LB proxy name, which would be
resolved by looking for special DNS services ("pubmed_lb" in this example) provided by the
LBSMD daemon. Argument matching (see also a separate section below) is done by searching
the host environment of target hosts (corresponding to the LB proxy name) as supplied by the
LBSMD daemon. That is, "db=PubMed" (to achieve PubMed database affinity) in the query
that transforms into a call to an LB proxy, which in turn is configured to use the argument
"DB", instructs to search only those target hosts that declare the proxy and have "db=...
PubMed ..." configured in their LBSMD environments (and yet to remember to accommodate,
if it is possible, a host preference from the cookie, if any found in the request).

The CAF module also detects internal requests and allows them to use the entire set of hosts
that the LB names are resolved to. For external requests, only hosts whose DNS services are
not marked local (L=yes, or implicitly, by lacking "-i" flag in the LBSMD daemon launch
command) will be allowed to serve requests. "HTTP_CAF_PROXIED_HOST" environment
is supplied (by means of an HTTP header tag named "CAF-Proxied-Host") to contain an
address of the actual host posted the request. Impostor's header tags (if any) of this name are
always stripped, so that backends always have correct information about the requesters. Note
that all internal requests are trusted, so that an internal resource can make a request to execute
on behalf of an outside client by providing its IP in the "Client-Host" HTTP header. The "Client-
Host" tag gets through for internal requests only; to maintain security the tag is dropped for all
external requests.

The CAF module has its own status page that can be made available in the look somewhat
resembling Apache status page. The status can be in either raw or HTML formatted, and the
latter can also be sorted using columns in interest. Stats are designed to be fast, but sometimes
inaccurate (to avoid interlocking, and thus latencies in request processing, there are no mutexes
being used except for the table expansion). Stats are accumulated between server restarts (and
for Apache 2.0 can survive graceful restarts, too). When the stat table is full (since it has a fixed
size), it is cleaned in a way to get room for 1% of its capacity, yet trying to preserve the most
of recent activity as well as the most of heavily used stats from the past. There are two cleaning
algorithms currently implemented, and can be somehow tuned by means of CAFexDecile,
CAFexPoints, and CAFexSlope directives which are described below.

The CAF module can also report the number of slots that the Apache server has configured
and used up each time a new request comes in and is being processed. The information resides
in a shared memory segment that several Apache servers can use cooperatively on the same
machine. Formerly, this functionality has been implemented in a separate SPY module, which
is now fully integrated into this module. Using a special compile-time macro it is possible to
obtain the former SPY-only functionality (now called LBSMD reporter feature) without any
other CAF features. Note that no CAF* directives will be recognized in Apache configuration,
should the reduced functionality build be chosen.

Configuration—The table below describes Apache configuration directives which are taken
into account by the CAF module.

Page 33

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Directive Description

LBSMD { On | Off } It can appear outside any paired section of the configuration file, and enables ["On", default
in mod_spy mode] or disables ["Off", default in full-fledged mod_caf mode] the LBSMD
reporter feature. When the module is built exclusively with the LBSMD reporter feature,
this is the only directive, which is available for the use by the module. Please note that the
directive is extremely global, and works across configuration files. Once "Off" is found
throughout the configuration, it takes the effect.

CAF { On | Off } It can appear outside any paired section of the configuration file, and enables ["On", default]
or disables ["Off"] the entire module. Please note that this directive is extremely global, and
works across Apache configuration files, that is the setting "Off" anywhere in the
configuration causes the module to go out of business completely.

CAFQAMap name path It can appear outside any paired section of the configuration file but only once in the entire
set of the configuration files per "name", and if used, defines a path to the map file, which
is to be loaded at the module initialization phase (if the path is relative, it specifies the
location with respect to the daemon root prefix as defined at the time of the build, much
like other native configuration locations do). The file is a text, line-oriented list (w/o line
continuations). The pound symbol (#) at any position introduces a comment (which is
ignored by the parser). Any empty line (whether resulted from cutting off a comment, or
just blank by itself) is skipped. Non-empty lines must contain a pair of words, delimited by
white space(s) (that is, tab or space character(s)). The first word defines an LB group that
is to be replaced with the second word, in the cases when the first word matches the LB
group used in proxy passing of an internally-originating request. The matching is done by
previewing a cookie named "name" that should contain a space-separated list of tokens,
which must comprise a subset of names loaded from the left-hand side column of the QA
file. Any unmatched token in the cookie will result the request to fail, so will do any duplicate
name. That is, if the QA map file contains a paired rule "tpubmed tpubmedqa", and an
internal (i.e. originating from within NCBI) request has the NCBIQA cookie listing
"tpubmed", then the request that calls for use of the proxy-pass "tpubmed.lb" will actually
use the name "tpubmedqa.lb" as if it appeared in the ProxyPass rule of mod_proxy. Default
is not to load any QA maps, and not to proceed with any substitutions. Note that if the
module is disabled (CAF Off), then the map file, even if specified, need not to exist, and
won't be loaded.

CAFFailoverIP address It defines hostname / IP to return on LB proxy names that cannot be resolved. Any external
requests and local ones, in which argument affinity has to be taken into account, will fall
straight back to use this address whenever the LB name is not known or LBSMD is not
operational. All other requests will be given a chance to use regular DNS first, and if that
fails, then fall back to use this IP. When the failover IP address is unset, a failed LB proxy
name generally causes the Apache server to throw either "Bad gateway" (502) or "Generic
server error" (500) to the client. This directive is global across the entire configuration, and
the last setting takes the actual effect.

CAFForbiddenIP address It is similar to CAFFailoverIP described above yet applies only to the cases when the
requested LB DNS name exists but cannot be returned as it would cause the name access
violation (for example, an external access requires an internal name to be used to proxy the
request). Default is to use the failover IP (as set by CAFFailoverIP), if available.

CAFThrottleIP address It is similar to CAFFailoverIP described above but applies only to abusive requests that
should be throttled out. Despite this directive exists, the actual throttling mechanism is not
yet in production. Default is to use the failover IP (as set by CAFFailoverIP), if available.

CAFBusyIP address It is similar to CAFFailoverIP described above but gets returned to clients when it is known
that the proxy otherwise serving the request is overloaded. Default is to use the failover IP,
if available.

CAFDebug { Off | On | 2 | 3 } It controls whether to print none ("Off"), some ("On"), more ("2"), or all ("3") debugging
information into Apache log file. Per-request logging is automatically on when debugging
is enabled by the native LogLevel directive of Apache (LogLevel debug), or with a
command line option -e (Apache 2). This directive controls whether mod_caf produces
additional logging when doing maintenance cleaning of its status information (see
CAFMaxNStats below).
Debug level 1 (On) produces cleanup synopsis and histogram, level 2 produces per-stat
eviction messages and the synopsis, and debug level 3 is a combination of the above. Default
is "Off". The setting is global, and the last encounter has the actual effect. NOTE: per-stat
eviction messages may cause latencies in request processing; so debug levels "2" and "3"
should be used carefully, and only when actually needed.

Page 34

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CAFTiming { Off | On | TOD } It controls whether the module timing profile is done while processing requests. For this to
work, though, CAFMaxNStats must first enable collection of statistics. Module's status page
then will show how much time is being spent at certain stages of a request processing. Since
proxy requests and non-proxy requests are processed differently they are accounted
separately. "On" enables to make the time marks using the gettimeofday(2) syscall (accurate
up to 1us) without reset upon each stat cleanup (note that tick count will wrap around rather
frequently). Setting "TOD" is same as "On" but extends it so that counts do get reset upon
every cleanup. Default is "Off". The setting is global, and the last encounter in the
configuration file has the actual effect.

CAFMaxNStats number The number defines how many statistics slots are allocated for CAF status (aka CAF
odometer). Value "0" disables the status page at all. Value "-1" sets default number of slots
(which currently corresponds to the value of 319). Note that the number only sets a lower
bound, and the actual number of allocated slots may be automatically extended to occupy
whole number of pages (so that no "memory waste" occurs). The actual number of stats
(and memory pages) is printed to the log file. To access the status page, a special handler
must be installed for a designated location, as in the following example:
<Location /caf-status>
SetHandler CAF-status
Order deny,allow
Deny from all
Allow from 130.14/16
</Location>
404 (Document not found) gets returned from the configured location if the status page has
been disabled (number=0), or if it malfunctions. This directive is global across the entire
configuration, and the last found setting takes the actual effect.
CAF stats can survive server restarts [graceful and plain "restart"], but not stop / start
triggering sequence.
Note: "CAF Off" does not disable the status page if it has been configured before -- it just
becomes frozen. So [graceful] restart with "CAF Off" won't prevent from gaining access to
the status page, although the rest of the module will be rendered inactive.

CAFUrlList url1 url2 ... By default, CAF status does not distinguish individual CGIs as they are being accessed by
clients. This option allows separating statistics on a per-URL basis. Care must be taken to
remember of "combinatorial explosion", and thus the appropriate quantity of stats is to be
pre-allocated with CAFMaxNStats if this directive is used, or else the statistics may renew
too often to be useful. Special value "*" allows to track every (F)CGI request by creating
individual stat entries for unique (F)CGI names (with or without the path part, depending
on a setting of CAFStatPath directive, below). Otherwise, only those listed are to be
accounted for, leaving all others to accumulate into a nameless stat slot. URL names can
have .cgi or .fcgi file name extensions. Alternatively, a URL name can have no extension
to denote a CGI, or a trailing period (.) to denote an FCGI. A single dot alone (.) creates a
specially named stat for all non-matching CGIs (both .cgi or .fcgi), and collects all other
non-CGI requests in a nameless stat entry. (F)CGI names are case sensitive. When path
stats are enabled (see CAFStatPath below), a relative path entry in the list matches any (F)
CGI that has the trailing part matching the request (that is, "query.fcgi" matches any URL
that ends in "query.fcgi", but "/query.fcgi" matches only the top-level ones). There is an
internal limit of 1024 URLs that can be explicitly listed. Successive directives add to the
list. A URL specified as a minus sign alone ("-") clears the list, so that no urls will be
registered in stats. This is the default. This directive is only allowed at the top level, and
applies to all virtual hosts.

CAFUrlKeep url1 url2 ... CAF status uses a fixed-size array of records to store access statistics, so whenever the table
gets full, it has to be cleaned up by dropping some entries, which have not been updated
too long, have fewer count values, etc. The eviction algorithm can be controlled by
CAFexDecile, CAFexPoints, and CAFexSlope directives, described below, but even when
finely tuned, can result in some important entries being pre-emptied, especially when per-
URL stats are enabled. This directive helps avoid losing the important information,
regardless of other empirical characteristics of a candidate-for-removal. The directive, like
CAFUrlList above, lists individual URLs which, once recorded, have to be persistently kept
in the table. Note that as a side effect, each value (except for "-") specified in this directive
implicitly adds an entry as if it were specified with CAFUrlList. Special value "-" clears the
keep list, but does not affect the URL list, so specifying "CAFUrlKeep a b -" is same as
specifying "CAFUrlList a b" alone, that is, without obligation for CAF status to keep either
"a" or "b" permanently. There is an internal limit of 1024 URLs that can be supplied by this
directive. Successive uses add to the list. The directive is only allowed at the top level, and
applies to all virtual hosts.

CAFexDecile digit It specifies the top decile(s) of the total number of stat slots, sorted by the hit count and
subject for expulsion, which may not be made available for stat's cleanup algorithms should
it be necessary to arrange a new slot by removing old/stale entries. Decile is a single digit
0 through 9, or a special value "default" (which currently translates to 1). Note that each
decile equals 10%.

Page 35

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CAFexPoints { value | percentage% } The directive specifies how many records, as an absolute value, or as a percentage of total
stat slots, are to be freed each time the stat table gets full. Keyword "default" also can be
used, which results in eviction of 1% of all records (or just 1 record, whatever is greater).
Note that if CAFUrlKeep is in use, the cleanup may not be always possible. The setting is
global and the value found last takes the actual effect.

CAFexSlope { value | "quad" } The directive can be used to modify cleanup strategy used to vacate stat records when the
stat table gets full. The number of evicted slots can be controlled by CAFexPoints directive.
The value, which is given by this directive, is used to plot either circular ("quad") or linear
(value >= 0) plan of removal. The linear plan can be further fine-tuned by specifying a co-
tangent value of the cut-off line over a time-count histogram of statistics, as a binary
logarithm value, so that 0 corresponds to the co-tangent of 1 (=2^0), 1 (default) corresponds
to the co-tangent of 2 (=2^1), 2 - to the co-tangent of 4 (=2^2), 3 - to 8 (=2^3), and so forth,
up to a maximal feasible value 31 (since 2^32 overflows an integer, this results in the infinite
co-tangent, causing a horizontal cut-off line, which does not take into account times of last
updates, but counts only). The default co-tangent (2) prices the count of a stats twice higher
than its longevity. The cleanup histogram can be viewed in the log if CAFDebug is set as
2 (or 3). The setting is global and the value found last takes the actual effect.

CAFStatVHost { Off | On } It controls whether VHosts of the requests are to be tracked on the CAF status page. By
default, VHost separation is not done. Note that preserving graceful restart of the server
may leave some stats VHost-less, when switching from VHost-disabled to VHost-enabled
mode, with this directive. The setting is global and the setting found last has the actual effect.

CAFStatPath { On | Off } It controls whether the path part of URLs is to be stored and shown on the CAF status page.
By default, the path portion is stripped. Keep in mind the relative path specifications as
given in CAFUrlList directive, as well as the number of possible combinations of Url/
VHost/Path, that can cause frequent overflows of the status table. When CAFStatPath is
"Off", the path elements are stripped from all URLs provided in the CAFUrlList directive
(and merging the identical names, if any result). This directive is global, and the setting
found last having the actual effect.

CAFOkDnsFallback { On | Off } It controls whether it is okay to fallback for consulting regular DNS on the unresolved
names, which are not constrained with locality and/or affinities. Since shutdown of
SERVNSD (which provided the fake .lb DNS from the load balancer), fallback to system
DNS looks painfully slow (at it has now, in the absence of the DNS server, to reach the
timeout), so the default for this option is "Off". The setting is global, and the value found
last takes the actual effect.

CAFNoArgOnGet { On | Off } It can appear outside any paired section of the configuration, "On" sets to ignore argument
assignment in GET requests that don't have explicit indication of the argument. POST
requests are not affected. Default is "Off", VHost-specific.

CAFArgOnCgiOnly { On | Off } It controls whether argument is taken into account when an FCGI or CGI is being accessed.
Default is "Off". The setting is per-VHost specific.

CAFCookies { Cookie | Cookie2 | Any } It instructs what cookies to search for: "Cookie" stands for RFC2109 cookies (aka Netscape
cookies), this is the default. "Cookie2" stands for new RFC2965 cookies (new format
cookies). "Any" allows searching for both types of cookies. This is a per-server option that
is not shared across virtual host definitions, and allowed only outside any <Directory> or
<Location>. Note that, according to the standard, cookie names are not case-sensitive.

CAFArgument argument It defines argument name to look for in the URLs. There is no default. If set, the argument
becomes default for any URL and also for proxies whose arguments are not explicitly set
with CAFProxyArgument directives. The argument is special case sensitive: first, it is
looked up "as-is" and, if that fails, in all uppercase then. This directive can appear outside
any <Directory> or <Location> and applies to virtual hosts (if any) independently.

CAFHtmlAmp { On | Off } It can appear outside any paired section of configuration, set to On enables to recognize
"&" for the ampersand character in request URLs (caution: "&" in URLs is not
standard-conforming). Default is "Off", VHost-specific.

CAFProxyCookie proxy cookie It establishes a correspondence between LB DNS named proxy and a cookie. For example,
"CAFProxyCookie pubmed.lb MyPubMedCookie" defines that "MyPubMedCookie"
should be searched for preferred host information when "pubmed.lb" is being considered
as a target name for proxying the incoming request. This directive can appear anywhere in
configuration, but is hierarchy complying.

CAFProxyNoArgOnGet proxy { On | Off | Default } The related description can be seen at the CAFNoArgOnGet directive description above.
The setting applies only to the specified proxy. "Default" (default) is to use the global setting.

CAFProxyArgOnCgiOnly proxy { On | Off |
Default }

The related description can be seen at the CAFArgOnCgiOnly directive description above.
The setting applies only to the specified proxy. "Default" (default) is to use the global setting.

Page 36

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CAFProxyArgument proxy argument It establishes a correspondence between LB DNS named proxy and a query line argument.
This directive overrides any default that might have been set with global "CAFArgument"
directive. Please see the list of predefined proxies below. The argument is special case
sensitive: first, it is looked up "as-is" and, if that fails, in all uppercase then. The first
argument occurrence is taken into consideration. It can appear anywhere in configuration,
but is hierarchy complying.

CAFProxyAltArgument proxy altargument It establishes a correspondence between LB DNS named proxy and an alternate query line
argument. The alternate argument (if defined) is used to search (case-insensitively) query
string for the argument value, but treating the value as if it has appeared to argument set
forth by CAFProxyArgument or CAFArgument directives for the location in question. If
no alternate argument value is found, the regular argument search is performed. Please see
the list of predefined proxies below. Can appear anywhere in configuration, but is hierarchy
complying, and should apply for existing proxies only. Altargument "-" deletes the alternate
argument (if any). Note again that unlike regular proxy argument (set forth by either
CAFArgument (globally) or CAFProxyArgument (per-proxy) directives) the alternate
argument is entirely case-insensitive.

CAFProxyDelimiter proxy delimiter It sets a one character delimiter that separates host[:port] field in the cookie, corresponding
to the proxy, from some other following information, which is not pertinent to cookie
affinity business. Default is '|'. No separation is performed on a cookie that does not have
the delimiter -- it is then thought as been found past the end-of-line. It can appear anywhere
in configuration, but is hierarchy complying.

CAFProxyPreference proxy preference It sets a preference (floating point number from the range [0..100]) that the proxy would
have if a host matching the cookie is found. The preference value 0 selects the default value
which is currently 95. It can appear anywhere in configuration, but is hierarchy complying.

CAFProxyCryptKey proxy key It sets a crypt key that should be used to decode the cookie. Default is the key preset when
a cookie correspondence is created [via either "CAFProxyCookie" or
"CAFProxyArgument"]. To disable cookie decrypting (e.g. if the cookie comes in as a plain
text) use "". Can appear anywhere in configuration, but is hierarchy complying.

All hierarchy complying settings are inherited in directories that are deeper in the directory
tree, unless overridden there. The new setting then takes effect for that and all descendant
directories/locations.

There are 4 predefined proxies that may be used [or operated on] without prior declaration by
either "CAFProxyCookie" or "CAFProxyArgument" directives:

LB name CookieName Preference Delimiter Crypted? Argument AltArg

tpubmed.lb LB-Hint-Pubmed 95 | yes db <none>

eutils.lb LB-Hint-Pubmed 95 | yes db DBAF

mapview.lb LB-Hint-MapView 95 | yes <none> <none>

blastq.lb LB-Hint-Blast 95 | yes <none> <none>

NOTE: The same cookie can be used to tie up an affinity for multiple LB proxies. On the other
hand, LB proxy names are all unique throughout the configuration file.

NOTE: It is very important to keep in mind that arguments and alt-arguments are treated
differently, case-wise. Alt-args are case insensitive, and are screened before the main argument
(but appear as if the main argument has been found). On the other hand, main arguments are
special case-sensitive, and are checked twice: "as is" first, then in all CAPs. So having both
"DB" for alt-argument and "db" for the main, hides the main argument, and actually makes it
case-insensitive. CAF will warn on some occurrences when it detects whether the argument
overloading is about to happen (take a look at the logs).

The CAF module is also able to detect if a request comes from a local client. The /etc/ncbi/
local_ips file describes the rules for making the decision.

Page 37

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The file is line-oriented, i.e. supposes to have one IP spec per one line. Comments are
introduced by either "#" or "!", no continuation lines allowed, the empty lines are ignored.

An IP spec is a word (no embedded whitespace characters) and is either:
! a host name or a legitimate IP address
! a network specification in the form "networkIP / networkMask"
! an IP range (explained below).

A networkIP / networkMask specification can contain an IP prefix for the network (with or
without all trailing zeroes present), and the networkMask can be either in CIDR notation or in
the form of a full IP address (all 4 octets) expressing contiguous high-bit ranges (all the records
below are equivalent):

130.14.29.0/24

130.14.29/24

130.14.29/255.255.255.0

130.14.29.0/255.255.255.0

An IP range is an incomplete IP address (that is, having less than 4 full octets) followed by
exactly one dot and one integer range, e.g.:

130.14.26.0-63

denotes a host range from 130.14.26.0 thru 130.14.26.63 (including the ends),

130.14.8-9

denotes a host range from 130.14.8.0 thru 130.14.9.255 (including the ends).

Note that 127/24 gets automatically added, whether or not it is explicitly included into the
configuration file. The file loader also warns if it encounters any specifications that overlap
each other. Inexistent (or unreadable) file causes internal hardcoded defaults to be used - a
warning is issued in this case.

Note that the IP table file is read once per Apache daemon's life cycle (and it is *not* reloaded
upon graceful restarts). The complete stop / start sequence should be performed to force the IP
table be reloaded.

Configuration Examples
1 To define that "WebEnv" cookie has an information about "pubmed.lb" preference

in "/Entrez" and all the descendant directories one can use the following:
<Location /Entrez>

CAFProxyCookie pubmed.lb WebEnv

CAFPreference pubmed.lb 100

</Location>

Page 38

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The second directive in the above example sets the preference to 100% -- this is a preference,
not a requirement, so meaning that using the host from the cookie is the most desirable, but
not blindly instructing to go to in every case possible.

1 To define new cookie for some new LB name the following fragment can be used:
<Directory /SomeDir>

CAFProxyCookie myname.lb My-Cookie

CAFProxyCookie other.lb My-Cookie

</Directory>

<Directory /SomeDir/SubDir>

CAFProxyCookie myname.lb My-Secondary-Cookie

</Directory>

The effect of the above is that "My-Cookie" will be used in LB name searches of "myname.lb"
in directory "/SomeDir", but in "/SomeDir/SubDir" and all directories of that branch, "My-
Secondary-Cookie" will be used instead. If an URL referred to "/SomeDir/AnotherDir", then
"My-Cookie" would still be used.

Note that at the same time "My-Cookie" is used under "/SomeDir" everywhere else if "other.lb"
is being resolved there.

1 The following fragment disables cookie for "tpubmed.lb" [note that no
"CAFProxyCookie" is to precede this directive because "tpubmed.lb" is predefined]:

CAFProxyPreference tpubmed.lb 0
1 The following directive associates proxy "systems.lb" with argument "ticket":

CAFProxyArgument systems.lb ticket

The effect of the above is that if an incoming URL resolves to use "systems.lb", then "ticket",
if found in the query string, would be considered for lookup of "systems.lb" with the load-
balancing daemon.

Arguments Matching—Suppose that the DB=A is a query argument (explicit DB selection,
including just "DB" (as a standalone argument, treated as missing value), "DB=" (missing
value)). That will cause the following order of precedence in selecting the target host:

Match Description

DB=A Best.
"A" may be "" to match the missing value

DB=* Good.
"*" stands for "any other"

DB not defined Fair

DB=- Poor.
"-" stands for "missing in the request"

DB=B Mismatch. It is used for fallbacks only as the last resort

No host with an explicit DB assignment (DB=B or DB=-) is being selected above if there is
an exclamation point "!" [stands for "only"] in the assignment. DB=~A for the host causes the

Page 39

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

host to be skipped from selection as well. DBs are screened in the order of appearance, the first
one is taken, so "DB=~A A" skips all requests having DB=A in their query strings.

Suppose that there is no DB selection in the request. Then the hosts are selected in the following
order:

Match Description

DB=- Best
"-" stands for "missing from the request"

DB not defined Good

DB=* Fair.
"*" stands for "any other"

DB=B Poor

No host with a non-empty DB assignment (DB=B or DB=*) is being selected in the above
scenario if there is an exclamation point "!" [stands for "only"] in the assignment. DB=~-
defined for the host causes the host not to be considered.

Only if there are no hosts in the best available category of hosts, the next category is used. That
is, no "good" matches will ever be used if there are "best" matches available. Moreover, if all
"best" matches have been used up but are known to exist, the search fails.

"~" may not be used along with "*": "~*" combination will be silently ignored entirety, and
will not modify the other specified affinities. Note that "~" alone has a meaning of 'anything
but empty argument value, ""'. Also note that formally, "~A" is an equivalent to "~A *" as well
as "~-" is an equivalent to "*".

Argument Matching Examples: Host affinity

DB=A ~B

makes the host to serve requests having either DB=A or DB=<other than B> in their query
strings. The host may be used as a failover for requests that have DB=C in them (or no DB) if
there is no better candidate available. Adding "!" to the affinity line would cause the host not
to be used for any requests, in which the DB argument is missing.

Host affinity

DB=A -

makes the host to serve requests with either explicit DB=A in their query strings, or not having
DB argument at all. Failovers from searches not matching the above may occur. Adding "!" to
the line disables the failovers.

Host affinity

DB=- *

makes the host to serve requests that don't have any DB argument in their query strings, or
when their DB argument failed to literally match affinity lines of all other hosts. Adding "!"
to the line doesn't change the behavior.

Log File—The CAF module uses the Apache web server log files to put CAF module’s
messages into.

Page 40

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Monitoring—The status of the CAF modules can be seen via a web interface using the
following links:

http://web1.be-md.ncbi.nlm.nih.gov/caf-status

http://web2.be-md.ncbi.nlm.nih.gov/caf-status

http://web3.be-md.ncbi.nlm.nih.gov/caf-status

http://web4.be-md.ncbi.nlm.nih.gov/caf-status

http://webdev1.be-md.ncbi.nlm.nih.gov/caf-status

http://webdev2.be-md.ncbi.nlm.nih.gov/caf-status

http://web91.be-md.qa.ncbi.nlm.nih.gov/caf-status

DISPD Network Dispatcher
Overview—The DISPD dispatcher is a CGI/1.0-compliant program (the actual file name is
dispd.cgi). Its purpose is mapping a requested service name to an actual server location when
the client has no direct access to the LBSMD daemon. This mapping is called dispatching.
Optionally, the DISPD dispatcher can also pass data between the client, who requested the
mapping, and the server, which implements the service, found as a result of dispatching. This
combined mode is called a connection. The client may choose any of these modes if there are
no special requirements on data transfer (e.g., firewall connection). In some cases, however,
the requested connection mode implicitly limits the request to be a dispatching-only request,
and the actual data flow between the client and the server occurs separately at a later stage.

Protocol Description—The dispatching protocol is designed as an extension of HTTP/1.0
and is coded in the HTTP header parts of packets. The request (both dispatching and
connection) is done by sending an HTTP packet to the DISPD dispatcher with a query line of
the form:

dispd.cgi?service=<name>

which can be followed by parameters (if applicable) to be passed to the service. The <name>
defines the name of the service to be used. The other parameters take the form of one or more
of the following constructs:

&<param>[=<value>]

where square brackets are used to denote an optional value part of the parameter.

In case of a connection request the request body can contain data to be passed to the first-found
server. A connection to this server is automatically initiated by the DISPD dispatcher. On the
contrary, in case of a dispatching-only request, the body is completely ignored, that is, the
connection is dropped after the header has been read and then the reply is generated without
consuming the body data. That process may confuse an unprepared client.

Mapping of a service name into a server address is done by the LBSMD daemon which is run
on the same host where the DISPD dispatcher is run. The DISPD dispatcher never dispatches
a non-local client to a server marked as local-only (by means of L=yes in the configuration of
the LBSMD daemon). Otherwise, the result of dispatching is exactly what the client would get

Page 41

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://web91.be-md.qa.ncbi.nlm.nih.gov/caf-status
http://web1.be-md.ncbi.nlm.nih.gov/caf-status
http://web2.be-md.ncbi.nlm.nih.gov/caf-status
http://web3.be-md.ncbi.nlm.nih.gov/caf-status
http://web4.be-md.ncbi.nlm.nih.gov/caf-status
http://webdev1.be-md.ncbi.nlm.nih.gov/caf-status
http://webdev2.be-md.ncbi.nlm.nih.gov/caf-status

from the service mapping API if run locally. Specifying capabilities explicitly the client can
narrow the server search, for example, by choosing stateless servers only.

Client Request to DISPD: The following additional HTTP tags are recognized in the client
request to the DISPD dispatcher.

Tag Description

Accepted-
Server-
Types:
<list>

The <list> can include one or more of the following keywords separated by spaces:
! NCBID
! STANDALONE
! HTTP
! HTTP_GET
! HTTP_POST
! FIREWALL

The keyword describes the server type which the client is capable to handle. The default is any (when the tag is not present in the
HTTP header), and in case of a connection request, the dispatcher will accommodate an actual found server with the connection
mode, which the client requested, by relaying data appropriately and in a way suitable for the server.
Note:FIREWALL indicates that the client chooses a firewall method of communication.
Note: Some server types can be ignored if not compatible with the current client mode

Client-
Mode:
<client-
mode>

The <client-mode> can be one of the following:
! STATELESS_ONLY - specifies that the client is not capable of doing full-duplex data exchange with the server in a

session mode (e.g., in a dedicated connection).
! STATEFUL_CAPABLE - should be used by the clients, which are capable of holding an opened connection to a server.

This keyword serves as a hint to the dispatcher to try to open a direct TCP channel between the client and the server,
thus reducing the network usage overhead.

The default (when the tag is not present at all) is STATELESS_ONLY to support Web browsers.

Dispatch-
Mode:
<dispatch-
mode>

The <dispatch-mode> can be one of the following:
! INFORMATION_ONLY - specifies that the request is a dispatching request, and no data and/or connection

establishment with the server is required at this stage, i.e., the DISPD dispatcher returns only a list of available server
specifications (if any) corresponding to the requested service and in accordance with client mode and server acceptance.

! NO_INFORMATION - is used to disable sending the above-mentioned dispatching information back to the client. This
keyword is reserved solely for internal use by the DISPD dispatcher and should not be used by applications.

! STATEFUL_INCLUSIVE - informs the DISPD dispatcher that the current request is a connection request, and because
it is going over HTTP it is treated as stateless, thus dispatching would supply stateless servers only. This keyword
modifies the default behavior, and dispatching information sent back along with the server reply (resulting from data
exchange) should include stateful servers as well, allowing the client to go to a dedicated connection later.

! OK_DOWN or OK_SUPPRESSED or PROMISCUOUS – defines a dispatch only request without actual data transfer
for the client to obtain a list of servers which otherwise are not included such as, currently down servers (OK_DOWN),
currently suppressed by having 100% penalty servers (OK_SUPPRESSED) or both (PROMISCUOUS)

The default (in the absence of this tag) is a connection request, and because it is going over HTTP, it is automatically considered
stateless. This is to support calls for NCBI services from Web browsers.

Skip-Info-
<n>:
<server-
info>

<n> is a number of <server-info> strings that can be passed to the DISPD dispatcher to ignore the servers from being potential
mapping targets (in case if the client knows that the listed servers either do not work or are not appropriate). Skip-Info tags are
enumerated by numerical consequent suffices (<n>), starting from 1. These tags are optional and should only be used if the client
believes that the certain servers do not match the search criteria, or otherwise the client may end up with an unsuccessful mapping.

Client-
Host:
<host>

The tag is used by the DISPD dispatcher internally to identify the <host>, where the request comes from, in case if relaying is
involved. Although the DISPD dispatcher effectively disregards this tag if the request originates from outside NCBI (and thus it
cannot be easily fooled by address spoofing), in-house applications should not use this tag when connecting to the DISPD dispatcher
because the tag is trusted and considered within the NCBI Intranet.

Server-
Count: {N|
ALL}

The tag defines how many server infos to include per response (default N=3, ALL causes everything to be returned at once).
N is an integer and ALL is a keyword.

DISPD Client Response: The DISPD dispatcher can produce the following HTTP tags in
response to the client.

Page 42

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Tag Description

Relay-Path: <path> The tag shows how the information was passed along by the DISPD dispatcher and the NCBID utility. This is essential
for debugging purposes

Server-Info-<n>:
<server-info>

The tag(s) (enumerated increasingly by suffix <n>, starting from 1) give a list of servers, where the requested service is
available. The list can have up to five entries. However, there is only one entry generated when the service was requested
either in firewall mode or by a Web browser. For a non-local client, the returned server descriptors can include
FIREWALL server specifications. Despite preserving information about host, port, type, and other (but not all) parameters
of the original servers, FIREWALL descriptors are not specifications of real servers, but they are created on-the-fly by
the DISPD dispatcher to indicate that the connection point of the server cannot be otherwise reached without the use of
either firewalling or relaying.

Connection-Info:
<host> <port>
<ticket>

The tag is generated in a response to a stateful-capable client and includes a host (in a dotted notation) and a port number
(decimal value) of the connection point where the server is listening (if either the server has specifically started or the
FWDaemon created that connection point because of the client's request). The ticket value (hexadecimal) represents the
4-byte ticket that must be passed to the server as binary data at the very beginning of the stream. If instead of a host, a
port, and ticket information there is a keyword TRY_STATELESS, then for some reasons (see Dispatcher-Failures tag
below) the request failed but may succeed if the client would switch into a stateless mode.

Dispatcher-Failures:
<failures>

The tag value lists all transient failures that the dispatcher might have experienced while processing the request. A fatal
error (if any) always appears as the last failure in the list. In this case, the reply body would contain a copy of the message
as well.
Note: Fatal dispatching failure is also indicated by an unsuccessful HTTP completion code.

Used-Server-Info-n:
<server_info>

The tag informs the client end of server infos that having been unsuccessfully used during current connection request (so
that the client will be able to skip over them if needs to).
n is an integral suffix, enumerating from 1.

Dispatcher-Messages: The tag is used to issue a message into standard error log of a client. The message is intercepted and delivered from
within Toolkit HTTP API.

Communication Schemes: After making a dispatching request and using the dispatching
information returned, the client can usually connect to the server on its own. Sometimes,
however, the client has to connect to the DISPD dispatcher again to proceed with
communication with the server. For the DISPD dispatcher this would then be a connection
request which can go one of two similar ways, relaying and firewalling.

The figures (Figure2, Figure3, Figure4) provided at the very beginning of the “Load Balancing”
chapter can be used for better understanding of the communication schemes described below.
! In the relay mode, the DISPD dispatcher passes data from the client to the server and

back, playing the role of a middleman. Data relaying occurs when, for instance, a Web
browser client wants to communicate with a service governed by the DISPD dispatcher
itself.

! In the firewall mode, DISPD sends out only the information about where the client has
to connect to communicate with the server. This connection point and a verifiable ticket
are specified in the Connection-Info tag in the reply header. Note: firewalling actually
pertains only to the stateful-capable clients and servers.

The firewall mode is selected by the presence of the FIREWALL keyword in the Accepted-
Server-Types tag set by the client sitting behind a firewall and not being able to connect to an
arbitrary port.

These are scenarios of data flow between the client and the server, depending on the “stateness”
of the client:
! Stateless client
! Client is not using firewall mode
! The client has to connect to the server by its own, using dispatching information

obtained earlier

Page 43

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! The client connects to the DISPD dispatcher with a connection request (e.g., the case
of Web browsers) and the DISPD dispatcher facilitates data relaying for the client to
the server.

! If the client chooses to use the firewall mode then the only way to communicate with
the server is to connect to the DISPD dispatcher (making a connection request) and
use the DISPD dispatcher as a relay.

Note: Even if the server is stand-alone (but lacking S=yes in the configuration file of the
LBSMD daemon) then the DISPD dispatcher initiates a microsession to the server and wraps
its output into an HTTP/1.0-compliant reply. Data from both HTTP and NCBID servers are
simply relayed one-to-one.
! Stateful-capable client
! A client which is not using the firewall mode has to connect directly to the server,

using the dispatcher information obtained earlier (e.g., with the use of
INFORMATION_ONLY in Dispatch-Mode tag).

! If the firewall mode is selected, then the client has to expect Connection-Info to come
back from the DISPD dispatcher pointing out where to connect to the server. If
TRY_STATELESS comes out as a value of the former tag, then the client has to switch
into a stateless mode (e.g., by setting STATELESS_ONLY in the Client-Mode tag)
for the request to succeed.

Note:TRY_STATELESS could be induced by many reasons, mainly because all servers for
the service are stateless ones or because the FWDaemon is not available on the host, where the
client's request was received.

Note: Outlined scenarios show that no prior dispatching information is required for a stateless
client to make a connection request, because the DISPD dispatcher can always be used as a
data relay (in this way, Web browsers can access NCBI services). But for a stateful-capable
client to establish a dedicated connection an additional step of obtaining dispatching
information must precede the actual connection.

To support requests from Web browsers, which are unaware of HTTP extensions comprising
dispatching protocol the DISPD dispatcher considers an incoming request that does not contain
input dispatching tags as a connection request from a stateless-only client.

The DISPD dispatcher uses simple heuristics in analyzing an HTTP header to determine
whether the connection request comes from a Web browser or from an application (a service
connector, for instance). In case of a Web browser the chosen data path could be more expensive
but more robust including connection retries if required, whereas on the contrary with an
application, the dispatcher could return an error, and the retry is delegated to the application.

The DISPD dispatcher always preserves original HTTP tags User-Agent and Client-Platform
when doing both relaying and firewalling.

NCBID Server Launcher
Overview—The LBSMD daemon supports services of type NCBID which are really UNIX
filter programs that read data from the stdin stream and write the output into the stdout stream
without having a common protocol. Thus, HTTP/1.0 was chosen as a framed protocol for
wrapping both requests and replies, and the NCBID utility CGI program was created to pass
a request from the HTTP body to the server and to put the reply from the server into the HTTP
body and send it back to the client. The NCBID utility also provides a dedicated connection
between the server and the client, if the client supports the stateful way of communication.
Former releases of the NCBID utility were implemented as a separate CGI program however

Page 44

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the latest releases integrated the NCBID utility and the DISPD dispatcher into a single
component (ncbid.cgi is a hard link to dispd.cgi).

The NCBID utility determines the requested service from the query string in the same way as
the DISPD dispatcher does, i.e., by looking into the value of the CGI parameter service. An
executable file which has to be run is then obtained by searching the configuration file (shared
with the LBSMD daemon; the default name is servrc.cfg): the path to the executable along
with optional command-line parameters is specified after the bar character ("|") in the line
containing a service definition.

The NCBID utility can work in either of two connection modes, stateless and stateful, as
determined by reading the following HTTP header tag:

Connection-Mode: <mode>

where <mode> is one of the following:
! STATEFUL
! STATELESS

The default value (when the tag is missing) is STATELESS to support calls from Web
browsers.

When the DISPD dispatcher relays data to the NCBID utility this tag is set in accordance with
the current client mode.

The STATELESS mode is almost identical to a call of a conventional CGI program with an
exception that the HTTP header could hold tags pertaining to the dispatching protocol, and
resulting from data relaying (if any) by the DISPD dispatcher.

In the STATEFUL mode, the NCBID utility starts the program in a more tricky way, which is
closer to working in a firewall mode for the DISPD dispatcher, i.e. the NCBID utility loads
the program with its stdin and stdout bound to a port, which is switched to listening. The
program becomes a sort of an Internet daemon (the only exception is that only one incoming
connection is allowed). Then the client is sent back an HTTP reply containing the Connection-
Info tag. The client has to use port, host, and ticket from that tag to connect to the server by
creating a dedicated TCP connection.

Note: the NCBID utility never generates TRY_STATELESS keyword.

For the sake of the backward compatibility the NCBID utility creates the following
environment variables (in addition to CGI/1.0 environment variables created by the HTTP
daemon when calling NCBID) before starting the service executables:

Name Description

NI_CLIENT_IPADDR The variable contains an IP address of the remote host.
It could also be an IP address of the firewall daemon if the NCBID utility was started as a result of firewalling.

NI_CLIENT_PLATFORM The variable contains the client platform extracted from the HTTP tag Client-Platform provided by the client if any.

Firewall Daemon (FWDaemon)
Overview—The NCBI Firewall Daemon (FWDaemon) is essentially a network multiplexer
listening at an advertised network address.

Page 45

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The FWDaemon works in a close cooperation with the DISPD dispatcher which informs
FWDaemon on how to connect to the “real” NCBI server and then instructs the network client
to connect to FWDaemon (instead of the “real” NCBI server). Thus, the FWDaemon serves
as a middleman that just pumps the network traffic from the network client to the NCBI server
and back.

The FWDaemon allows a network client to establish a persistent TCP/IP connection to any of
publicly advertised NCBI services, provided that the client is allowed to make an outgoing
network connection to any of the following FWDaemon addresses (on front-end NCBI
machines):

130.14.29.112, ports 5860..5870

Note: One FWDaemon can simultaneously serve many client/server pairs.

FWDaemon Behind a "Regular" Firewall: If a network client is behind a regular firewall,
then a system administrator should open the above addresses (only!) for outgoing connections
and set your client to "firewall" mode. Now the network client can use NCBI network services
in a usual way (as if there were no firewall at all).

FWDaemon Behind a "Non-Transparent" Firewall: Note: If a firewall is "non-
transparent" (this is an extremely rare case), then a system administrator must "map" the
corresponding ports on your firewall server to the advertised FWDaemon addresses (shown
above). In this case, you will have to specify the address of your firewall server in the client
configuration.

The mapping on your non-transparent firewall server should be similar to the following:

CONN_PROXY_HOST:5860..5870 --> 130.14.29.112:5860..5870

Please note that there is a port range that might not be presently used by any clients and servers,
but it is reserved for future extensions. Nevertheless, it is recommended that you have this
range configured on firewalls to allow the applications to function seamlessly in the future.

Monitoring—The FWDaemon could be monitored using the following web page:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/NETWORK/fwd_check.cgi

Having the page loaded into a browser the user will see the following.

Page 46

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/NETWORK/fwd_check.cgi

Figure 15. FWDaemon Checking Web Page

By clicking the “Check” button a page similar to the following will appear.

Figure 16. FWDaemon Presence Check

Page 47

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The outside NCBI network users can check the connection to the NAT service following the
below steps:
! Run the FWDaemon presence check as described above.
! Take connection properties from any line where the status is “OK”. For example

130.14.29.112:5864
! Establish a telnet session using those connection properties. The example of a

connection session is given below (a case when a connection was successfully
established).

 > telnet 130.14.29.112 5864
Trying 130.14.29.112...
Connected to 130.14.29.112.
Escape character is '^]'.
NCBI Firewall Daemon: Invalid ticket. Connection closed.
See http://www.ncbi.nlm.nih.gov/cpp/network/firewall.html.
Connection closed by foreign host.

Log Files—The FWDaemon stores its log files at the following location:

/opt/machine/fwdaemon/log/fwdaemon

which is usually a link to /var/log/fwdaemon.

The file is formed locally on a host where FWDaemon is running.

FWDaemon and NCBID Dispatcher Data Exchange—One of the key points in the
communications between the NCBID dispatcher and the FWDaemon is that the NCBID
dispatcher instructs the FWDaemon to expect a new client connection. This instruction is issued
as a reaction on a remote client request. It is possible that the remote client requested a service
but did not use it. To prevent resource leaking and facilitate the usage monitoring the
FWDaemon keeps a track of those requested but not used connections in a special file. The
NCBID dispatcher is able to read that file before requesting a new connection from the
FWDaemon and if the client was previously marked as the one who left connections not used
then the NCBID dispatcher refuses the connection request.

The data exchange is illustrated on the figure below.

Page 48

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 17. DISPD FWDaemon Data Exchange

The location of the .dispd.msg file is detected by the DISPD dispatcher as follows. The
dispatcher determines the user name who owns the dispd.cgi executable. Then the dispatcher
looks to the home directory for that user. The directory is used to look for the .dispd.msg file.
The FWDaemon is run under the same user and the .dispd.msg file is saved by the daemon in
its home directory.

Launcherd Utility
The purpose of the launcherd utility is to replace the NCBID dispatcher on hosts where there
is no Apache server installed and there is a need to have UNIX filter programs to be
daemonized.

The launcherd utility is implemented as a command line utility which is controlled by command
line arguments. The list of accepted arguments can be retrieved with the -h option:

service1:~> /export/home/service/launcherd -h

Usage:

launcherd [-h] [-q] [-v] [-n] [-d] [-i] [-p #] [-l file] service command [parameters...]

-h = Print usage information only; ignore anything else

-q = Quiet start [and silent exit if already running]

-v = Verbose logging [terse otherwise]

-n = No statistics collection

-d = Debug mode [do not go daemon, stay foreground]

-i = Internal mode [bind to localhost only]

-p # = Port # to listen on for incoming connection requests

-l = Set log file name [use `-' or `+' to run w/o logger]

Note: Service must be of type STANDALONE to auto-get the port.

Note: Logging to `/dev/null' is treated as logging to a file.

Signals: HUP, INT, QUIT, TERM to exit

The launcherd utility accepts the name of the service to be daemonized. Using the service name
the utility checks the LBSMD daemon table and retrieves port on which the service requests
should be accepted. As soon as an incoming request is accepted the launched forks and connects
the socket with the standard streams of the service executable.

One of the launcherd utility command line arguments is a path to a log file where the protocol
messages are stored.

The common practice for the launcherd utility is to be run by the standard UNIX cron daemon.
Here is an example of a cron schedule which runs the launcherd utility every 3 seconds:

Page 49

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

DO NOT EDIT THIS FILE - edit the master and reinstall.

(/export/home/service/UPGRADE/crontabs/service1/crontab

installed on Thu Mar 20 20:48:02 2008)

(Cron version -- $Id: crontab.c,v 2.13 1994/01/17 03:20:37 vixie Exp $)

MAILTO=ncbiduse@ncbi

*/3 * * * * test -x /export/home/service/launcherd && /export/home/service/launcherd -q -l /
export/home/service/bounce.log -- Bounce /export/home/service/bounce >/dev/null
MAILTO=grid-mon@ncbi,taxhelp@ncbi

*/3 * * * * test -x /export/home/service/launcherd && /export/home/service/launcherd -q -l /
var/log/taxservice -- TaxService /export /home/service/taxservice/taxservice >/dev/null

Monitoring Tools
There are various ways to monitor the services available at NCBI. These are generic third party
tools and specific NCBI developed utilities. The specific utilities are described above in the
sections related to a certain component.

The system load and statistics could be visualized by using ORCA graphs. It can be reached
at:

http://viz.ncbi.nlm.nih.gov/orca/

The NCBI ORCA Pages shows all the available hosts.

Click on the certain server leads to another page with the related graphs.

One more web based tool to monitor servers / services statuses is Nagios. It can be reached at:

https://nagios1.ncbi.nlm.nih.gov/nagios/

Quality Assurance Domain
The quality assurance (QA) domain uses the same equipment and the same network as the
production domain. Not all the services which are implemented in the production domain are
implemented in the QA one. When a certain service is requested with the purpose of testing a
service from QA should be called if it is implemented or a production one otherwise. The
dispatching is implemented transparently. It is done by the CAF module running on production
front ends. To implement that the CAFQAMap directive is put into the Apache web server
configuration file as following:

CAFQAMap NCBIQA /opt/machine/httpd/public/conf/ncbiqa.mapping

The directive above defines the NCBIQA cookie which triggers names substitutions found in
the /opt/machine/httpd/public/conf/ncbiqa.mapping file.

To set the cookie the user can visit the following link:

http://qa.ncbi.nlm.nih.gov/portal/utils/qa_status.cgi

A screen similar to the following will appear:

Page 50

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://qa.ncbi.nlm.nih.gov/portal/utils/qa_status.cgi
http://viz.ncbi.nlm.nih.gov/orca
http://nagios1.ncbi.nlm.nih.gov/nagios

Figure 18. QA Cookie Manager.

While connecting to a certain service the cookie is analyzed by the CAF module and if the QA
cookie is detected then name mapping is triggered. The mapping is actually a process of
replacing one name with another. The replacement rules are stored in the /opt/machine/httpd/
public/conf/ncbiqa.mapping file. The file content could be similar to the following:

portal portalqa

eutils eutilsqa

tpubmed tpubmedqa

which means to replace portal with portalqa etc.

So the further processing of the request is done using the substituted name. The process is
illustrated on the figure below.

Page 51

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 19. NCBI QA

NCBI Genome Workbench
The NCBI Genome Workbench is an integrated sequence visualization and analysis platform.
This application runs on Windows, Unix, and Macintosh OS X.

The following topics are discussed in this section:
! Design goals
! Design

Design Goals
The primary goal of Genome Workbench is to provide a flexible platform for development of
new analytic and visualization techniques. To this end, the application must facilitate easy
modification and extension. In addition, we place a large emphasis on cross-platform

Page 52

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

development, and Genome Workbench should function and appear identically on all supported
platforms.

Design
The basic design of Genome Workbench follows a modified Model-View-Controller (MVC)
architecture. The MVC paradigm provides a clean separation between the data being dealt with
(the model), the user's perception of this data (provided in views), and the user's interaction
with this data (implemented in controllers). For Genome Workbench, as with many other
implementations of the MVC architecture, the View and Controller are generally combined.

Central to the framework is the notion of the data being modeled. The model here encompasses
the NCBI data model, with particular emphasis on sequences and annotations. The Genome
Workbench framework provides a central repository for all managed data through the static
class interface in CDocManager. CDocManager owns the single instance of the C++ Object
Manager that is maintained by the application. CDocManager marshals individual CDocument
classes to deal with data as the user requests. CDocument, at its core, wraps a CScope class
and thus provides a hook to the object manager.

The View/Controller aspect of the architecture is implemented through the abstract class
CView. Each CView class is bound to a single document. Each CView class, in turn, represents
a view of some portion of the data model or a derived object related to the document. This
definition is intentionally vague; for example, when viewing a document that represents a
sequence alignment, a sequence in that alignment may not be contained in the document itself
but is distinctly related to the alignment and can be presented in the context of the document.
In general, the views that use the framework will define a top-level FLTK window; however,
a view could be defined to be a CGI context such that its graphical component is a Web browser.

To permit maximal extensibility, the framework delegates much of the function of creating
and presenting views and analyses to a series of plugins. In fact, most of the basic components
of the application itself are implemented as plugins. The Genome Workbench framework
defines three classes of plugins: data loaders, views, and algorithms. Technically, a plugin is
simply a shared library defining a standard entry point. These libraries are loaded on demand;
the entry point returns a list of plugin factories, which are responsible for creating the actual
plugin instances.

Cross-platform graphical development presents many challenges to proper encapsulation. To
alleviate a lot of the difficulties seen with such development, we use a cross-platform GUI
toolkit (FLTK) in combination with OpenGL for graphical development.

NCBI NetCache Service
! What is NetCache?
! What it can be used for?
! Getting started
! Available samples
! Sample configuration file (netcached.ini)

What is NetCache?
The NetCache service is a component for temporary network storage. Using NetCache service,
data BLOBs can be stored to and then retrieved from different hosts.

Page 53

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

One important example where this functionality is badly needed is the CGI applications that
require session info to be stored between calls. Such session information can be embedded into
URLs or cookies, however it is generally not a good idea – for security reasons and also because
the length of both URL and cookie is limited. Besides, cookies and URLs are not binary, so
some additional data conversion would have to be done.

Thus it would be better to store this information on the server side. However, this information
cannot be stored locally because the next request may hit a CGI running on another machine.
One possible way to handle it is to create a file on a shared network drive. This approach has
its own issues though:
! Adding new data BLOB
! Removing data BLOB
! Updating existing BLOB
! Automatic removal of expired BLOBs
! Automatic recovery after failures

Among advantages of the NetCache are its high performance and virtually unlimited
scalability. Any Linux, UNIX or Windows box can be a NetCache host.

The NCBI Grid framework uses this service to pass data between its components.

What it can be used for?
Programs can use NetCache for data exchange. For example, an application puts some data
into NetCache server and passes the data key to another application(s), which then can access
(retrieve, update, remove) the data. Some typical cases of using NetCache are:
! Store session info
! Graphics generated by CGIs
! Caching results of computational algorithms
! Cache results of expensive DBMS or search system queries
! Data exchange between programs

The diagram below illustrates how NetCache works.

Page 54

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/GRID_Overview

1 Client asks Load Balancer for service.
2 Load Balancer accepts name of the service and chooses the least loaded server (on

this diagram Server 2) corresponding to this service.
3 Load Balancer returns the chosen server to the client.
4 Client connects to the NetCache server and sends the data to store.
5 NetCache generates key which then can be used then for finding the BLOB.

Getting started
If new application is being developed within an existing NCBI environment it is assumed that
NetCache service is used together with NCBI Load Balancer. It is not recommended to use
unbalanced NetCache service.

In order to start new project using NetCache service it is necessary to obtain dedicated service
name. For bulky applications the recourses of the server have to be adequate for the
application’s needs.

The following simple example (Example 1) illustrates how to store and retrieve data using
NetCache.

auto_ptr<CNetCacheClient> nc_client;
…
//The NetCache service can be identified by its name:
nc_client.reset(new CNetCacheClient("nc_client_sample1", service_name));

Page 55

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 …
// Data to be saved on server
const char test_data[] = "A quick brown fox, jumps over lazy dog.";
…
// Store the data
// PutData method returns a unique key identifying
// the blob created on the server
string key = nc_client->PutData(test_data, strlen(test_data)+1);
…
// Retrieve the data by key
CNetCacheClient::SBlobData bdata;
CNetCacheClient::EReadResult rres = nc_client->GetData(key, bdata);
…
//
NcbiCout << bdata.blob.get() << NcbiEndl;

Available samples
More up-to-date version of NetCache ini file can be found here.

There are a few sample files with ready to use code:

src/app/sample/netcache/netcache_cgi_sample.cpp

src/app/sample/netcache/netcache_client_sample1.cpp

src/app/sample/netcache/netcache_client_sample2.cpp

src/app/sample/netcache/netcache_client_sample3.cpp

Sample configuration file (netcached.ini)
General purpose server parameters
[server]
; port number server responds on
port=9000
; maximum number of clients(threads) can be served simultaneously
max_threads=25
; initial number of threads created for incoming requests
init_threads=5
; Server side logging
log=false
; Size of thread local buffer (65536 should be fine)
tls_size=65536
; when true, if database cannot be open (corrupted) server
; automatically drops the db directory (works only for BDB)
; and creates the database from scratch
; (the content is going to be lost)
; Directory reinitialization can be forced by "netcached -reinit"
drop_db=true
; Network inactivity timeout in seconds
network_timeout=20
; BerkeleyDB related parameters
[bdb]

Page 56

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/netcache__client__sample3_8cpp-source.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/netcache/netcached.ini
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/netcache__cgi__sample_8cpp-source.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/netcache__client__sample1_8cpp-source.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/netcache__client__sample2_8cpp-source.html

; directory to keep the database. It is important that this
; directory resides on local drive (not NFS)
;
; WARNING: the database directory sometimes can be recursively deleted
; (when netcached started with -reinit).
; DO NOT keep any of your files(besides the database) in it.
path=e:/netcached_data
; cache name
name=nccache
; use syncronous or asyncromous writes (used with transactions)
write_sync=false
; when 'true' the database is transaction protected
use_transactions=true
; BLOB expiration timeout in seconds
timeout=3600
; subkey - mandatory parameter
; onread - update BLOB time stamp on every read
; (otherwise only creation time will taken into account)
; purge_on_startup - delete all deprecated BLOBs when startind netcached
; (may significantly slow down startup propcess)
; check_expiration - check if BLOB has expired (on read) and if it is
; return "not found". Otherwise BLOB lives until
; it is deleted by the internal garbage collector
timestamp=subkey onread
purge_on_startup check_expiration
; do not change this
keep_versions=all
; Run background cleaning thread
; (Pretty much mandatory parameter, turn it off only if you want
; to keep absolutely everything in the database)
purge_thread=true
; Delay (seconds) between purge(garbage collector) runs.
purge_thread_delay=30
; maintanance thread sleeps for specified number of milliseconds after
; each batch. By changing this parameter you can adjust the purge
; thread priority
purge_batch_sleep=100
; maintanance thread processes database records by chunks of specified
; number. If you increase this number it also increases the performance
; of purge process (at the expense of the online connections)
purge_batch_size=70
; amount of memory allocated by BerkeleyDB for the database cache
; Berkeley DB page cache) (More is better)
mem_size=50M
; Specifies how often cache should remove the Berkeley DB LOG files
; Removal is triggered by the purge thread. Value of 2 means LOG is
; cleaned every second purge
purge_clean_log=2
; Call transaction checkpoint every "checkpoint_bytes" of stored data
checkpoint_bytes=10M
; BLOBs < 10M stored in database

Page 57

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

overflow_limit=10M
; This parameter regulates BLOB expiration. If client constantly reads
; the BLOB and you do not want it to stuck in the database forever
; (timestamp=onread), set this parameter.
; If timeout is 3600 and ttl_prolong is 2, maximum possible timeout for
; the BLOB becomes 3600 * 2 = 7200 seconds.
ttl_prolong=3
;

Page 58

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

1. ASN.1 specification analysis.

Page 59

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2. DTD specification analysis.

Page 60

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3. Data values.

Page 61

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

4. Code generation.

Page 62

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

1. Main arguments
Argument Effect Comments

-h Display the DATATOOL arguments Ignores other arguments

-m <file> ASN.1 or DTD module file(s) Required argument

-M <file> External module file(s) Is used for IMPORT type resolution

-i Ignore unresolved types Is used for IMPORT type resolution

-f <file> Write ASN.1 module file

-fx <file> Write DTD module file "-fx m" writes modular DTD file

-fxs <file> Write XML Schema file

-fd <file> Write specification dump file in datatool internal format

-ms <string> Suffix of modular DTD or XML Schema file name

-dn <string> DTD module name in XML header No extension. If empty, omit DOCTYPE declaration.

-v <file> Read value in ASN.1 text format

-vx <file> Read value in XML format

-F Read value completely into memory

-p <file> Write value in ASN.1 text format

-px <file> Write value in XML format

-pj <file> Write value in JSON format

-d <file> Read value in ASN.1 binary format -t argument required

-t <type> Binary value type name See -d argument

-e <file> Write value in ASN.1 binary format

-xmlns XML namespace name When specified, also makes XML output file reference Schema
instead of DTD

-sxo No scope prefixes in XML output

-sxi No scope prefixes in XML input

-logfile <File_Out> File to which the program log should be redirected

conffile <File_In> Program's configuration (registry) data file

-version Print version number Ignores other arguments

Page 63

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2. Code generation arguments
Argument Effect Comments

-od <file> C++ code definition file See Definition file

-odi Ignore absent code definition file

-odw Issue a warning about absent code definition file

-oA Generate C++ files for all types Only types from the main module are used (see -m and -mx
arguments)

-ot <types> Generate C++ files for listed types Only types from the main module are used (see -m and -mx
arguments)

-ox <types> Exclude types from generation

-oX Turn off recursive type generation

-of <file> Write the list of generated C++ files

-oc <file> Write combining C++ files

-on <string> Default namespace

-opm <dir> Directory for searching source modules

-oph <dir> Directory for generated *.hpp files

-opc <dir> Directory for generated *.cpp files

-or <prefix> Add prefix to generated file names

-orq Use quoted syntax form for generated include files

-ors Add source file dir to generated file names

-orm Add module name to generated file names

-orA Combine all -or* prefixes

-ocvs create ".cvsignore" files

-oR <dir> Set -op* and -or* arguments for NCBI directory tree

-oDc Turn ON generation of Doxygen-style comments

-odx <string> URL of documentation root folder For Doxygen

-lax_syntax Allow non-standard ASN.1 syntax accepted by asntool

-pch <string> Name of the precompiled header file to include in all *.cpp files

-oex <export> Add storage-class modifier to generated classes Can be overriden by [-]._export in the definition file

Page 64

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Examples and Demos
[24]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

See Getting Started for basic information on using the NCBI C++ Toolkit.

Chapter Outline
! Examples

" Sample Applications Available with the new_project script
A basic example using the xncbi core library.
An example CGI application using the xcgi and xfcgi libraries.
An example for serializable ASN.1 objects and the Object Manager using

the xobjects library.
" id1_fetch ID1 and Entrez2 client
" query.cgi WWW PubMed search engine

! Examples from the Programming Manual
" applic.cpp
" smart.cpp
" ctypeiter.cpp
" diag.cpp
" justcgi.cpp
" xml2asn.cpp
" traverseBS.cpp
" Web-CGI demo

! Test and Demo Programs in the C++ Tree
" asn2asn.cpp
" cgitest.cpp
" cgidemo.cpp
" coretest.cpp

ID1_FETCH - the ID1 and Entrez2 client
! Synopsis
! Invocation

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/corelib/test/coretest.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/basic
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/cgi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/sample/objects
http://www.ncbi.nlm.nih.gov:80/PubMed/medline.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/asn2asn/asn2asn.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/test/cgitest.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/cgi/demo/cgidemo.cpp

! Output Data Formats
! Lookup Types
! Output Complexity Levels
! Flattened Sequence ID Format
! FASTA Sequence ID Format

" Examples of Usage
Location: c++/src/app/id1_fetch/id1_fetch.cpp (compiled executable is $NCBI/c++/Release/
bin/id1_fetch on NCBI systems)

Synopsis:
1 Accept a list of sequences, specified either directly by ID or indirectly by an Entrez

query.
2 Produce more information about the sequences, either as data from the ID server or

as Entrez document summaries.
This program corresponds to idfetch from the C Toolkit.

Invocation
See Table 1.

Note: You must specify exactly one of the options indicating what to look up: -gi, -in, -flat, -
fasta, -query, -qf.

Output Data Formats—The possible values of the -fmt argument are shown in Table 2.

Lookup Types—The possible values of the -lt argument are shown in Table 3.

Output Complexity Levels—The possible values of the -maxplex argument are shown in
Table 4.

Flattened Sequence ID Format—A flattened sequence ID has one of the following three
formats, where square brackets [...] surround optional elements:
" type([name or locus][,[accession][,[release][,version]]])
" type=accession[.version]
" type:number

The first format requires quotes in most shells.

The type is a number, indicating who assigned the ID, as follows:
1 Local use
2 GenInfo backbone sequence ID
3 GenInfo backbone molecule type
4 GenInfo import ID
5 GenBank
6 The European Molecular Biology Laboratory (EMBL)
7 The Protein Information Resource (PIR)
8 SWISS-PROT

Page 2

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ebi.ac.uk/swissprot
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/id1_fetch/id1_fetch.cpp
http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.embl-heidelberg.de
http://pir.georgetown.edu

9 A patent
10 RefSeq
11 General database reference
12 GenInfo integrated database (GI)
13 The DNA Data Bank of Japan (DDBJ)
14 The Protein Research Foundation (PRF)
15 The Protein DataBase (PDB)
16 Third-party annotation to GenBank
17 Third-party annotation to EMBL
18 Third-party annotation to DDBJ

FASTA Sequence ID Format—This format consists of a two- or three-letter tag indicating
the ID's type, followed by one or more data fields, which are separated from the tag and each
other by vertical bars (|). As such, most shells require quotes around the ID. Table 5 shows the
specific possibilities (spaces added for legibility but should NOT be typed):

Example Usage
id1_fetch -query '5-delta4 isomerase' -lt none -db Nucleotide
34
id1_fetch -fmt genbank -gi 34
LOCUS BT3BHSD 1632 bp mRNA MAM 12-SEP-1993
DEFINITION Bovine mRNA for 3 beta hydroxy-5-ene steroid dehydrogenase/delta
 5-delta4 isomerase (EC 1.1.1.145, EC 5.3.3.1).
ACCESSION X17614
VERSION X17614.1 GI:34
KEYWORDS 3 beta-hydroxy-delta5-steroid dehydrogenase;
 steroid delta-isomerase.
...
FEATURES Location/Qualifiers
...
 CDS 105..1226
 /codon_start=1
 /transl_table=1
 /function="3 beta-HSD (AA 1-373)"
 /protein_id="CAA35615.1"
 /db_xref="GI:35"
 /
translation="MAGWSCLVTGGGGFLGQRIICLLVEEKDLQEIRVLDKVFRPEVR

EEFSKLQSKIKLTLLEGDILDEQCLKGACQGTSVVIHTASVIDVRNAVPRETIMNVNV

KGTQLLLEACVQASVPVFIHTSTIEVAGPNSYREIIQDGREEEHHESAWSSPYPYSKK

LAEKAVLGANGWALKNGGTLYTCALRPMYIYGEGSPFLSAYMHGALNNNGILTNHCKF

SRVNPVYVGNVAWAHILALRALRDPKKVPNIQGQFYYISDDTPHQSYDDLNYTLSKEW

GFCLDSRMSLPISLQYWLAFLLEIVSFLLSPIYKYNPCFNRHLVTLSNSVFTFSYKKA

Page 3

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ddbj.nig.ac.jp
http://www.ncbi.nlm.nih.gov/projects/RefSeq
http://www.ddbj.nig.ac.jp
http://www.prf.or.jp
http://www.rcsb.org/pdb
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.embl-heidelberg.de

 QRDLGYEPLYTWEEAKQKTKEWIGSLVKQHKETLKTKIH"
 /db_xref="SWISS-PROT:P14893"
...
 1441 ggacagacaa ggtgatttgc tgcagctgct ggcaccaaaa tctcagtggc agattctgag
 1501 ttatttgggc ttcttgtaac ttcgagtttt gcctcttagt cccactttct ttgttaaatg
 1561 tggaagcatt tcttttaaaa gttcatattc cttcatgtag ctcaataaaa atgatcaaca
 1621 ttttcatgac tc
//
id1_fetch -fmt genpept -gi 35
LOCUS CAA35615 373 aa MAM 12-SEP-1993
DEFINITION Bovine mRNA for 3 beta hydroxy-5-ene steroid dehydrogenase/delta
 5-delta4 isomerase (EC 1.1.1.145, EC 5.3.3.1), and translated
 products.
ACCESSION CAA35615
VERSION CAA35615.1 GI:35
PID g35
SOURCE cow.
 ORGANISM Bos taurus
 Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi;
 Mammalia; Eutheria; Cetartiodactyla; Ruminantia; Pecora;
Bovoidea;
 Bovidae; Bovinae; Bos.
...
ORIGIN
 1 magwsclvtg gggflgqrii cllveekdlq eirvldkvfr pevreefskl qskikltlle
 61 gdildeqclk gacqgtsvvi htasvidvrn avpretimnv nvkgtqllle acvqasvpvf
 121 ihtstievag pnsyreiiqd greeehhesa wsspypyskk laekavlgan gwalknggtl
 181 ytcalrpmyi ygegspflsa ymhgalnnng iltnhckfsr vnpvyvgnva wahilalral
 241 rdpkkvpniq gqfyyisddt phqsyddlny tlskewgfcl dsrmslpisl qywlafllei
 301 vsfllspiyk ynpcfnrhlv tlsnsvftfs ykkaqrdlgy eplytweeak qktkewigsl
 361 vkqhketlkt kih
//
id1_fetch -fmt fasta -gi 35 -maxplex bioseq
>emb|CAA35615.1||gi|35 Bovine mRNA for 3 beta hydroxy-5-ene steroid
dehydrogenase/delta
 5-delta4 isomerase (EC 1.1.1.145, EC 5.3.3.1), and translated products
MAGWSCLVTGGGGFLGQRIICLLVEEKDLQEIRVLDKVFRPEVREEFSKLQSKIKLTLLEGDILDEQCLK
GACQGTSVVIHTASVIDVRNAVPRETIMNVNVKGTQLLLEACVQASVPVFIHTSTIEVAGPNSYREIIQD
GREEEHHESAWSSPYPYSKKLAEKAVLGANGWALKNGGTLYTCALRPMYIYGEGSPFLSAYMHGALNNNG
ILTNHCKFSRVNPVYVGNVAWAHILALRALRDPKKVPNIQGQFYYISDDTPHQSYDDLNYTLSKEWGFCL
DSRMSLPISLQYWLAFLLEIVSFLLSPIYKYNPCFNRHLVTLSNSVFTFSYKKAQRDLGYEPLYTWEEAK
QKTKEWIGSLVKQHKETLKTKIH
id1_fetch -lt ids -gi 35
ID1server-back ::= ids {
 embl {
 accession "CAA35615",
 version 1
 },
 general {
 db "NCBI_EXT_ACC",
 tag str "FPAA037960"

Page 4

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 },
 gi 35
}
id1_fetch -lt state -fasta 'emb|CAA35615' -fmt xml
<?xml version="1.0"?>
<!DOCTYPE ID1server-back PUBLIC "-//NCBI//NCBI ID1Access/EN"
"NCBI_ID1Access.dtd">
<ID1server-back>
 <ID1server-back_gistate>40</ID1server-back_gistate>
</ID1server-back>
id1_fetch -lt state -flat '5=CAA35615.1' -fmt asnb | od -t u1
0000000 166 128 002 001 040 000 000
0000007
id1_fetch -lt state -flat '5(,CAA35615)' -fmt fasta
gi = 35, states: LIVE
id1_fetch -lt history -flat '12:35' -fmt fasta
GI Loaded DB Retrieval No.
-- ------ -- -------------
35 03/08/1999 EMBL 274319
id1_fetch -lt revisions -gi 35 -fmt fasta
GI Loaded DB Retrieval No.
-- ------ -- -------------
35 03/08/1999 EMBL 274319
35 06/06/1996 OLD02 84966
35 05/27/1995 OLDID 1524022
35 11/29/1994 OLDID 966346
35 08/31/1993 OLDID 426053
35 04/20/1993 OLDID 27
id1_fetch -fmt quality -gi 13508865
>AL590146.2 Phrap Quality (Length: 121086, Min: 31, Max: 99)
 99
 99
 99
 99
 99
...
 99
 99
 99 54 54 56 56 54 54 54 56 56 56 56 65 65 57 60 56 56 59 59
 56 56 56 49 99 31 31 49 49 54 63 63 54 51 53 55 51 51 49 58
 58 58 58 53 52 49 51 51 51 52 55 51 51 51 49 49 49 63 63 60
 65 65 59 54 54 54 54 54 56 60 60 65 65 65 65 70 70 65 65 65
 65 65 65 65 60 59 59 66 66 66 67 65 65 63 46 65 99 99 99 99
 99
...
 99
 99
 99
 99
 99 99 99 99 99 99

Page 5

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Examples from the Programming Manual
applic.cpp

See Box 1.

.

// File name: applic.cpp
// Description: Using the CNcbiApplication class with CNcbiDiag, CArgs
// and CArgDescription classes

#include <corelib/ncbistd.hpp>
#include <corelib/ncbiutil.hpp>
#include <corelib/ncbiargs.hpp>
#include <corelib/ncbiapp.hpp>
#include <corelib/ncbienv.hpp>

USING_NCBI_SCOPE;

class CTestApp : public CNcbiApplication {
public:
 virtual int Run();
};
int CTestApp::Run() {

 auto_ptr<CArgs> args;

 // create a CArgDescriptions object to constrain the input arguments;
 // Argument descriptions are added using:

 // void AddKey(string& name, string& synopsis, string& comment, EType,
TFlags);
 // void AddOptionalKey(string& name, string& synopsis, string& comment,
EType,
 // string& default, TFlags);
 // void AddFlag(string& name, string& comment);

 {
 CArgDescriptions argDesc;

 // Required arguments:
 argDesc.AddKey("n","integer","integer between 1 and
10",argDesc.eInteger);
 argDesc.AddKey("f","float","float between 0.0 and
1.0",argDesc.eDouble);
 argDesc.AddKey("i","inputFile","data file
in",CArgDescriptions::eInputFile);

 // optional arguments:
 argDesc.AddOptionalKey("l","logFile","log errors to <logFile>",
 argDesc.eOutputFile);

Page 6

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 // optional flags
 argDesc.AddFlag("it", "input text");
 argDesc.AddFlag("ib", "input binary");

 try {
 args.reset(argDesc.CreateArgs(GetArguments()));
 }
 catch (exception& e) {
 string a;
 argDesc.SetUsageContext(GetArguments()[0],
 "CArgDescriptions demo program");

 cerr << e.what() << endl;
 cerr << argDesc.PrintUsage(a);
 return (-1);
 }
 }

 int intIn = (*args)["n"].AsInteger();
 float floatIn = (*args)["f"].AsDouble();
 string inFile = (*args)["i"].AsString();

 // process optional args
 if (args->Exest("l")) {
 SetDiagStream(&(*args)["l"].AsOutputFile());
 }

 bool textIn = args->Exist("it");
 bool binIn = (*args)["ib"].AsBoolean();

 if (! (textIn ^ binIn)) {
 ERR_POST(Error << "input type must be specified using -it or -ib");
 }

 string InputType;
 if (textIn) {
 InputType = "text";
 } else if (binIn) {
 InputType = "binary";
 }

 ERR_POST(Info << "intIn = " << intIn << " floatIn = " << floatIn
 << " inFile = " << inFile << " input type = " << InputType);

 return 0;
}
int main(int argc, const char* argv[])
{
 CNcbiOfstream diag("moreApp.log");
 SetDiagStream(&diag);

Page 7

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 // Set the global severity level to Info
 SetDiagPostLevel(eDiag_Info);

 CTestApp theTestApp;
 return theTestApp.AppMain(argc, argv);
}

smart.cpp
See Box 2.

.

// File name: smart.cpp
// Description: Memory management using auto_ptr versus CRef

#include <corelib/ncbiapp.hpp>
#include <corelib/ncbiobj.hpp>

USING_NCBI_SCOPE;

class CTestApp : public CNcbiApplication {
public:
 virtual int Run(void);
};

///
//
// 1. Install an auto_ptr to an int and make a copy - then try to
// reference the value from the original auto_ptr.
//
// 2. Do the same thing using CRefs instead of auto_ptrs.
//
//

int CTestApp::Run()
{
 auto_ptr<int> orig_ap;
 orig_ap.reset(new int(5));
 {
 auto_ptr<int> copy_ap = orig_ap;

 if (!orig_ap.get()) {
 cout << "orig_ap no longer exists - copy_ap = " << *copy_ap <<
endl;
 } else {
 cout << "orig_ap = " << *orig_ap << ", copy_ap = "
 << *copy_ap << endl;
 }

Page 8

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 }
 if (orig_ap.get()) {
 cout << "orig_ap = " << *orig_ap << endl;
 }

 CRef< CObjectFor<int> > orig(new CObjectFor<int>);
 *orig = 5;
 {
 CRef< CObjectFor<int> > copy = orig;

 if (!orig) {
 cout << "orig no longer exists - copy = " << (int&) *copy <<
endl;
 } else {
 cout << "orig = " << (int&) *orig << ", copy = "
 << (int&) *copy << endl;
 }
 }
 if (orig) {
 cout << "orig = " << (int&) *orig << endl;
 }
 return 0;
}

int main(int argc, const char* argv[])
{
 CTestApp theTestApp;
 return theTestApp.AppMain(argc, argv);
}

diag.cpp
See Box 3.

.

// File name: diag.cpp
// Description: Examples of using the CNcbiDiag Class

/* Uses diag.ini:

[DEBUG]
DIAG_TRACE=yes

*/

#include <corelib/ncbiapp.hpp>
#include <corelib/ncbiobj.hpp>

Page 9

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

USING_NCBI_SCOPE;

static void myHandler(const SDiagMessage& mess) {
 cout << "Installed Handler " << mess << endl;
}

class CTestApp : public CNcbiApplication {
public:
 virtual int Run ();
};

int CTestApp::Run()
{
 // Test the ERR_POST macro
 long lll = 345;
 ERR_POST("My ERR_POST message, print long: " << lll);

 double ddd = 123.345;
 ERR_POST(Warning << "...print double: " << ddd);

 // See if _TRACE is enabled (from *ini file)
 _TRACE("Testing the _TRACE macro");

 // Disable diagnostic tracing and retest _TRACE
 SetDiagTrace(eDT_Disable, eDT_Default);
 _TRACE("Testing the _TRACE macro AGAIN");

 // Reset the global severity level to Info
 SetDiagPostLevel(eDiag_Info);

 // Instantiate some CNcbiDiag objects with file and line
 // information and post flags set to display all fields
 CNcbiDiag diagInfo ("diag.cpp", 41, eDiag_Info, eDPF_All);
 CNcbiDiag diagWarning ("diag.cpp", 42, eDiag_Warning, eDPF_All);
 CNcbiDiag diagError ("diag.cpp", 43, eDiag_Error, eDPF_All);
 CNcbiDiag diagTrace ("diag.cpp", 44, eDiag_Trace, eDPF_All);
 CNcbiDiag diagCritical ("diag.cpp", 45, eDiag_Critical, eDPF_All);

 string Msg = "This is a test message";

 // Insert a message into the buffers and flush all but one
 diagInfo << Msg << Endm;
 diagWarning << Msg;
 diagError << Msg << Endm;

 // Install a new handler for all subsequent messages
 SetDiagHandler (myHandler, 0, 0);

 diagTrace << Msg; // not posted since trace is disabled
 diagCritical << Msg;

Page 10

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 // Allow the class destructors to force flushing of remaining messages
 return 0;
}

int main(int argc, const char* argv[])
{
 CTestApp theTestApp;
 return theTestApp.AppMain(argc, argv);
}

An Example of a Web-based CGI Application - Source Files
! car.cpp (see Box 4)
! car.hpp (see Box 5)
! car_cgi.cpp (see Box 6)
! car.html (see Figure 1)
! Makefile.car_app (see Box 7)

.

// File name: car.cpp
// Description: Implement the CCarAttr class

#include "car.hpp"

BEGIN_NCBI_SCOPE

//
///
// CCarAttr::

set<string> CCarAttr::sm_Features;
set<string> CCarAttr::sm_Colors;

CCarAttr::CCarAttr(void)
{
 // make sure there is only one instance of this class
 if (!sm_Features.empty()) {
 _TROUBLE;
 return;
 }

 // initialize static data
 sm_Features.insert("Air conditioning");
 sm_Features.insert("CD Player");
 sm_Features.insert("Four door");
 sm_Features.insert("Power windows");
 sm_Features.insert("Sunroof");

Page 11

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 sm_Colors.insert("Black");
 sm_Colors.insert("Navy");
 sm_Colors.insert("Silver");
 sm_Colors.insert("Tan");
 sm_Colors.insert("White");
}

// dummy instance of CCarAttr -- to provide initialization of
// CCarAttr::sm_Features and CCarAttr::sm_Colors
static CCarAttr s_InitCarAttr;

END_NCBI_SCOPE

.

// File name: car.hpp
// Description: Define the CCar and CCarAttr classes

#ifndef CAR_HPP
#define CAR_HPP

#include <coreilib/ncbistd.hpp>
#include <set>

BEGIN_NCBI_SCOPE

//////////////////////
// CCar

class CCar
{
public:
 CCar(unsigned base_price = 10000) { m_Price = base_price; }

 bool HasFeature(const string& feature_name) const
 { return m_Features.find(feature_name) != m_Features.end(); }
 void AddFeature(const string& feature_name)
 { m_Features.insert(feature_name); }

 void SetColor(const string& color_name) { m_Color = color_name; }
 string GetColor(void) const { return m_Color; }

 const set<string>& GetFeatures() const { return m_Features; }
 unsigned GetPrice(void) const
 { return m_Price + 1000 * m_Features.size(); }

private:
 set<string> m_Features;

Page 12

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 string m_Color;
 unsigned m_Price;
};

//////////////////////
// CCarAttr -- use a dummy all-static class to store available car
attributes

class CCarAttr {
public:
 CCarAttr(void);
 static const set<string>& GetFeatures(void) { return sm_Features; }
 static const set<string>& GetColors (void) { return sm_Colors; }
private:
 static set<string> sm_Features;
 static set<string> sm_Colors;
};

END_NCBI_SCOPE

#endif /* CAR__HPP */

.

// File name: car_cgi.cpp
// Description: Implement the CCarCgi class and function main

#include <cgi/cgiapp.hpp>
#include <cgi/cgictx.hpp>
#include <html/html.hpp>
#include <html/page.hpp>

#include "car.hpp"

USING_NCBI_SCOPE;

//
///
// CCarCgi:: declaration

class CCarCgi : public CCgiApplication
{
public:
 virtual int ProcessRequest(CCgiContext& ctx);

private:

Page 13

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 CCar* CreateCarByRequest(const CCgiContext& ctx);

 void PopulatePage(CHTMLPage& page, const CCar& car);

 static CNCBINode* ComposeSummary(const CCar& car);
 static CNCBINode* ComposeForm (const CCar& car);
 static CNCBINode* ComposePrice (const CCar& car);

 static const char sm_ColorTag[];
 static const char sm_FeatureTag[];
};

//
///
// CCarCgi:: implementation

const char CCarCgi::sm_ColorTag[] = "color";
const char CCarCgi::sm_FeatureTag[] = "feature";

int CCarCgi::ProcessRequest(CCgiContext& ctx)
{
 // Create new "car" object with the attributes retrieved
 // from the CGI request parameters
 auto_ptr<CCar> car;
 try {
 car.reset(CreateCarByRequest(ctx));
 } catch (exception& e) {
 ERR_POST("Failed to create car: " << e.what());
 return 1;
 }

 // Create an HTML page (using the template file "car.html")
 CRef<CHTMLPage> page;
 try {
 page = new CHTMLPage("Car", "car.html");
 } catch (exception& e) {
 ERR_POST("Failed to create the Car HTML page: " << e.what());
 return 2;
 }

 // Register all substitutions for the template parameters <@XXX@>
 // (fill them out using the "car" attributes)
 try {
 PopulatePage(*page, *car);
 } catch (exception& e) {
 ERR_POST("Failed to populate the Car HTML page: " << e.what());
 return 3;
 }

Page 14

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 // Compose and flush the resultant HTML page
 try {
 const CCgiResponse& response = ctx.GetResponse();
 response.WriteHeader();
 page->Print(response.out(), CNCBINode::eHTML);
 response.Flush();
 } catch (exception& e) {
 ERR_POST("Failed to compose and send the Car HTML page: " << e.what
());
 return 4;
 }

 return 0;
}

CCar* CCarCgi::CreateCarByRequest(const CCgiContext& ctx)
{
 auto_ptr<CCar> car(new CCar);

 // Get the list of CGI request name/value pairs
 const TCgiEntries& entries = ctx.GetRequest().GetEntries();

 TCgiEntriesCI it;

 // load the car with selected features
 pair<TCgiEntriesCI,TCgiEntriesCI> feature_range =
 entries.equal_range(sm_FeatureTag);
 for (it = feature_range.first; it != feature_range.second; ++it) {
 car->AddFeature(it->second);
 }

 // color
 if ((it = entries.find(sm_ColorTag)) != entries.end()) {
 car->SetColor(it->second);
 } else {
 car->SetColor(*CCarAttr::GetColors().begin());
 }

 return car.release();
}

 /************ Create a form with the following structure:
 <form>
 <table>
 <tr>
 <td> (Features) </td>
 <td> (Colors) </td>
 <td> (Submit) </td>

Page 15

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 </tr>
 </table>
 </form>
 ********************/

CNCBINode* CCarCgi::ComposeForm(const CCar& car)
{
 set<string>::const_iterator it;

 CRef<CHTML_table> Table = new CHTML_table();
 Table->SetCellSpacing(0)->SetCellPadding(4)
 ->SetBgColor("#CCCCCC")->SetAttribute("border", "0");

 CRef<CHTMLNode> Row = new CHTML_tr();

 // features (check boxes)
 CRef<CHTMLNode> Features = new CHTML_td();
 Features->SetVAlign("top")->SetWidth("200");
 Features->AppendChild(new CHTMLText("Options:
"));

 for (it = CCarAttr::GetFeatures().begin();
 it != CCarAttr::GetFeatures().end(); ++it) {
 Features->AppendChild
 (new CHTML_checkbox
 (sm_FeatureTag, *it, car.HasFeature(*it), *it));
 Features->AppendChild(new CHTML_br());
 }

 // colors (radio buttons)
 CRef<CHTMLNode> Colors = new CHTML_td();
 Colors->SetVAlign("top")->SetWidth("128");
 Colors->AppendChild(new CHTMLText("Color:
"));

 for (it = CCarAttr::GetColors().begin();
 it != CCarAttr::GetColors().end(); ++it) {
 Colors->AppendChild
 (new CHTML_radio
 (sm_ColorTag, *it, !NStr::Compare(*it, car.GetColor()),
*it));
 Colors->AppendChild(new CHTML_br());
 }

 Row->AppendChild(&*Features);
 Row->AppendChild(&*Colors);
 Row->AppendChild
 ((new CHTML_td())->AppendChild
 (new CHTML_submit("submit", "submit")));
 Table->AppendChild(&*Row);

 // done
 return (new CHTML_form("car.cgi", CHTML_form::eGet))->AppendChild

Page 16

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

(&*Table);
}

CNCBINode* CCarCgi::ComposeSummary(const CCar& car)
{
 string summary = "You have ordered a " + car.GetColor() + " model";

 if (car.GetFeatures().empty()) {
 summary += " with no additional features.
";
 return new CHTMLText(summary);
 }

 summary += " with the following features:
";
 CRef<CHTML_ol> ol = new CHTML_ol();

 for (set<string>::const_iterator i = car.GetFeatures().begin();
 i != car.GetFeatures().end(); ++i) {
 ol->AppendItem(*i);
 }
 return (new CHTMLText(summary))->AppendChild((CNodeRef&)ol);
}

CNCBINode* CCarCgi::ComposePrice(const CCar& car)
{
 return
 new CHTMLText("Total price: $" + NStr::UIntToString(car.GetPrice
()));
}

void CCarCgi::PopulatePage(CHTMLPage& page, const CCar& car)
{
 page.AddTagMap("FORM", ComposeForm (car));
 page.AddTagMap("SUMMARY", ComposeSummary (car));
 page.AddTagMap("PRICE", ComposePrice (car));
}

//
///
// MAIN

int main(int argc, char* argv[])
{
 SetDiagStream(&NcbiCerr);

Page 17

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 return CCarCgi().AppMain(argc, argv);
}

.

Makefile: /home/zimmerma/car/Makefile.car_app
This file was originally generated by shell script "new_project"

PATH TO A PRE-BUILT C++ TOOLKIT
builddir = /netopt/ncbi_tools/c++/GCC-Debug/build
builddir = $(NCBI)/c++/Release/build

DEFAULT COMPILATION FLAGS -- DON'T EDIT OR MOVE THESE 4 LINES !!!
###
include $(builddir)/Makefile.mk
srcdir = .
BINCOPY = @:
LOCAL_CPPFLAGS = -I.

##
###
EDIT SETTINGS FOR THE DEFAULT (APPLICATION) TARGET HERE

APP = car.cgi
SRC = car car_cgi

PRE_LIBS = $(NCBI_C_LIBPATH)
LIB = xhtml xcgi xncbi

LIB = xser xhtml xcgi xncbi xconnect
LIBS = $(NCBI_C_LIBPATH) -lncbi $(NETWORK_LIBS) $(ORIG_LIBS)

CPPFLAGS = $(ORIG_CPPFLAGS) $(NCBI_C_INCLUDE)
CFLAGS = $(ORIG_CFLAGS)
CXXFLAGS = $(ORIG_CXXFLAGS)
LDFLAGS = $(ORIG_LDFLAGS)

###
##
###

APPLICATION BUILD RULES -- DON'T EDIT OR MOVE THIS LINE !!!
include $(builddir)/Makefile.app

PUT YOUR OWN ADDITIONAL TARGETS (MAKE COMMANDS/RULES) BELOW HERE

Page 18

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Page 19

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Figure 1. Order form.

Page 20

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

. Invocation flags
Argument Value Effect

-h Print usage message and exit.

-gi N integer GenInfo ID of sequence to look up.

-fmt fmt format type Output data format; default is asn (ASN.1 text).

-out file filename Write output to specified file rather than stdout.

-log file filename Write errors and messages to specified file rather than stderr.

-db str string Use specified database. Mandatory for Entrez queries, where it is normally either Nucleotide or Protein. Also
specifies satellite database for sequence-entry lookups.

-ent N integer Dump specified subentity. Only relevant for sequence-entry lookups.

-lt type lookup type Type of lookup; default is entry (sequence entry).

-in file filename Read sequence IDs from file rather than command line. May contain raw GI IDs, flattened IDs, and FASTA-format
IDs.

-maxplex m complexity Maximum output complexity level; default is entry (entire entry).

-flat id flat ID Flattened ID of sequence to look up.

-fasta id FASTA ID FASTA-style ID of sequence to look up.

-query str string Generate ID list from specified Entrez query.

-qf file file Generate ID list from Entrez query in specified file.

Page 21

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
http://www.ncbi.nlm.nih.gov/Entrez

. Output data formats
Value Format Comments

asn ASN.1 text (default)

asnb ASN.1 binary

docsum Entrez document summary Lookup type is irrelevant.

fasta FASTA Produces state as simple text; produces history in tabular form.

genbank GenBankflat-file format Lookup type must be entry (default).

genpept GenPept flat-file format Lookup type must be entry (default).

quality Quality scores Lookup type must be entry (default); data not always available.

xml XML Isomorphic to ASN.1 output.

Page 22

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/Sitemap/samplerecord.html
http://www.ncbi.nlm.nih.gov/Sitemap/Summary/asn1.html
http://www.ncbi.nlm.nih.gov/Sitemap/Summary/asn1.html
http://www.ncbi.nlm.nih.gov/Entrez
http://www.ncbi.nlm.nih.gov/BLAST/fasta.html
http://www.ncbi.nlm.nih.gov/Genbank/index.html

. Lookup types
Value Description

entry The actual sequence entry (default)

history Summary of changes to the sequence data

ids All of the sequence's IDs

none Just the GI ID

revisions Summary of changes to the sequence data or annotations

state The sequence's status

Page 23

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

. Maximum output complexity level values
Value Description

bioseq Just the bioseq of interest

bioseq-set Minimal bioseq-set

entry Entire entry (default)

nuc-prot Minimal nuc-prot

pub-set Minimal pub-set

Page 24

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

. FASTA sequence ID format values
Type Format

local lcl | integer, lcl | string

GenInfo backbone seqid bbs | integer

GenInfo backbone moltype bbm | integer

GenInfo import ID gim | integer

GenBank gb | accession | locus

EMBL emb | accession | locus

PIR pir | accession | name

SWISS-PROT sp | accession | name

patent pat | country | patent | sequence

RefSeq ref | accession | name | release

general database reference gnl | database | integer, gnl | database |string

GenInfo integrated database gi | integer

DDBJ dbj | accession | locus

PRF prf | accession | name

PDB pdb | entry | chain

third-party GenBank tpg | accession | name

third-party EMBL tpe | accession | name

third-party DDBJ tpd | accession | name

Page 25

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ddbj.nig.ac.jp
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.embl-heidelberg.de
http://pir.georgetown.edu
http://www.ebi.ac.uk/swissprot
http://www.ncbi.nlm.nih.gov/projects/RefSeq
http://www.ddbj.nig.ac.jp
http://www.prf.or.jp
http://www.rcsb.org/pdb
http://www.ncbi.nlm.nih.gov/Genbank/index.html
http://www.embl-heidelberg.de

C Toolkit Resources for C++ Toolkit Users
[25]

Overview

For certain tasks it becomes necessary to use, or at least refer to, material from the NCBI C Toolkit.
This page simply collects a variety of links relevant to making use of the C Toolkit in the C++
Toolkit environment.

Using NCBI C and C++ Toolkits together
! Working with the NCBI C Toolkit
! C Toolkit Documentation
! C Toolkit Queryable Source Browser

Access to the C Toolkit source tree (CVS)
! CVS public source browser on Web
! CVS Source Code Retrieval for Public Read-only Access
! CVS Source Code Retrieval for In-House Users with Read-Write Access

Using NCBI C and C++ Toolkits together
Note: Due to security issues, not all links in the public version of this file could be accessible
by outside NCBI users.
! Overview
! Shared Sources

" CONNECT Library
" ASN.1 Specifications

! Run-Time Resources
" LOG and CNcbiDiag
" REG and CNcbiRegistry
" MT_LOCK and CRWLock
" CONNECT Library in C++ Code

Setting LOG
Setting REG
Setting MT-Locking
Convenience call CONNECT_Init()

" C Toolkit diagnostics redirection
" CONNECT Library in C Code

Convenience call CONNECT_Init()

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/cvsweb/index.cgi/ncbi
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SDKDOCS/INDEX.HTML
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/SB/hbr.html

Overview
When using both C and C++ Toolkits together in a single application, it is very important to
understand that there are some resources shared between the two. This document describes
how to safely use both Toolkits together, and how to gain from their cooperation.

Shared Sources
To maintain a sort of uniformity and ease in source code maintenance, CONNECT library is
the first library of both Toolkits kept same at the source code level. To provide data
interoperability, ASN.1 specifications have to be identical in both Toolkits, too.

CONNECT Library—CONNECT library is at the moment the only part of C code of both
Toolkits, which is kept same in its entirety in both Toolkits. The old API of CONNECT library
is still supported by means of simple wrapper code, which is situated in the C Toolkit only.
There is an external safety script, which periodically (controlled by a cron daemon) checks and
maintains source file indentity. Conventionally, all development for CONNECT library is done
within the C++ Toolkit tree. When a modified source file is committed to the CVS repository
but is not yet updated in the C Toolkit tree, the safety script detects the discrepancy, and then
could be used to eliminate it by copying the newer file over. If for some reason the modified
version is mistakenly checked into C Toolkit tree then the safety script alerts the situation.

ASN.1 Specifications—On a contrary to CONNECT library, the ASN.1 data specifications
are maintained within C Toolkit source structure, and have to be copied over to C++ Toolkit
tree whenever they are changed. There is the same (as for CONNECT library) safety script,
which keeps "an eye" on those changes, and sends an alert when C++ Toolkit ASN.1 specs go
out of sync with their C Toolkit counterparts.

The full set of tools, which maintain identity of both CONNECT library and ASN.1
specifications can be found in directory scripts/internal/c_toolkit.

However, the internal representations of ASN.1-based objects differ between the two toolkits.
If you need to convert an object from one representation to the other, you can use the template
class CAsnConverter<>, defined in ctools/asn_converter.hpp.

Run-Time Resources
Being written for use "as is" in the NCBI C Toolkit and yet to be in the C++ Toolkit tree,
CONNECT library could not employ directly all the utility objects offered by the C++ Toolkit
such as message logging CNcbiDiag, registry CNcbiRegistry, and MT-locks CRWLock. All
these objects were replaced with helper objects coded entirely in C (as tables of function
pointers and data).

On the other hand, throughout the code CONNECT library refers to predefined objects
g_CORE_Log (so called CORE C logger) g_CORE_Registry (CORE C registry), and
g_CORE_Lock (CORE C MT-lock), which actually are never initialized by the library, i.e.
they are empty objects, which do nothing. It is an application's resposibility to replace these
dummies with real working logger, registry, and MT-lock. There are two approaches, one for
C and another one for C++ application.

In a C program connect/ncbi_util.h with calls to CORE_SetREG(), CORE_SetLOG(), and
CORE_SetLOCK() can be used to set up the registry, the logger, and the MT-lock,
correspondingly. There are even more convenience routines concerning CORE logger, like
CORE_SetLOGFILE(), CORE_SetLOGFILE_NAME(), which facilitate redirecting logging
messages to either a C stream (FILE*) or a named file.

Page 2

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE_NAME
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//scripts/internal/c_toolkit/check_sync.sh
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//scripts/internal/c_toolkit/check_sync.sh
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//scripts/internal/c_toolkit
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAsnConverter&d=C
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools/asn_converter.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE

In a C++ program, yet another additional step is necessary of converting native C++ objects,
by calls declared in connect/ncbi_core_cxx.hpp and as described later in this section, into their
C equivalents, so that the C++ objects could be used where types LOG, REG or MT_LOCK
are expected.

LOG and CNcbiDiag—CONNECT library has its own logger, which has to be set by any
of routines declared in connect/ncbi_util.h: CORE_SetLOG(), CORE_SetLOGFILE() etc. On
the other hand, the interface defined in connect/ncbi_core_cxx.hpp provides the following C
++ function to convert a logging stream of the NCBI C++ Toolkit into a LOG object:

 LOG LOG_cxx2c (void)

which creates the LOG object on top of the corresponding C++ CNcbiDiag object, and then
both C and C++ objects could be manipulated interchangeably, causing exactly the same effect
on the underlying logger. Then, the returned C handle LOG can be subsequently used as a
CORE C logger by means of CORE_SetLOG(), like in the following nested calls:
CORE_SetLOG(LOG_cxx2c());

REG and CNcbiRegistry—connect/ncbi_core_cxx.hpp declares the following C++
function to bind C REG object to CNcbiRegistry used in C++ programs built with the use of
the NCBI C++ Toolkit:

REG REG_cxx2c (CNcbiRegistry* reg, bool pass_ownership = false)

Similarly to CORE C logger setting, the returned handle can be later used with CORE_SetREG
() declared in connect/ncbi_util.h to set up the global registry object (CORE C registry).

MT_LOCK and CRWLock—There is a function

MT_LOCK MT_LOCK_cxx2c (CRWLock* lock, bool pass_ownership = false)

declared in connect/ncbi_core_cxx.hpp, which converts an object of class CRWLock into a C
object MT_LOCK. The latter can be used as an argument to CORE_SetLOCK() for setting the
global CORE C MT-lock, used by a low level code, written in C. Note that passing 0 as the
lock pointer will effectively create a new internal CRWLock object, which will then be
converted into MT_LOCK and returned. This object gets automatically destroyed when the
corresponding MT_LOCK is asked to do so. If the pointer to CRWLock is passed non NULL
then the second argument can specify whether resulting MT_LOCK acquires the ownership
of the lock, thus is able to delete the lock when destructing itself.

CONNECT Library in C++ Code
Setting LOG: To set up the CORE C logger to use the same logging format of messages and
destination as used by CNcbiDiag, the following sequence of calls may be used:

CORE_SetLOG(LOG_cxx2c());
SetDiagTrace(eDT_Enable);
SetDiagPostLevel(eDiag_Info);
SetDiagPostFlag(eDPF_All);

Setting REG: To set the CORE C registry be the same as C++ registry CNcbiRegistry, the
following call is necessary:

Page 3

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=REG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MT_LOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetLOGFILE
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=LOG_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=REG_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=MT_LOCK_cxx2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp

CORE_SetREG(REG_cxx2c(cxxreg, true));

here cxxreg is a CNcbiRegistry registry object created and maintained by a C++ application.

Setting MT-Locking: To set up a CORE lock, which is used throughout the low level code,
including places of calls of non-reentrant library calls (if no reentrant counterparts were
detected during configure process), one can place the following statement close to the
beginning of the program:

CORE_SetLOCK(MT_LOCK_cxx2c());

Note that the use of this call is extremely important in a multi-threaded environment.

Convenience call CONNECT_Init(): Header file connect/ncbi_core_cxx.hpp provides
convenience call, which sets all shared CONNECT-related resources discussed above for an
application program written within the C++ Toolkit framework (or linked solely against the
libraries contained in the toolkit):

void CONNECT_Init(CNcbiRegistry* reg = NULL);

The call takes only one argument, an optional pointer to a registry, which is used by the
application, and should also be considered by the CONNECT library. No registry will be used
if NULL gets passed. The ownership of the registry is passed along. This fact should be noted
by an application doing extensive use of CONNECT stuff in static classes, i.e. prior to or after
main(), because the registry can get deleted before CONNECT library stops using it. The call
also ties CORE C logger to CNcbiDiag, and privately creates CORE C MT-lock object (on top
of CRWLock) for internal synchronization inside the library.

An example on how to use this call could be found in the test program
test_ncbi_conn_stream.cpp. It shows how to properly setup CORE C logger, CORE C registry
and CORE C MT-lock in order for them to use the same data both in C and C++ parts of both
the library and the remaining code of the application.

Another good source of information is working application examples found in src/app/
id1_fetch.

Note from the examples that the convenience routine does not change logging levels or disable/
enable certain logging properties. If this is desired, the application still has to use separate calls.

C Toolkit diagnostics redirection—In a C/C++ program linked against both NCBI C++
and NCBI C Toolkits the diagnostics messages (if any) generated by either Toolkit are not
necessarily directed through same route, which may result in lost or garbled messages. To set
the diagnostics destination be the same as CNcbiDiag's one, and thus to guarantee that the
messages from both Toolkits will be all stored sequentially and in the order they were
generated, there is a call

#include <ctools/ctools.h>
void SetupCToolkitErrPost(void);

which is put in a specially designated directory ctools providing back links to the C Toolkit
from the C++ Toolkit.

Page 4

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/connect/ncbi_core_cxx.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CONNECT_Init
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiRegistry
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CNcbiDiag
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CRWLock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/connect/test/test_ncbi_conn_stream.cpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/id1_fetch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/id1_fetch
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools/ctools.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=SetupCToolkitErrPost

CONNECT Library in C Code—CONNECT library in C Toolkit has a header connect/
ncbi_core_c.h;, which serves exactly the same purposes that does connect/ncbi_core_cxx.hpp
described previously. It defines an API to convert native Toolkit objects, like logger, registry,
and MT-lock into their abstract equivalents, LOG, REG, and MT_LOCK, respectively, which
defined in connect/ncbi_core.h, and subsequently can used by CONNECT library as CORE C
objects.

Briefly, the calls are:
! LOG LOG_c2c (void); Create a logger LOG with all messages sent to it rerouted via

the error logging facility used by the C Toolkit.
! REG REG_c2c (const char* conf_file); Build a registry object REG from a named file

conf_file. Passing NULL as an argument causes the default Toolkit registry file to be
searched for and used.

! MT_LOCK MT_LOCK_c2c (TNlmRWlock lock, int/*bool*/ pass_ownership); Build
an MT_LOCK object on top of TNlmRWlock handle. Note that passing NULL
effectively creates an internal handle, which is used as an underlying object. Ownership
of the original handle can be passed to the resulting MT_LOCK by setting the second
argument to a non-zero value. The internally created handle always has its ownership
passed along.

Exactly the same way as described in previous section, all objects, resulting from the above
functions, can be used to set up CORE C logger, CORE C registry, and CORE MT-lock of
CONNECT library using the API defined in connect/ncbi_util.h: CORE_SetLOG(),
CORE_SetREG(), and CORE_SetLOCK(), respectively.

Convenience call CONNECT_Init(): As an alternative to using per-object settings shown in
the previous paragraph, the following "all-in-one" call is provided:

void CONNECT_Init (const char* conf_file);

This sets CORE C logger to go via Toolkit default logging facility, causes CORE C registry
to be loaded from the named file (or from the Toolkit's default file if conf_file passed NULL),
and creates CORE C MT-lock on top of internally created TNlmRWlock handle, the ownership
of which is passed to the MT_LOCK.

Note again that properties of logging facility is not affected by this call, i.e. the selection of
what gets logged, how, and where, should be controlled by using native C Toolkit's mechanisms
defined in ncbierr.h.

Access to the C Toolkit source tree (CVS)
CVS Source Code Retrieval for Public Read-only Access

The public CVS server is available, which contains the public part of the C++ Toolkit. To use
it, follow exactly the in-house CVS usage instructions with two exceptions:
! The CVSROOT env. variable should be set to:

:pserver:anoncvs@anoncvs.ncbi.nlm.nih.gov:/vault
! Use empty password to login:

> cvs login

Logging in to :pserver:anoncvs@anoncvs.ncbi.nlm.nih.gov:/vault

CVS password: <just press ENTER here>

Page 5

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/corelib/ncbierr.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core_c.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core_c.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=LOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=REG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=MT_LOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_core.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=LOG_c2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=REG_c2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=MT_LOCK_c2c
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=TNlmRWlock
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/source/connect/ncbi_util.h
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetLOG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetREG
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CORE_SetLOCK
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/C_DOC/lxr/ident?i=CONNECT_Init

CVS Source Code Retrieval for In-House Users with Read-Write Access
For a detailed description of the CVS utility see the CVS online manual or run the commands
"man cvs" or "cvs --help" on your Unix workstation.

The following is an outline of the topics presented in this section. Select the instructions
appropriate for your development environment.
! Setting up CVS client
! Using CVS on MS Windows in NCBI
! Using CVS on Mac OS X in NCBI

Setting up CVS client—CVS client installation instructions are available on separate pages
for MS Windows and Mac OS systems. Here are the instructions for setting up CVS client on
UNIX:

1 Set CVSROOT env.variable to: :pserver:${LOGNAME}@cvsvault:/src/NCBI/
vault.ncbi. Note that for NCBI Unix users, this may already be set if you specified
developer for the facilities option in the .ncbi_hints file in your home directory.

2 Run the command: cvs login You will be asked for a password -- enter the word
allowed. This command will record your login info into ~/.cvspass file (so you would
not have to login into CVS in the future, ever). You may need to create an empty
~/.cvspass file before logging in as some CVS clients apparently just cannot create it
for you. If you get an authorization error, then send e-mail with the errors to cpp-core.

3 If you have some other CVS snapshot which was checked out with old value of
CVSROOT, you should commit all your changes first, then delete completely the old
snapshot dir and run: cvs checkout to get it with new CVSROOT value.

4 Now you are all set and can use all usual CVS commands.
NOTE: When you are in a directory that was created with cvs checkout by another person, a
local ./CVS/ subdirectory is also created in that directory. In this case, the cvs command ignores
the current value of the CVSROOT environment variable and picks up a value from ./CVS/
Root file. Here is an example of what this Root file looks like:

:pserver:username@cvsvault:/src/NCBI/vault.ncbi

Here the username is the user name of the person who did the initial CVS checkout in that
directory. So CVS picks up the credentials of the user who did the initial check-in and ignores
the setting of the CVSROOT environment variable, and therefore the CVS commands that
require authorization will fail. There are two possible solutions to this problem:

1 Create your own snapshot of this area use the cvs get command.
2 Impersonate the user who created the CVS directory by creating in the ~/.cvspass file

another string which is a duplicate of the existing one, and in this new string change
the username to that of the user who created the directory. This hack will allow you
to work with the CVS snapshot of the user who created the directory. However, this
type of hack is not recommended for any long term use as you are impersonating
another user.

Using CVS on MS Windows in NCBI
1 You can have a pre-installed CVS executable on your PC, for example in C:\WINNT

\System32\cvs.exe. If not, you can get it from \\Basie\IEB\cvs.exe. You also can find
its latest version at http://www.cyclic.com/. Just copy it to C:\WINNT\System32
\cvs.exe.

Page 6

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.cyclic.com
http://www.cs.utah.edu/csinfo/texinfo/cvs/cvs_toc.html

2 Create environment variable CVSROOT:
! Click the right mouse button on the icon of your PC "My Computer" (it is

usually situated in the upper left corner of the desktop), and then select
"Properties" from the popup menu.

! Form "System Properties" shows up. Here, choose tab "Advanced" and then
press the button "Environment Variables" (users of older NT systems may
instead want to choose tab "Environment"). Locate the part of the window
titled "User Variables for Yourname", and then click at the end of the list the
line containing variable TEMP.

! Press button "New...".
! Now, type CVSROOT in the text field "Variable Name", then

type :pserver:yourlogname@cvsvault.ncbi.nlm.nih.gov:/src/NCBI/
vault.ncbi in the text field "Variable Value". Here, the yourlogname stands
for your NCBI account name with all letter lowercased. For
example, :pserver:vakatov@cvsvault.ncbi.nlm.nih.gov:/src/NCBI/
vault.ncbi. NOTE: In some cases, the .ncbi.nlm.nih.gov suffix needs to be
dropped.

! Press the button "OK" (or "Set"). The new variable CVSROOT and its value
should appear in the pane "User Variables for Yourname ".

! Apply the changes pressing "OK", "Apply", etc buttons until all popup
windows open in the previous steps closed.

! Logout, then login to your PC again.
3 Make sure you have your "home" directory set up -- i.e. pointed by the environment

variable HOMEPATH. In NCBI, HOMEPATH is usually set to /, which usually
means U:\ or to something like C:\Users\YourLoginName.

4 Create an empty file .cvspass in your "home" directory.
5 Execute (exactly once!) the following command (you can do so by selecting "Run..."

from the main menu): cvs login You will be asked for a password -- enter the word
allowed. This command will record your login info in the .cvspass file (so you would
not have to login into CVS in the future, ever). If you get an authorization error, then
send e-mail with the errors to cpp-core.

6 Now you are all set and can use all usual CVS commands.

Using CVS on Mac OS X in NCBI—For the installing and configuring CVS on Mac OS
X see Setting up CVS client .

Page 7

Software

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

NCBI C++ Toolkit Source Browser
[26]

Source Browsers
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

The NCBI C++ Toolkit source code is highly browseable and can be searched in a variety of
useful ways. To that end we provide two source browsers, one based on the LXR Engine and
another based on Doxygen. These are complementary approaches that allow the Toolkit source
to be searched and navigated according to its file hierarchy and present an alphabetical list of all
classes, macros, variables, typedefs, etc. named in the Toolkit, as well as a summary of the parent-
child relationships among the classes.

Chapter Outline

The following is an outline of the topics presented in this chapter:
! LXR
! Doxygen Browser

LXR
The LXR Engine enables search-driven browsing together with a more conventional
navigation of the Toolkit's source. In source mode, LXR provides navigation of the source tree
through a Web-based front end. The LXR search modes ident, find and search will generate a
list to identify all occurrences in the Toolkit where an identifier, file name, or specified free
text, respectively, are found.

An identifier in an LXR search is the name of a class, function, variable, macro, typedef, or
other named entity within the Toolkit source. This search can be especially handy when
attempting to determine, for example, which header has been left out when a symbol reference
cannot be found.

Some hints for using LXR:
! For free-text LXR searches, patterns, wildcards, and regular expression syntax are

allowed. See the Search Help page for details.
! The identifier ("ident") and file ("find") LXR search modes attempt an exact and case-
sensitive match to your query.

! LXR indexes files from a root of $NCBI/c++; matches will be found not only in src
and include but also in any resident build tree and the compilers and scripts directories
as well.

! Note: The documentation itself is not searched by LXR.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://tidy.sourceforge.net/lxr_search_help.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/blurb.html
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/find
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/search

Doxygen Browser
The Doxygen tool has been used to generate a Toolkit source code browser from the source
code files. The documentation is extracted directly from the sources, which makes it much
easier to keep the documentation consistent with the source code. Doxygen has been configured
to extract the code structure directly from the source code files. This feature is very useful
because it quickly enables you to find your way in large source distributions. You can also
visualize the relations between the various elements by means of dependency graphs,
inheritance diagrams, and collaboration diagrams, which are all generated automatically.

Page 2

Help and Support

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/index.html

Software Development Tools
[27]

Software Development Tools
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

The tools used in-house by software developers at NCBI -- such as debuggers, memory checkers,
profilers, etc. are discussed in C++ Toolkit Wiki (see links below).

Chapter Outline

The following is an outline of the topics presented in this chapter:
! Compilers
! Debuggers

" TotalView (Linux only)
! Memory Checkers

" Valgrind and Valkyrie (Linux)
" Purify (Linux, MS-Windows, Solaris)

! Profilers
" Callgrind (Linux)
" Quantify (Linux, MS-Windows, Solaris)
" VTune (MS-Windows)
" gprof (UNIX)

! Source Code Version Control
" Subversion
" CVS

Section Placeholder
This section is only here for technical reasons. All meaningful content is above

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/CVS
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Development_Tools
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/DevTools-Compilers
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Debuggers
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/TotalView
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Memory_Checkers
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Valgrind
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Purify
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Profilers
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Callgrind
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Quantify
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/VTune
http://www.gnu.org/software/binutils/manual/gprof-2.9.1/html_mono/gprof.html
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Source_Code_Version_Control
http://intranet.ncbi.nlm.nih.gov:6224/wiki-private/CxxToolkit/index.cgi/Subversion

XML Authoring using Word 2003
[28]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This chapter describes writing new chapters and editing the existing chapters for C++Toolkit book
using the Bookshelf Authoring Template. This template allows creating documents that can
automatically be converted to XML for use on the NCBI Bookshelf. The authoring template is
based on Microsoft Word and does not require any prior knowledge of XML. This approach has
the advantage of being able to use Word's spelling and grammar checking and avoid editing the
actual XML document.

Chapter outline

! Writing a new chapter
! Editing Existing Chapters

Writing a new chapter
Before writing a new chapter please contact us to obtain the copy of the Bookshelf Authoring
Template. You also will need a copy of Microsoft Word, ideally Word 2003 for PCs. Although
prior knowledge of XML is not required, it is strongly recommended that Using the Bookshelf
Authoring Template guideline be followed closely to ensure the proper Word-to-XML
conversion.

Editing Existing Chapters
To edit an existing chapter please contact us to obtain the Word ML file for this chapter with
attached Bookshelf Authoring Template, and then follow Using the Bookshelf Authoring
Template guideline.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://web.ncbi.nlm.nih.gov/books/bv.fcgi?rid=instruct.chapter.instruct
http://web.ncbi.nlm.nih.gov/books/bv.fcgi?rid=instruct.chapter.instruct
http://web.ncbi.nlm.nih.gov/books/bv.fcgi?rid=instruct.chapter.instruct
http://web.ncbi.nlm.nih.gov/books/bv.fcgi?rid=instruct.chapter.instruct

FAQs, Useful Documentation Links, and Mailing Lists
[29]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This chapter contains frequently asked questions and usefull links.

Chapter Outline
! FAQs

" General
The GetTypeInfo() method is not declared or defined in any of the objects

for which it is part of the interface.
Which include file should be used in *.cpp files, class.hpp or class_.hpp?

" Linker-related Errors
Linker complains it "cannot find symbol" in something like:

"SunWS_cache/CC_obj_b/bXmZkg3zX5VBJvYgjABX.o"
How does one find the libraries to link when the linker complains of

undefined symbols
MAKE complains it does not know "how to make target: /home/qqq/c+

+/WorkShop6-Debug/lib/.seqset.dep"
Still getting bizarre errors with unresolved symbols, unfound libraries,

etc., and nothing seems to help out much
" Debugger

Debugger (DBX) warns it "cannot find file /home/coremake/c++/
foobar.cpp", then it does not show source code

" ASN
Creating an out-of-tree application that uses your own local ASN.1 spec

and a pre-built C++ Toolkit
How to add new ASN.1 module from the C Toolkit to the C++ Toolkit?
Converting ASN.1 object in memory from C to C++ representation (or

vice versa)
! Useful Documentation Links
! Mailing Lists

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

FAQs
General

The GetTypeInfo() method is not declared or defined in any of the objects for
which it is part of the interface—The macro DECLARE_INTERNAL_TYPE_INFO() is
used in the *.hpp files to declare the GetTypeInfo(). There are several macros that are used to
implement GetTypeInfo() methods in *.cpp files. These macros are generally named and used
as follows:

BEGIN_*_INFO(...)
{
 ADD_*(...)
 ...
}

See User-defined Type Information in the Programming Manual for more information.

Which include file should be used in *.cpp files, class.hpp or class_.hpp?—
Include the class.hpp (file without underscore). Never instantiate or use a class of the form
C*_Base directly. Instead use the C* form which inherits from the C*_Base class (e.g., don't
use CSeq_id_Base directly -- use CSeq_id instead).

Linker-related Errors
Linker complains it "cannot find symbol" in something like: "SunWS_cache/
CC_obj_b/bXmZkg3zX5VBJvYgjABX.o"—Go to the relevant build dir, clean and rebuild
everything using:

cd /home/qqq/c++/WorkShop6-Debug/build/FooBar
make purge_r all_r

How does one find the libraries to link when the linker complains of undefined
symbols—For example, the linker may complain about the symbol
ncbi::objects::CDate::GetTypeInfo(void) being undefined. The cause of this problem is that
the applicable objects library has not been linked into the application. You determine the
applicable objects library as follows:

1) Look for the *.hpp file that declares the applicable class (e.g., for CDate this will be include/
objects/general/Date.hpp). This can be done by going to the source browser and doing an
identifier search on the class name (e.g., CDate) and looking in the Defined as a class section
for the path name.

2) Note the name of the sub directory in which the *.hpp file is located (in this case the sub
directory is general).

3) The name of the library to link is determined from the sub directory name. In the make file
add the library name to the LIB macro (e.g., LIB = general xser xutil xncbi) or add -lsubdir
(e.g., -lgeneral) to the command line of the link command.

Page 2

Help and Support

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CDate

The above describes how to find the libraries for classes in sub directories of the object/
directory. Similar techniques works for other classes also. However, in a some cases, the library
name is a variant on the sub directory name. These variants are summarized in Table 1.

Note: The C++ Toolkit libraries have dependencies on each other. For example, symbols
defined in seq (libseq.a) are referenced in library mmdb (libmmdb.a). In this case you must
link seq after mmdb.

There is a Library Dependency Graph (see Box 1) to help you figure out dependencies between
the NCBI C++ Toolkit libraries.

Most often, difficulties arise when one is linking an application using these numerous "objects/"
libraries. To give you some relieve, here are some examples involving such libraries. They
show the right order of libraries, as well as which libraries you may actually need. Using this
as a starting point, it's much easier to find the right combination of libraries:
! first, to find and add missing libraries using the generic technique described above
! then, try to throw out libraries which you believe are not actually needed

LIB = id1 seqset $(SEQ_LIBS) pub medline biblio general \
 xser xconnect xutil xncbi
LIB = ncbimime cdd mmdb cn3d scoremat seqset $(SEQ_LIBS) \
 pub medline biblio general xser xutil xncbi

MAKE complains it does not know "how to make target: /home/qqq/c++/
WorkShop6-Debug/lib/.seqset.dep"—This means that the "libseqset.a" library is not
built. To build it:

cd /home/qqq/c++/WorkShop6-Debug/build/objects/seqset
make

Still getting bizarre errors with unresolved symbols, unfound libraries, etc., and
nothing seems to help out much—As the last resort, try to CVS update, reconfigure,
clean and rebuild everything:

cd /home/qqq/c++/
cvs -q upd -d
compilers/WorkShop6.sh 32
make purge_r
make all_r

Debugger
Debugger (DBX) warns it "cannot find file /home/coremake/c++/foobar.cpp",
then it does not show source code—This happens when you link to the public C++
Toolkit libraries (from "$NCBI/c++/*/lib/"), which are built on other hosts and thus hard-coded
with the source paths on these other hosts. All you have to do is to point DBX to the public
sources (at "$NCBI/c++") by just adding to your DBX resource file (~/.dbxrc) the following
lines:

Page 3

Help and Support

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

pathmap /home/coremake/c++ /netopt/ncbi_tools/c++
pathmap /home/coremake/c++2 /netopt/ncbi_tools/c++
pathmap /home/coremake/c++3 /netopt/ncbi_tools/c++
pathmap /j/coremake/c++ /netopt/ncbi_tools/c++
pathmap /j/coremake/c++2 /netopt/ncbi_tools/c++
pathmap /j/coremake/c++3 /netopt/ncbi_tools/c++

ASN
Creating an out-of-tree application that uses your own local ASN.1 spec and a
pre-built C++ Toolkit—Lets say you have your ASN.1 specification (call it foo.asn) and
now you want to build an application (call its source code foo_main.cpp) which performs
serialization of objects described in foo.asn. To complicate things, lets also assume that your
ASN.1 spec depends on (imports) one of the ASN.1 specs already in the C++ Toolkit, like Date
described in the NCBI-General module of general.asn. For example, your foo.asn could look
like:

NCBI-Foo DEFINITIONS ::=
BEGIN
EXPORTS Foo;
IMPORTS Date FROM NCBI-General;
Foo ::= SEQUENCE {
 str VisibleString,
 date Date
}
END

Now, lets assume that the pre-built version of the NCBI C++ Toolkit is available at $NCBI/c
++, and that you want to use the Toolkit's pre-built sources and libraries in your application.
First, generate (using datatool) the serialization sources, and create serialization library:

 ## Create new project directory, with a model makefile for your
local ASN.1 serialization library, and copy "foo.asn"
cd ~/tmp
$NCBI/c++/scripts/new_project.sh foo lib
cd foo
cp /bar/bar/bar/foo.asn .
Using DATATOOL, generate data serialization sources for your
ASN.1 specs described in "foo.asn":
$NCBI/c++/Release/bin/datatool -oR $NCBI/c++ -m foo.asn \
 -M "objects/general/general.asn" -oA -oc foo -opc . -oph .

Adjust in the library makefile "Makefile.foo_lib"
SRC = foo__ foo___
Build the library
make -f Makefile.foo_lib

Then, create and build the application:

Page 4

Help and Support

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

 ## Create new application project, and copy your app.sources
$NCBI/c++/scripts/new_project.sh foo_main app
cd foo_main
cp /bar/bar/bar/foo_main.cpp .
Adjust in the library makefile "Makefile.foo_main_app"
PRE_LIBS = -L.. -lfoo
cppFLAGS = -I.. $(ORIG_cppFLAGS)
LIB = xgeneral xser xutil xncbi
LIBS = $(NCBI_C_LIBPATH) $(NCBI_C_ncbi)
Build the application
make -f Makefile.foo_app

How to add new ASN.1 specification to the C++ Toolkit?—Caution! If you are not
in the C++ core developers group, please do not do it yourself! -- instead, just send your request
to cpp-core@ncbi.nlm.nih.gov. Otherwise, use script src/objects/add_asn.sh that automates the
adding of new ASN.1 spec to the C++ Toolkit. Note that it does only the "UNIX part" of the
job, and you will have to make changes in the MSVC and MAC projects later, manually.

Converting ASN.1 object in memory from C to C++ representation (or vice versa)
—The C++ Toolkit header ctools/asn_converter.hpp now provides a template class
(CAsnConverter<>) for this exact purpose.

Useful Documentation Links
! [Doc] ISO/ANSI C++ Draft Standard Working Papers (Intranet only)
! [Doc] MSDN Online Search
! [Literature] Books and links to C++ and STL manuals
! [Example] NCBI C++ makefile hierarchy for project "corelib/"
! [Chart] NCBI C++ source tree hierarchy
! [Chart] NCBI C++ build tree hierarchy
! [Chart] NCBI C++ Library Dependency graph
! [Doc] NCBI IDX Database Documentation (Intranet only)
! [Doc] Documentation styles

Mailing Lists
! Announcements: http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-announce (read-

only)
! Everybody: http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp
! Core developers: http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-core
! Object Manager: http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-objmgr
! GUI: http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-gui
! SVN and CVS logs: http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-cvs (read-

only)
Internal mailing lists are also available to those inside NCBI.

Page 5

Help and Support

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/wiki-private/CxxToolkit/index.cgi/Internal_Mailing_Lists
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source//src/objects/add_asn.sh
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/include/ctools/asn_converter.hpp
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CAsnConverter&d=C
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/dec96pub/index.html
http://search.microsoft.com/?mkt=en-US
http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-announce
http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp
http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-core
http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-objmgr
http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-gui
http://www.ncbi.nlm.nih.gov/mailman/listinfo/cpp-cvs

Table 1. Examples where the library name is a variant on the sub directory name
Directory Library

corelib/test test_mt

corelib xncbi

ctools/asn xasn

cgi xcgi or xfcgi

connect xconnect

connect/test xconntest

ctools xctools

html xhtml

objects/mmdb{1,2,3} mmdb (consolidated)

objects/seq{,align,block,feat,loc,res} seq (consolidated) or $(SEQ_LIBS)

objmgr xobjmgr

objmgr/util xobjutil

objtools/alnmgr xalnmgr

serial xser

util xutil

Box 1

The library dependency graph for public projects can be seen here. You can find a version
of the graph which includes internal projects at http://intranet.ncbi.nlm.nih.gov/ieb/
ToolBox/CPP_DOC/depgraph-full.pdf.

This graph was obtained by building the full toolkit and then running the following
commands:

 .../bin/depgraph .../lib/lib* > depgraph.out
.../bin/depgraph2dot -simplify -in depgraph.out -out depgraph.dot
dot -Tps -o depgraph.ps depgraph.dot
convert -density 100 depgraph.ps PPM:- | ppmtogif > depgraph.gif

where dot comes from AT&T's Graphviz package. If you are at NCBI, you can find the
source to depgraph and depgraph2dot here. Dashed lines represent containment.

Alternatively, you may wish to consult the list of each library's dependencies. The format
of each line is libname: LIB / LIBS, where everything in LIB must follow libname in your
makefile's LIB setting and everything in LIBS must appear in your makefile's LIBS setting.
(There is also a version that lists internal libraries.)

Page 6

Help and Support

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/internal/full-libdeps.txt
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/doc/depgraph.gif
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/depgraph-full.pdf
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/depgraph-full.pdf
http://www.research.att.com/sw/tools/graphviz
http://intranet.ncbi.nlm.nih.gov/ieb/ToolBox/CPP_DOC/lxr/source/src/internal/cppcore/depgraph/apps
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/libdeps.txt

Library Configuration
[30]

Overview
The overview for this chapter consists of the following topics:
! Introduction
! Chapter Outline

Introduction

This chapter describes configuration parameters that can be used to fine tune NCBI C++ toolkit.
Such parameters can be either defined as environment variables, or entered into configuration
file, or both. They change the default behavior of applications built using the toolkit.

Chapter Outline

The following is an outline of the topics presented in this chapter:
! Registry
! Log file
! Diagnostic trace
! Run time settings
! Abnormal program termination
! Data initialization verification
! Connection library
! CGI and FCGI libraries

Registry
Registry is used to load, access, modify and store application runtime information read from
a configuration file. The following parameters define where to look for a configuration file.

Table 1
Registry configuration parameters

Purpose Configuration file Environment

Specify non-default registry search path. N/A Define NCBI_CONFIG_PATH variable. The value should be a valid path.

Exclude the current directory and home
directory from the registry search path.

N/A Define NCBI_DONT_USE_LOCAL_CONFIG variable. This may have
any value.

Log File
The application log consists of diagnostic messages. Some of them are available only in debug
builds. Others - namely, produced by ERR_POST or LOG_POST macros - can be redirected
into a file. Normally, the name and location of the application log is defined by using logfile
command line argument. The following parameters allow tuning the usage of the log file.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2
Log file configuration parameters

Purpose Configuration file Environment

When to use these settings Define IgnoreEnvArg entry in LOG section. Valid values are {{true|t|yes|y}| {false|
f|no|n}}. The following settings are used only if the logfile is not set, or IgnoreEnvArg
is set to true.

N/A

Reset log file to the specified one Define File entry in LOG section. N/A

Truncate the log file Define Truncate entry in LOG section. Valid values are {{true|t|yes|y}| {false|f|no|
n}}

N/A

Do not create log file if it does not exist Define NoCreate entry in LOG section. Valid values are {{true|t|yes|y}| {false|f|no|
n}}

N/A

Diagnostic Trace
The following settings define visibility and contents of diagnostic messages produced by
_TRACEor ERR_POST macros.

Table 3
Diagnostic trace configuration parameters

Purpose Configuration file Environment

Enable diagnostic trace. Define DIAG_TRACE entry in DEBUG
section. This may have any value.

Define DIAG_TRACE variable. This may
have any value.

Define severity level threshold for posting
diagnostic messages

Define DIAG_POST_LEVEL entry in DEBUG
section. Valid values are {Info|Warning|Error|
Critical|Fatal}

Define DIAG_POST_LEVEL variable.
Valid values are {Info|Warning|Error|
Critical|Fatal}

Define a file that stores mapping of error codes
to their description

Define DIAG_MESSAGE_FILE entry in
DEBUG section

N/A

Define diagnostics trace filter file name Define TRACE_FILTER entry in DEBUG
section

N/A

Define diagnostics post filter file name Define POST_FILTER entry in DEBUG section N/A

Run Time Setting
Run time settings allow specifying heap size limit and CPU time limit. Please note, that not
all operating systems support this.

Table 4
Run time configuration parameters

Purpose Configuration file Environment

Set heap size limit in MB Define HeapSizeLimit entry in NCBI section N/A

Set CPU time limit in seconds Define CpuTimeLimit entry inNCBI section N/A

Abnormal Program Termination
These settings define how to handle abnormal situations when executing a program.

Page 2

Library and Applications Configuration

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 5
Abnormal program termination configuration parameters

Purpose Configuration file Environment

Abort program on the first
CException thrown

Define ABORT_ON_THROW entry inDEBUG
section. This may have any value.

Define ABORT_ON_THROW variable. This may have
any value.

Define what to do when Abort()
is called: abort the execution by
calling standard abort()
function, or exit with code 255.
The default behavior is to call
abort() in Debug build, and to
exit(255) in Release one

N/A Define DIAG_SILENT_ABORT variable. Valid values
are ((y|Y|1)|(n|N|0)). When the variable is set to 'yes', the
program exits with code 255 instead of calling abort().

Abort program on first
CObjectException thrown.

Define ABORT_ON_COBJECT_THROW entry
in NCBI section.

Define NCBI_ABORT_ON_COBJECT_THROW
variable. If this is set to one of (y|Y|1), the program aborts
on first CObjectException thrown.

Abort on an attempt to access or
release NULL pointer

Define ABORT_ON_NULL entry in NCBI
section.

Define NCBI_ABORT_ON_NULL variable. If this is set
to one of (y|Y|1), the program aborts on an attempt to
access or release NULL pointer stores in CRef type object

Data Initialization Verification
These settings define the toolkit behavior when verifying that all mandatory primitive data
members of serial objects are given a value. This includes: verification on an attempt to access
such data member, on an attempt to write it when using object stream, and on attempt to read
it from an input stream.

Table 6
Data initialization verification configuration parameters

Purpose Configuration file Environment

Throw an exception on an attempt to access
an uninitialized data member

N/A Define SERIAL_VERIFY_DATA_GET variable. Valid values are (yes|no|
never|always).Default is 'yes'

Throw an exception on an attempt to write
an uninitialized data member

N/A Define SERIAL_VERIFY_DATA_WRITE variable. Valid values are (yes|
no|never|always|defvalue|defvalue_always). Default is 'yes'

Throw an exception if a mandatory data
member is missing in input stream

N/A Define SERIAL_VERIFY_DATA_READ variable. Valid values are (yes|
no|never|always|defvalue|defvalue_always). Default is 'yes'

Skip unknown data members in input stream,
or throw an exception

N/A Define SERIAL_SKIP_UNKNOWN_MEMBERS variable. Valid values
are (yes|no|never|always).Default is 'no' - that is throwing an exception.

Connection library
The following settings affect various aspects of internet connections established by connection
library.

Page 3

Library and Applications Configuration

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 7
Connection library configuration parameters

Purpose Configuration file Environment

Dispatcher host name N/A Define CONN_HOST variable. Default is www.ncbi.nlm.nih.gov

Dispatcher port number N/A Define CONN_PORT variable. Default is 80

Service path N/A Define CONN_PATH variable. Default is /Service/dispd.cgi

Service arguments N/A Define CONN_ARGS variable.

Request method N/A Define CONN_REQ_METHOD variable. Valid values are
(ANY|POST|GET).Default is POST

Connection timeout N/A Define CONN_TIMEOUT variable. Default is 30sec

Maximum number of attempts to establish connection N/A Define CONN_MAX_TRY variable. Default is 3

HTTP proxy server N/A Define CONN_HTTP_PROXY_HOST variable.

HTTP proxy server port number N/A Define CONN_HTTP_PROXY_PORT variable. Default is 80

Non-transparent CERN-like firewall proxy server N/A Define CONN _PROXY_HOST variable.

Debug printout N/A Define CONN_DEBUG_PRINTOUT variable. Valid values are
((1|true|yes|some)|(data|all)). Default = 'none'

If the client is stateless N/A Define CONN_STATELESS variable. Valid values are (1|true|
yes)

Firewall mode N/A Define CONN_FIREWALL variable. Valid values are (1|true|
yes)

Prohibit the use of local load balancer N/A Define CONN_LB_DISABLE variable. Valid values are (1|true|
yes)

User header N/A Define CONN_USER_HEADER variable.

CGI and FCGI libraries
These parameters define the behavior of CGI and FCGI applications built with the NCBI C+
+ toolkit libraries.

Page 4

Library and Applications Configuration

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 8
CGI-related configuration parameters

Purpose Configuration file Environment

Enable logging Define Log entry in CGI section. Valid values are (On|
OnError|OnDebug).

N/A

Enable logging of CGI request parameters Define LogArgs entry in CGI section. The value is comma
separated list of CGI request parameters

N/A

Enable statistics logging Define StatLog entry in CGI section. Valid values are (true|
false).

N/A

Disable statistics logging is the CGI request took less than the
specified number of seconds.

Define TimeStatCutOff entry in CGI section. The value is
the number of seconds.

N/A

Add prefix to all diagnostic messages issued during HTTP request
processing

Define DiagPrefixEnv entry in CGI section. The value is
the name of an environment variable, which value will be
used as prefix.

N/A

Log environment variables. Define PrintEnv entry in CGI section. The value is a
comma separated list of environment variables or 'all'.

N/A

Log start time, end time, and elapsed time Define TimeStamp entry in CGI section N/A

Set the size of CGI request buffer that is printed when the request
cannot be parsed

Define RequestErrBufSize entry in CGI section N/A

Table 9
FCGI-related configuration parameters

Purpose Configuration file Environment

Define the number of requests that
FCGI application processes before
exiting.

Define Iterations entry in FastCGI section.
Default is 10.

N/A

Make FastCGI application exit if a
specified file changes

Define WatchFile.Name, WatchFile.Limit, and
WatchFile.Timeout entries in FastCGI section

N/A

Make FastCGI application stop on error Define StopIfFailed entry in FastCGI section.
Valid values are (true|false).

N/A

Make FastCGI application log the call
number

Define PrintIterNo entry in FastCGI section.
Valid values are (true|false).

N/A

Make FastCGI application log the
debug information into the output

Define Debug entry in FastCGI section. Valid
values are (true|false).

N/A

Make FastCGI application run as a
stand-alone server on a local port

Define StandaloneServer entry in FastCGI
section. The value is a UNIX domain socket or
a MS Windows named pipe, or a colon followed
by a port number

Define FCGI_STANDALONE_SERVER variable.

Allow termination of FastCGI
application by a special request

Define HonorExitRequest entry in FastCGI
section. Valid values are (true|false).

N/A

Page 5

Library and Applications Configuration

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 10
CGI Load balancing configuration parameters

Purpose Configuration file Environment

Define a name of the load balancing cookie in HTTP response Define Name entry in CGI-LB section. N/A

Specify cookie expiration period in seconds. Define LifeSpan entry in CGI-LB section. N/A

Define internet domain Define Domain entry in CGI-LB section. N/A

Define cookie path Define Path entry in CGI-LB section. N/A

Specify cookie security mode Define Secure entry in CGI-LB section. Valid values are (true|
false)

N/A

Specify host IP address Define Host entry in CGI-LB section. N/A

Page 6

Library and Applications Configuration

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (May, 2009)

! Download
! Third Party Packages
! Build
! New Developments

" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML, JSON)
" DATATOOL — Code Generator and Data Converter Tool
" CGI — CGI and Fast-CGI Application Framework
" DBAPI — Generic SQL Database Connectivity
" BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM

++)
" Local data storage (LDS)
" ALGO/ALIGN — Generic Alignment Algorithms
" COBALT — Multiple sequence alignment tool
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
" OBJTOOLS/SEQMASKS_IO — input/output of masked sequences
" ID2 Communication Protocol
" BIO-TOOLS
" PTB — Project Tree Builder
" APPLICATIONS

! Grid — Distributed Computation Client APIs
! BLAST
! Miscellaneous
! Documentation

" Location
" Content

! Supported Platforms (OS's and Compilers)
" Unix
" MS Windows
" Mac OS X
" Added Platforms
" Discontinued Platforms

! Caveats and Hints

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! GCC 3.0.4
! GCC 3.4.x, 4.0.x
! ICC 8.0

Download
Download the source code archives at:

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/
" ncbi_cxx— May_15_2009.tar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
" ncbi_cxx— May_15_2009.gtar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
" ncbi_cxx— May_15_2009.exe — for MS-Windows (32- and 64-bit) / MSVC++ (8.0,

9.0) — self-extracting
" ncbi_cxx— May_15_2009.zip — for MS-Windows (32- and 64-bit) / MSVC++ (8.0,

9.0)
The sources correspond to the NCBI production tree sources, which in turn roughly corresponds
to the development tree sources from February 6, 2009.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
" NCBI_C_Toolkit
" ThirdParty

Third Party Packages
Some parts of the C++ Toolkit just cannot be built without 3rd party libraries, and other parts
of the Toolkit will work more efficiently or provide more functionality if some 3rd-party
packages (such as BerkeleyDB which is used for local data cache and for local data storage)
are available.

For more information, see the FTP README.

The following table shows the versions of 3rd party packages that are believed to be compatible
with the C++ Toolkit.

Table 1. Compatible Versions of Third Party Packages

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ncbi_cxx--May_15_2009.tar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ncbi_cxx--May_15_2009.gtar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ncbi_cxx--May_15_2009.exe
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ncbi_cxx--May_15_2009.zip
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/NCBI_C_Toolkit/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ThirdParty/README

Package FreeBSD
32

Linux
32

Linux
64

Mac
OS X

SunOS
x86

SunOS
SPARC

Windows a

Berkeley DB 4.4.20 4.6.21.1 4.6.21.1 4.5.20 4.3.21 4.5.20 4.5.20.NC b

Boost Test 1.35.0 1.35.0 1.35.0 1.35.0 1.35.0 1.35.0 1.35.0 b

FastCGI - 2.4.0 2.4.0 - 2.1 2.4.0 -

libbzip2 current current current current current current 1.0.2 b

libjpeg current current current current current current 6b

libpng current current current current current current 1.2.7

libtiff current current current current current current 3.6.1

libungif current current current current current current 4.1.3

LZO - 2.02 2.02 2.02 2.02 2.02 2.02 b

MySQL - - - - - 3.23.40 3.23.55

PCRE 4.3

SQLite3 3.6.2 3.3.5 3.3.5 - - - 3.6.2

Sybase - 12.5.0.6-ESD13 12.5.0.6-ESD13 - 12.5.1 12.0-EBF209 -

zlib current current current current current current 1.2.3 b

a Applies to MSVC 2005 and 2008. Unless otherwise noted, 32-bit is supported and 64-bit is
not supported.

b MSVC 2005 64-bit is supported.

For Mac OS X and UNIX OS’s, the user is expected to download and build the 3rd party
packages themselves. The release’s package list includes links to download sites. However,
the user still needs a list of the 3rd party packages and which versions of them are compatible
with the release.

To facilitate the building of these 3rd-party libraries on Windows, there is an archive that
bundles together source code of the 3rd-party packages, plus MSVC "solutions" to build all
(or any combination) of them.

Table 2. Versions of Third Party Packages Included in the FTP Archive

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ThirdParty/README
http://www.oracle.com/database/berkeley-db/index.html
http://www.boost.org
http://www.fastcgi.com
http://www.bzip.org
http://freshmeat.net/projects/libjpeg
http://www.libpng.org/pub/png/libpng.html
http://www.libtiff.org
http://sourceforge.net/projects/freshmeat_libungif
http://www.oberhumer.com/opensource/lzo
http://www.mysql.com
http://www.pcre.org
http://www.sqlite.org
http://www.sybase.com
http://www.zlib.org

Package Depends On Included Version a

Berkeley DB 4.5.20.NC b

Boost Test 1.35.0 b

libbzip2 1.0.2 b

libjpeg 6b

libpng zlib 1.2.3 1.2.7

libtiff libjpeg 6b, zlib 1.2.3 3.6.1

libungif 4.1.3

LZO 2.02 b

MySQL 3.23.55

PCRE 4.3

SQLite3 3.6.2

zlib 1.2.3 b

a Applies to MSVC 2005 and 2008. Unless otherwise noted, 32-bit is supported and 64-bit is
not supported.

b MSVC 2005 64-bit is supported.

Build
For guidelines to configure, build and install the Toolkit see here.

New Developments
(*) — potentially backward-incompatible changes.

CORELIB — Portability and Application Framework
! (*)CTime — removed deprecated operators to add/subtract/increment/decrement

days.
! CTime — added CTime ::SetTimeTM() to convert from an arbitrary "struct tm" value;

CTime ::GetTimeTM() to convert the current local time to a "struct tm"; and
CTime ::CTime(const struct tm& t, ETimeZonePrecision tzp).

! CStaticTls — new class that combines CSafeStaticRef and CTls but requires less
overhead.

! NCBI-Boost unit testing framework — test_boost library now includes Boost.Test
library as a whole, so there's no need to link against Boost.Test library separately when
linking against test_boost.

! NCBI-Boost unit testing framework — now arranges to incorporate Boost.Test's
(compiled) code into libtest_boost, thereby requiring only headers from Boost.

! NCBI-Boost unit testing framework – macro
NCBI_BOOST_NO_AUTO_TEST_MAIN is now obsolete (everything works
whether or not it is used).

! NCBI-Boost unit testing framework — added support for timed out and skipped tests
and for timed out units.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! NCBI-Boost unit testing framework — introduced new analogs of BOOST_CHECK*
macros that also check the NO_THROW condition.

! CAtomicCounter_WithAutoInit — new class that enables creating counters initialized
with a specified value.

! CNcbiResourceInfo and CNcbiResourceInfoFile — new classes providing sensitive
data encryption/decryption.

! CNcbiRegistry — reworked once more, with generic functionality factored out into a
new CCompoundRWRegistry class; now allows automatic loading of subregistries
listed in the ".Inherits" entry of the "NCBI" section, shadowing of set entries on lower
layers by explicitly empty entries on higher layers, and the environment variable
NCBI_CONFIG_OVERRIDES to name an extra high-priority configuration file.

! CAutoEnvironmentVariable — new class to allow setting environment variables for
limited durations, with restoration of previous values when instances go out of scope.

! CExceptionReporter, CDiagMatcher — added diagnostic filtering by error code when
reporting exceptions. Diagnostic filtering is set by SetDiagFilter function.

! CStringPairsParser — converted into CStringPairs template to allow using different
containers, added methods for merging data into a single string.

! CProcess — new method Daemonize(), formerly a static function resided in
ncbi_os_unix.h.

! GetPhysicalMemorySize() — implemented on a wider variety of platforms.
! CDirEntry — A new mode (eRecursiveIgnoreMissing) for the Remove() method was

introduced. This mode deletes the files and directories recursively but ignores the errors
when the file being deleted does not exist.

! The DeleteReadOnlyFiles CParam<> and the corresponding Set() method of CFileAPI
were introduced to work around CDirEntry ::Remove() not being able to remove read-
only files on Windows.

CONNECT — Data streaming, Networking, and Dispatching
! Implemented HTTPS protocol support.
! Added new function UTIL_PrintableString[Size]().
! Added new function SERV_ServerPort();
! Retired wsock32 use on Windows; require (and link against) ws2_32 exclusively.
! Fully implemented new TRIGGER primitive.
! CSocket, SOCK_xxx — now can work via SSL (requires GNUTLS API).
! Introduced new (and centralized) ESOCK_Flags for various socket attributes,
! and used them throughout the library (deprecating older equivalents).
! The default connection managing mode was changed to eKeepConnection.

UTIL — Miscellaneous Low-Level APIs
! CZipCompression — added support for concatenated gzip files.
! CFormatGuess — the Format() method now throws an exception in the case of missing

input. Format guessing was expanded to include streams other than file streams.
FASTA files can now be properly recognized even in the presence of some non-
printing characters or very long deflines. Added "guessing" support for the BED,

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BED15, and WIGGLE file formats. For the AGP format, the presence of line comments
starting with a '#' is now allowed.

! CTar — improved to work safely with program pipes (including buggy
implementations in certain GLIBC releases).

SERIAL — Data Serialization (ASN.1, XML, JSON)
! CObjectOStreamJson — corrected the writing of UTF8 strings in JSON format.

DATATOOL — Code Generator and Data Converter Tool
! Added possibility to override code generation command line arguments in a DEF file.
! Added support for more data types, including dateTime, time, short, byte,

negativeInteger, nonNegativeInteger, positiveInteger, nonPositiveInteger,
unsignedInt, unsignedShort, and unsignedByte.

! Fixed several bugs in XML Schema parsing.

CGI — CGI and Fast-CGI Application Framework
! CGI library — applications can no longer send secure cookies over insecure

connections.
! Fixed parsing of indexes (arguments without values) in query string.
! A new constructor CCgiRequest ::CCgiRequest(CNcbiIstream&) was defined to allow

construction of CCgiRequest by deserialization from a stream.

DBAPI — Generic SQL Database Connectivity
! IResultSet — BindBlobToVariant() now does nothing - how the user wants to read

blobs is now automatically determined by Read() (which also means by NcbiIstream)
or by GetVariant().

! Fixed incorrect column naming in the SELECT results with Sybase when the column
is just renaming a real column in the database.

! Introduced possibility to add hints for bulk insert operations (such as
CHECK_CONSTRAINTS, FIRE_TRIGGERS, etc).

! ftds8 driver is not built automatically anymore and its sources will be removed in the
next release.

! Added support for connection to mirrored databases for which master/mirror relations
can be switched while application is working.

BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM++)
! CSeq_id ::IdentifyAccession — added or improved recognition for the prefixesAH,

AL, BX, CR, CT, CU, DAAA-DZZZ, DM, FT, FU, GJ-GL, GO-GZ, HA-HD, and
HAA-HZZ and some more (mixed-in) EMBL TPA protein accessions.

Local data storage (LDS)
! Dramatically reduced memory usage in LDS indexer by processing entries separately.

ALGO/ALIGN — Generic Alignment Algorithms
! CCompartmentFinder - the maximum intron length parameter has been exposed; the

default max intron length increased to 1.2M bases.
! CCompartmentAccessor — added AsSeqAlignSet() method to support ASN.1 output.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

COBALT — Multiple sequence alignment tool
! (*) Changed API and provided CMultiAlignerOptions class that provides multiple

alignment parameters.
! (*) Rearranged the parameters for the COBALT demo application.
! Added query clustering functionality for multiple alignment.
! Added computation time improvements to multiple alignment.
! Added functionality for computing progressive alignment guide tree as a clustering

dendrogram.

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
! CSeq_entry_EditHandle now has method TDescr& SetDescr() which works for both

bioseqs and bioseq-sets.
! Object manager now recognizes named annotation accessions with versions.
! Object manager now indexes non-feature Seq-tables, and allows extra columns for

feature Seq-tables.
! Bioseq and Bioseq_set objects now forbid empty description field by default.
! The default timeout for opening an ID1/ID2 connection was reduced from 20 to 5

seconds. The default timeout after connection is established remains 20 seconds.
! Added sequence::FindLatestSequence() method for searching through a Bioseq's

history.
! Fixed mapping of seq-graph data. The old version mapped only graph location, but

left the related data array unchanged. The fix creates a new array and copies only the
mapped portion of the data. As a result of this, a new valid seq-graph object is created
(the old version created seq-graph with incorrect data). Added methods to CGraph_CI
for checking mapped ranges without creating the whole mapped data array.

OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
! Added support for the UCSC WIGGLE file format. Enhanced support for UCSC BED

and microarray file formats.
! Preliminary version of an idmapper component that translates UCSC sequenceIDs to

their corresponding GI IDs.

OBJTOOLS/SEQMASKS_IO — input/output of masked sequences
! Fixed a problem with sequence writer omitting accessions when ID parsing is

requested.

ID2 Communication Protocol
! Blob-state information in ID2 reply was changed from ENUMERATED to INTEGER

with bit flags. This field is not yet used by ID2 server or ID2 GenBank reader.

BIO-TOOLS
! Implemented a faster non-OM version of sequence::GetTitle(CBioseq), although it

may fail if called when OM is necessary.
! format — The output of the flat file generator in the C++ Toolkit is intended to be

essentially the same as the output in the C Toolkit. That was not achieved in the last

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

release, so changes were made in this release to make the output more closely match
the output obtained using the C toolkit.

PTB — Project Tree Builder
! Improved analysis of library-to-library dependencies; added possibility to enforce

build order of static libraries.
! Enhanced the structure of the flat makefile on UNIX to speed up the build by reducing

the number of calls to 'make' and avoiding attempts to build the same project more
than once.

APPLICATIONS
Grid — Distributed Computation Client APIs
! CNetServiceAPI_Base — removed along with its unused/duplicate methods; the

remaining methods were moved to SNetServiceImpl.
! All *Sink classes and interfaces — removed.
! CNetScheduleKeys_Base and CNetScheduleKeys — replaced by CNetScheduleKeys.
! CNetScheduleClient_LB and CNetScheduleClient — removed; CNetScheduleAPI

should be used instead.
! CNetCacheClient and CNetCacheClient_LB — declared as deprecated.
! CNetScheduleSubmitter ::GetJobDetails — implemented batch retrieval of job results.

This enables retrieving results for large groups of jobs in smaller batches, rather than
for all jobs at once.

! Implemented method CountActiveJobs() in NetScheduleAdmin and made it available
via the netschedule_control command line utility in the form of the new -count_active
command.

! Implemented method GetBlobSize() in CNetCacheAPI and made it available viathe -
size parameter of the netcache_control utility.

! LBSM affinity pass-through was implemented, by reading the affinity from the
LBSMD configuration file and using it when querying the load balancer.

! All public Grid API classes were converted to "components" featuring reference
counting. Component implementations were moved to the respective *Impl structures
in the implementation part of the library (src/). These structures are accessible via the
"->" operator.

! Unused/duplicate methods of CNetService were removed. Public methods of other
classes that were only used internally, were moved to the implementation part.

! netschedule_control, ns_remote_job_control — New -cancel command.
! netcache_check — Updated to use CNetCacheAPI (instead of older

CNetCacheClient).
! netschedule_node_sample — Updated to use new Grid APIs.
! remote_app — Fixed the error which resulted in inability to properly clean up

temporary directories.
! netschedule_admin — Removed because it was older and less capable than

netschedule_control.
! grid_mgr — Removed due to lack of use.

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! Client-side Grid tools were moved from under app/netschedule/ to a new directory
app/grid/. They also were assigned their own version numbers.

BLAST
! blast —

1 Added partial sequence fetching to the BLAST+ command line applications.
Modified the 2-hit algorithm so that no overlap between two hits is allowed.

2 Split the BLAST database data loader into local and remote components.
3 Bug fixes and performance improvements to subject masking.

! convert2blastmask — New application to convert masking information in lower-case
masked FASTA input to file formats suitable for makeblastdb.

! makeblastdb, segmasker — Bug fixes.
! blastdbcmd — Added support for displaying masking information.

Miscellaneous
! multireader — A universal reader for all NCBI supported UCSC file formats.
! formatguess — Front end for the toolkit format_guess component to automatically

determine NCBI supported file formats.
! splign — The maximum intron length parameter has been exposed (-max_intron).

The default max intron length was increased to 1.2M bases.
! id1_fetch — Now has -maxplex, -extfeat, and -timeout options.
! id1_fetch_simple, id2_fetch_simple — Now have options for arbitrary requests, and

for saving replies in file.
! compart — A new parameter min_query_len introduced to specify the minimum length

for transcripts for indexing. Transcripts shorter than min_query_len will be ignored.
The default is 50 bases.

! Alnmgr — Added the ability to load sequence(s) into scope via:
1 Seq-entry (se_in flag)
2 FASTA (fasta_in flag)
3 BLAST db (blastdb flag)

Documentation
Location

The documentation is available online as a searchable book "The NCBI C++ Toolkit": http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the
newcomer.

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the up-to-date public or in-house versions
using source browsers Entrez, LXR, Doxygen and Library - or do an overall search.

HEADS-UP: We have switched our source control system from CVS to SVN (Subversion).
Unfortunately, the SVN repository cannot (yet) be accessed from outside NCBI.

Supported Platforms (OS's and Compilers)
! UNIX
! MS Windows
! Mac OS X
! Added
! Discontinued

This release was successfully tested on at least the following platforms (but may also work on
other platforms). Since the previous release, some platforms were dropped from this list and
some were added. Also, it can happen that some projects would not work (or even compile) in
the absence of 3rd-party packages, or with older or newer versions of such packages. In these
cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get you through.

In cases where multiple versions of a compiler are supported, the default version is shown in
bold.

UNIX
Table 3. UNIX OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.6.x (LIBC 2.3.5) x86-32 GCC 3.0.4 a, 3.4.2, 4.1.2 a, 4.2.3 a, 4.3.3
ICC 8.0, 10.1

Linux-2.6.x (LIBC 2.3.5) x86-64 GCC 4.0.1, 4.1.2, 4.2.3 b, 4.3.3
ICC 9.1, 10.1

Solaris 10 SPARC GCC 4.1.1 c

Sun Studio 12 (C++ 5.9)

Solaris 10 x86-32 GCC 4.2.3
Sun Studio 12 (C++ 5.9)

Solaris 10 x86-64 Sun Studio 12 (C++ 5.9)

FreeBSD-6.1 x86-32 GCC 3.4.6

Darwin 8.x, 9.x Native, Universal GCC 4.0.1

a some support

b nominal support

c 32-bit only

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=ToolkitAll&term=CTime
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=toolkit&term=CTime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTime&d=
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lib_search/libsearch.cgi?symbol=CTime

MS Windows
Table 4. MS Windows and Supported Compilers

Operating System Architecture Compilers

MS Windows x86-32 MS Visual C++ 2005 (C++ 8.0), 2008 (C++ 9.0)
NOTE: We also ship an easily buildable archive of 3rd-party packages (including NCBI C Toolkit) for this
platform.

MS Windows x86-64 MS Visual C++ 2005 (C++ 8.0), 2008 (C++ 9.0)

Cygwin 1.5.25 x86-32 GCC 3.4.4 (nominal support only)

Mac OS X
Table 5. Mac OS and Supported Compilers

Operating System Architecture Compilers

Mac OS X 10.5 Native (PowerPC or x86-32) Xcode 2.5, 3.0, 3.1.2

Darwin 8.x, 9.x Native (PowerPC or x86-32),
Universal (PowerPC and x86-32)

GCC 4.0.1

Added Platforms
Table 6. Added Platforms

Operating System Architecture Compilers

Linux-2.6.x x86-32, x86-64 GCC 4.3.3, ICC 10.1

FreeBSD-6.1 x86-32 GCC 3.4.6

MS Windows x86-32, x86-64 MS Visual Studio 2008 (C++ 9.0)

Discontinued Platforms
Table 7. Discontinued Platforms

Operating System Architecture Compilers

Solaris 10 SPARC, x86-32 Sun Studio 8 (C++ 5.5)

Solaris 10 x86-64 Sun Studio 11 (C++ 5.8)

FreeBSD-6.1 x86-32 GCC 3.4.4

MS Windows x86-32 MS Visual Studio .NET 2003 (C++ 7.1)

Mac OS X 10.x Native Xcode 1.0

Caveats and Hints
GCC 3.0.4

! Destructor of constructed class member is not called when exception is thrown from
a method called from class constructor body (fixed in 3.3).

! STL stream uses locale in thread-unsafe way which may result in segmentation fault
when run in multithread mode (fixed in 3.3).

! Long-file support for C++ streams is disabled/broken (first broken in 3.0; fixed in 3.4).

GCC 3.4.x, 4.0.x
! At least on Linux, ifstream::readsome() does not always work for large files, as it calls

an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_config.GCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_config.MS_Visual_C_2008
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2009/May_15_2009/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_config.MS_Visual_C_2008
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_config.Cygwin_GCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_config.Xcode_30__31

! GCC 3.4.4 has a bug in the C++ stream library that affects some parts of our code,
notably CGI framework (fixed in 4.0.1).

ICC 8.0
! ICC 8.0 lacks large file support for C++ streams on 32-bit Linux (fixed in 10.1).

Last Updated
This section last updated on June 22, 2009.

Page 12

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (December, 2008)

! Download
! Build
! New Developments

" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" CONNSERV
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML, JSON)
" DATATOOL — Code Generator and Data Converter Tool
" CGI — CGI and Fast-CGI Application Framework
" DBAPI -- Generic SQL Database Connectivity
" Python DBAPI module
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM

++)
" BLAST
" Local data storage (LDS)
" E-Utils client API
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" Object manager test and demo applications
" BIO-TOOLS
" APPLICATIONS

! Documentation
" Location
" Content

! Platforms (OS's, compilers used inside NCBI)
" Unix
" MS Windows
" Mac OS X
" Discontinued

! Caveats and Hints
" GCC 3.0.4
" GCC 3.3
" GCC 3.4.x, 4.0.x

Download
Download the source code archives at:

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/
! ncbi_cxx-- Dec_31_2008.tar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx-- Dec_31_2008.gtar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx-- Dec_31_2008.exe — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0) — self-extracting
! ncbi_cxx-- Dec_31_2008.zip — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0)
The sources correspond to the NCBI production tree sources, which in turn roughly corresponds
to the development tree sources from September 23, 2008.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
! NCBI_C_Toolkit
! ThirdParty

Build
For guidelines to configure, build and install the Toolkit see here.

New Developments
CORELIB — Portability and Application Framework

1 CVersionInfo -- does not inherit from CObject anymore as to avoid double destruction
problem. This is potentially backward incompatible change.

2 CWeakRef<> and CWeakIRef<> -- new templates for weak references. The
templates work for the objects that derive from a new CObjectEx class.

3 Generic expression interpreter added. It is available via <corelib/expr.hpp>.
4 CLightString -- replaced with CTempString which already had nearly all functionality

of CLightString.
5 NCBI-Boost unit testing framework -- new unit test framework which extends the

Boost.Test library and adds useful features like automatic initialization, finalization,
using of CNcbiApplication instance, disabling of test cases execution via ini-file, etc.
(see corelib/test_boost.hpp)

6 CTime and CTimeSpan -- all the appropriate operators are const now (except
operator-()).

7 CTime -- const operator-() deprecated. CTime:: DiffWholeDays() should be used
instead.

8 CTime, CTimeSpan -- added support for non-strict date/time string parsing.
9 CTime -- allow constructing time object from the format string with partially

represented time.
10 CTime -- operators to add/subtract/inc/dec days deprecated. Add*() methods should

to be used instead.
11 File API -- error logging added for all File API classes.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/ncbi_cxx--Dec_31_2008.tar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/ncbi_cxx--Dec_31_2008.gtar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/ncbi_cxx--Dec_31_2008.exe
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/ncbi_cxx--Dec_31_2008.zip
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/NCBI_C_Toolkit/README

12 CArgs:: GetAll() -- new method to get the list of all arguments passed in the command
line.

13 CNcbiApplication -- allow to hide 'help' and 'xmlhelp' argument descriptions was
added.

14 CNcbiApplication -- allow to specify an extended version information.
15 CNcbiApplication -- show a description of the possible arguments in case there was

an error in argument parsing.
16 NStr:: JsonEncode() -- new helper method, for JSON string encoding.
17 CStringReader, ExtractReaderContents -- new utility class and function for efficient

string/IReader inter-conversion.
18 CObject:: operator new() -- the filling of allocated memory became optional.
19 CSafeStaticRef<> -- memory leak was fixed.
20 Avoid exceptions while getting configuration parameters for efficiency.
21 Mutex's Lock()/Unlock() -- non-inline now for better code size and speed.
22 CDirEntry:: Remove() and CDir:: Remove() -- added an error logging: declared the

FileAPILogging CParam for enabling file API error logging; introduced class
CFileAPI - a name space for the file API-related global functions; defined CFileAPI::
SetLogging() for setting the FileAPILogging CParam.

23 CThread -- IRIX was added into the list of platforms for which
PTHREAD_SCOPE_PROCESS and not PTHREAD_SCOPE_SYSTEM thread
scope is set.

24 NStr -- URL encoding methods and string pairs parser class were added.

Diagnostic framework
1 CRequestContext -- new per-request diagnostic context class.
2 Allow limiting the rate of logging and log file size (including a basic log rotation).
3 Added idling API and default idler to allow execution of some code during application

idle cycles. The default idler handles reopening of log files.
4 Added an option to duplicate a selected part of diagnostics into STDERR.

CONNECT — Data streaming, Networking, and Dispatching
1 The default connection managing mode was changed to eKeepConnection.
2 CCgiUserAgent -- added detection of IceCat, Iceweasel and Google Chrome

browsers.
3 The Grid services library has undergone major refactoring while keeping its public

API almost intact (superfluous abstraction layers were eliminated; declarations of
private class members were moved to the implementation part of the library; reference
counting was introduced as a replacement for manual memory management; many
internal identifiers got more meaningful names)

4 CNetICacheClient -- now supports LB service name resolution
5 CNetCacheAPI -- new method GetBlobSize(). See also the -size parameter of

netcache_control utility.
6 Protocol bug fix: SubmitJobAndWait() did not send the udp_port parameter to the

server.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

CONNSERV
1 CNetCache_Key and CNetCacheKey -- merged into one, CNetCacheKey

UTIL — Miscellaneous Low-Level APIs
1 CStdPoolOfThreads -- scheduled to be replaced with the new CThreadPool which is

more robust and versatile
2 IScheduler and CScheduler_MT -- new interface and its multi-threaded

implementation to schedule events.
3 CSyncQueue -- moved to UTIL along with minor improvements. It was located in

CORELIB before.
4 XREGEXP library -- moved into a separate directory.
5 CRequestRateControl -- moved from UTIL to CORELIB.
6 CZipCompression:: DecompressFileIntoDir() -- new method.
7 value_convert.hpp and value_convert_policy.hpp -- two new files in 'include/util/'.

These files implement Convert() and ConvertSafe() functions designed to simplify
conversions among fundamental data types, std::string, and CTime.

8 NCBISM_GetStandardMatrix -- new interface for score matrix lookup by name.

SERIAL — Data Serialization (ASN.1, XML, JSON)
1 Serial object streams -- enhanced support of XML serialization: fixed bugs in

serialization of boolean and base64Binary type data, corrected namespace scoping,
corrected parsing of 'xmlns' standard attributes.

2 SOAP library -- enhancements for better compliance to the standards

DATATOOL — Code Generator and Data Converter Tool
1 Fixed bugs in DTD generation, DTD and XML Schema parsing, and C++ code

generation.

CGI — CGI and Fast-CGI Application Framework
1 FAST-CGI library -- MS Windows platform is now supported.
2 CCgiRequest:: fParseInputOnDemand -- new flag to parse input in streaming fashion,

to be used in conjunction with various new methods, most notably CCgiEntry::
GetValueReader() and CCgiEntry:: GetValueStream().

DBAPI -- Generic SQL Database Connectivity
1 FreeTDS-64 based driver:
- Sybase is fully supported now
- no 255 symbols limit anymore for Sybase
- TDS protocol version auto detection was added (MS SQL or Sybase). The supported
versions are MS SQL (TDS 8.0) and Sybase (TDS 5.0).
- removed dependencies on OpenSSL library
- result set cursors implementation now supports several simultaneous cursors per
connection and update of several blob fields per cursor row
2 ODBC and ODBCW drivers -- merged into one (ODBC) driver.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 {CTLIB, DBLIB, etc.}_CreateContext() functions -- removed from DBAPI. This is
potentially backward incompatible change.

4 CResultSet ::GetVariant() -- two methods merged into one which takes
CDBParamVariant as an argument.

5 I_Connection and CDB_Connection -- two SendData() methods merged into one
method.

6 I_Result and CDB_Result -- new default argument of type EGetItem added to the
GetItem() method.

7 CDBConnParams:: GetParam() -- new method.
8 CDBConnParamsDelegate, CDBEnvConnParams, CDBInterfacesFileConnParams,

and CCPPToolkitConnParams classes -- new classes.
9 CVariant -- now able to read BLOBs via GetString().
10 Max number of DBAPI connections is now configurable via ini file (section "dbapi",

parameter "max_connection").

Python DBAPI module
1 Attributes srv_errno and srv_msg were added to the DatabaseError class.

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_id:: IdentifyAccession() -- recognizes more prefixes (AT_, DK, DL, FF-FL,

FS-FZ, GA-GH, GM, GN, NZ_XX) and (mixed-in) EMBL TPA protein accessions.
2 SCigarAlignment -- support for segments with implicit lengths (of 1), and for callers

to specify which variant of the format to expect.
3 Faster CSeq_id assignment in CSeq_id_Handle
4 CSeq_loc:: Assign() -- remember to clear Seq-id cache

BLAST
1 Optimizations and MT bug fixes to local BLAST database data loader.
2 Introduced masking of subjects sequences.
3 Added support for smaller lookup tables for small queries.
4 (*) Moved seqdb and writedb libraries under objtools/blast.
5 Added blast2seq submission interfaces for CRemoteBlast.
6 Implemented a new method to compute effective observations and new entropy-based

method to compute column-specific pseudocounts in PSI-BLAST.
7 Add support for WindowMasker in xblast library as well as BLAST+ command line

binaries.
8 Improvements to legacy_blast.pl script.
9 Added src/app/blast/update_blastdb.pl script.
10 Added blast_formatter application.
11 Added support for comma-separated value output as well as support for custom output

format specifiers in BLAST+ command line applications.
12 (*) ASN.1 output format in BLAST+ command line applications is of type Seq-annot.
13 (*) -lcase_masking BLAST+ command line option now applies to subject sequences

as well as queries.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Local data storage (LDS)
1 Fixed quadratic performance of LDS indexing.
2 Fixed MT-bottleneck in LDS loader.
3 Reuse open streams for files with several objects 4. Added PDB Seq-id indexing.
4 Reduce memory use in LDS indexer by processing entries separately.
5 All types of identifiers recognized by the Toolkit get indexed now.

E-Utils client API
1 Added HTTP method selector to allow both GET and POST requests.

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
1 Added loading of named annotations.
2 Extended SNP features API: total range, quality data octet string.
3 Added support of "Extra" field to SNP table. Allow SNPs without strand.
4 Allow using shared CSeqMap object for simple CSeq_locs.
5 Allow changing CSeqVector and CSeqVector_CI strands.
6 Implemented loading accession.version which may be faster than full Seq-id

resolution.
7 Added option fIgnoreUnresolved in CSeqMap and CSeqMap_CI.
8 Implemented breadth-first search for annotations on segmented sequences.
9 Added CFeat_id conversion class.
10 Added CScope::kPriority_Default to replace misleading kPriority_NotSet.
11 Added option to change priority of threads in prefetch manager.
12 Added API to retrieve GenBank loader statistics.
13 Avoid quadratic complexity when attaching split sequences.
14 Avoid slow setting of CSeq_id_Handle into CBioseq_Handle.
15 CBioseq_Handle:: GetSeqId() will try its best to find any id.
16 Many speedups by avoiding allocations and replacing STL map with vector.
17 Fixed broken annotation iterator after starting of sequence editing.
18 Use single map for all kinds of objects to reduce memory usage in index.
19 Simplify detection of cancel requests in CPrefetchManager.
20 Increase maximum allele length and count to accommodate larger SNP data in SNP

features table.
21 Removed reference to deprecated headers objmgr/gbloader.hpp and objmgr/

reader.hpp.
22 Moved Genbank readers one level up in build tree to shorten paths.
23 Store in the GenBank cache also blob state for ID2 data.
24 Remove trailing dots and spaces in sequence title.
25 Fixed duplication of features with non-exact Seq-id.
26 Treat virtual sequences w/o length as having zero length in CSeqMap.
27 Fixed feature duplication on edited sequences.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

28 Fixed sequence:: GetId(..., eGetId_Best).
29 Set number of connect retries for ID1/ID2 service streams to 1, reader has its own

retries.
30 Fixed loading external annotations via "gnl|Annot:x|gi".

Object manager test and demo applications
1 test_objmgr_data -- added options to get accession, GI, or Seq-ids.
2 test_objmgr_data_mt -- added option to test single scope in MT.
3 test_objmgr_data_mt -- added blastdb loader to the MT-stress test.
4 objmgr_demo -- added options to retrieve annot types and names only.
5 objmgr_demo -- added option to work with named annotations' accessions.

BIO-TOOLS
1 CFastaOstream -- flags renamed to preferred "fFlagName" syntax, and more added:

fSuppressRange, fReverseStrand, fKeepGTSigns; passing out-of-range locations
now yields appropriate exceptions.

APPLICATIONS
NetCache

1 BerkeleyDB statistics are gathered now
2 Monitoring improvements (formatting, logging of opening and closing connections,

always send message to monitor when blob is deleted as expired)
3 ClientIP and SessionID -- transferred from NetCache and ICache clients diagnostics

to the NetCache server diagnostics.
4 A new (shared with NetSchedule) protocol parser is used. The new parser is in the

CONNSERV library. The new parser allows parameters in a form of name=value.
5 Logging of request-start and request-stop entries for each incoming command was

added
6 Protection against application hard-killing and attempt to restore database after one

have taken place was added
7 A use case was added for PUT command. Within the use case NetCache sends a blob

key only after the blob is written successfully
8 In waiting for a response, client is now notified even if an error occurred during writing

to a database
9 Restored the code which cleans logs after cache cleaning
10 Transactions frequency is configurable now. The default value is 15 sec.
11 A new configuration flag added, that causes a database to be dropped if it was closed

earlier incorrectly

NetSchedule
1 Instrumented with better request logging and timing trace

Grid
1 Client-side Grid tools moved from under app/netschedule/ to a new directory app/

grid/.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 Introduced versioning to the Grid package's applications.

1 Improved logging -- log request numbers and the correct PIDs of child processes.
2 Removed the code that logged the entire STDOUT of the remote_app child processes.
3 Set the NCBI_NS_JID environment variable before running the child process.
4 Used the same environment for running the monitor as the app itself.

1 Progress messages are sent and displayed now.

1 The application now supports the -stdout parameter (dump stdout of the remote
process for the specified job ID).

2 Bug fix: return non-zero exit codes in case of exceptions.

BUILD FRAMEWORK (UNIX)
1 Configure frontends for various compilers are now available exclusively as compilers/

unix/*.sh rather than compilers/*.sh.
2 This release drops support for IRIX, and for GCC 2.95.x on any platform.
3 Although default configurations continue to build some libraries in shared

(dynamically loadable) form, they now arrange to favor static libraries over dynamic
ones at link time, and to disable plugin autoloading by default. The existing --with
(out)-dll flag and the new --with(out)-plugin-auto-load flag permit specifying
alternative behavior.

PTB -- Project Tree Builder for MSVC++ .NET
1 Added support (generation) for Microsoft Visual Studio 2008 projects.
2 Corrected analysis of DLL dependencies.
3 Changed configuration process on Windows to move site localization generated files

into compiler and configuration name-specific location.
4 Modified CONFIGURE process to use prebuilt PTB by default, and to enable setting

project list from an environment variable.
5 Modified generation of "flat makefile" on UNIX to allow directories as targets and to

make it better report build errors.
6 Redesigned configuration process to move all logic into a separate standalone

command line file.
7 In PTB, added protection against targets with the same name

Documentation
Location

The documentation is available online as a searchable book "The NCBI C++ Toolkit": http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the
newcomer.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the up-to-date public or in-house versions
using source browsers Entrez, LXR, Doxygen and Library - or do an overall search.

HEADS-UP: We have switched our source control system from CVS to SVN (Subversion).
Unfortunately, the SVN repository cannot (yet) be accessed from outside NCBI.

Platforms (OS's, compilers used inside NCBI)
! Unix
! MS Windows
! Mac OS X
! Discontinued

This release was successfully tested on at least the following platforms (but may also work on
other platforms). Since the previous release, some platforms were dropped from this list; just
because we do not use them inhouse anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
— in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Please scroll down if you do not see tables.

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.6.x (LIBC 2.3.5) x86-32 GCC 3.4.2
ICC 8.0 (20040520Z, l_cc_pc_8.0.066_pe067.1)
(GCC 3.0.4, 4.1.2, 4.2.3- some support)

Linux-2.6.x (LIBC 2.3.5) x86-64 GCC 4.0.1, 4.1.2
ICC 9.0 (build 20051201)
(GCC 4.2.3 - nominal support)

Solaris-10 SPARC, x86
(32/64-bit)

Sun Studio 12 (C++ 5.9)

Solaris-10 SPARC Sun Studio8 (C++ 5.5) 113817-19
GCC 4.1.1 (32-bit mode only)

Solaris-10 x86-32 Sun Studio8 (C++ 5.5) 113819-19
GCC 4.2.3

Solaris-10 x86-64 Sun Studio 11 (C++ 5.8) 121017-08
(nominal support only)

FreeBSD-6.1 x86-32 GCC 3.4.4

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=ToolkitAll&term=CTime
http://www.ncbi.nlm.nih.gov/sites/entrez?cmd=search&db=toolkit&term=CTime
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/ident?i=CTime&d=
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lib_search/libsearch.cgi?symbol=CTime

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows-32 MS Visual Studio .NET 2003 (C++ 7.1).
(support to be discontinued in the next release)
NOTE: We also ship an easily buildable archive of 3rd-party packages (including NCBI C Toolkit) for this platform.

MS Windows-32 MS Visual C++ 2005 (C++ 8.0)
NOTE: We also ship an easily buildable archive of 3rd-party packages (including NCBI C Toolkit) for this platform.

MS Windows-64 MS Visual C++ 2005 (C++ 8.0)

Cygwin 1.5.1832 GCC 3.4.4 (nominal support only)

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Architecture Compilers

Darwin on MacOS X 10.4 - or newer Native (PowerPC or x86-32),
Universal (PowerPC and x86-32)

GCC 4.0.1

Darwin on MacOS X 10.5 Native (PowerPC or x86-32) Xcode2.5, 3.1.2

Table 5. Discontinued

Operating System Architecture Compilers

Linux-2.6.x x86-32 GCC 2.95.3 (support to be discontinued in the next release)

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

Caveats and Hints
GCC 3.0.4

1 Destructor of constructed class member is not called when exception is thrown from
a method called from class constructor body (fixed in GCC 3.3).

2 STL stream uses locale in thread unsafe way which may result to segmentation fault
when run in multithread mode (fixed in GCC 3.3).

3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in
3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. — Starting
with BINUTILS 2.12 linker tries to merge constant/debug strings marked for merging
in object files. But it seems it does this job very inefficiently - I've seen messages
about it in internet. GCC starting with version 3.2 marks section of string constants
ready for merging, and also has an option to disable this flag in object files (-fno-
merge-constants). Adding this flag to compilation stage allows avoiding slow linking.
GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significantly slower than
with GCC 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). BINUTILS 2.15
fixes this. The link time still 2 times slower than without symbol merge, but the
resultant executable is about two times smaller in size, and no compiler patching is

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configXcode
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Dec_31_2008/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configCygwin_GCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configGCC

necessary. We are still testing it in-house. We had to patch GCC 3.3 in-house with
the fix described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3, [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 — until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 (and maybe 3.4.5+) and 4.0 have a bug in the C++ stream library
that affects some parts of our code, notably CGI framework. (Fixed in 4.0.1).

Last Updated
This section last updated on December 29, 2008.

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (March, 2008)

! Download
! Build
! New Developments

" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" XCONNSERV -- NCBI Grid Client API Library`
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML, JSON)
" DATATOOL — Code Generator and Data Converter Tool
" CGI — CGI and Fast-CGI Application Framework
" DBAPI -- Generic SQL Database Connectivity
" Python DBAPI module
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM

++)
" ALGO/ALIGN — Generic Alignment Algorithms
" ALNMGR -- Bio-sequence Alignment Manager
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" BLAST
" BIO-TOOLS
" APPLICATIONS

! Documentation
" Location
" Content

! Platforms (OS's, compilers used inside NCBI)
" Unix
" MS Windows
" Mac OS X
" Discontinued

! Caveats and Hints
" GCC 2.95
" GCC 3.0.4
" GCC 3.3
" GCC 3.4.x, 4.0.x

Download
Download the source code archives at:

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/
! ncbi_cxx-- Mar_17_2008.tar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx-- Mar_17_2008.gtar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx-- Mar_17_2008.exe — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0) — self-extracting
! ncbi_cxx-- Mar_17_2008.zip — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0)
The sources correspond to the NCBI production tree sources, which in turn roughly corresponds
to the development tree sources from February 19, 2008.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
! NCBI_C_Toolkit
! ThirdParty

Build
For guidelines to configure, build and install the Toolkit see here.

New Developments
CORELIB — Portability and Application Framework

1 CPluginManager -- now looks for libraries in $LD_LIBRARY_PATH first,
hardcoded RPATH second (reversed the lookup order)

2 CProcess -- added method KillGroup()
3 CExec -- added new modes for Spawn*() methods (eWaitGroup, eNoWaitGroup)
4 CFileIO -- new class, implementing low-level I/O API for files
5 IWriter, IReaderWriter -- added implementations for the low level reading from file

via the bare system IO handle
6 CTmpFile -- new class, to generate temporary name for file (it can also use user

specified name) that can be automatically deleted on the object's destruction
7 CSignal -- new class, to handle OS signals
8 CFastLocalTime -- added support for nanoseconds
9 CStopWatch -- new method IsRunning()
10 CNcbiApplication -- added option to print description of application arguments in

XML format
11 CArgDescriptions -- added possibility to take default value for an argument from an

environment variable
12 CDiagCollectGuard -- new RAII class, to replace StartTraceCollect() and

StopTraceCollect()
13 <corelib/stream_utils.hpp> -- improved pushback performance; add light stepback

method; make use of them in UTIL classes

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ncbi_cxx--Mar_17_2008.tar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ncbi_cxx--Mar_17_2008.gtar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ncbi_cxx--Mar_17_2008.exe
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ncbi_cxx--Mar_17_2008.zip
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/NCBI_C_Toolkit/README

CONNECT — Data streaming, Networking, and Dispatching
1 CPipe -- added possibility to run child process in new process group (UNIX) and to

kill the whole tree of processes
2 <connect/ncbi_socket.h[pp]>:

! SOCK_GetLocalPort -- new
! CSocket::GetLocalPort -- new
! SOCK_isip[Ex]() -- to allow all documented IP formats
! LSOCK_Create() -- to actually heed CloseOnExec (it was silently ignored

before)
3 Define STimeout/ms conversions (including infinite timeouts); make use of it
4 CConn_IOStream and its buffer -- added a fast initial get segment

XCONNSERV -- NCBI Grid Client API Library
1 CNetCacheAPI::HasBlob() -- new, to check if the BLOB with the specified key exists

UTIL — Miscellaneous Low-Level APIs
Modified methods that translate UTF-8 strings into ASCII ones -- added default translation,
to be used when the translation is not possible

1 CTar -- implemented PAX extensions for TAR (read/extract only)

SERIAL — Data Serialization (ASN.1, XML, JSON)
1 CObjectOStreamJson new class that implements JavaScript Object Notation

formatted output
2 Added support for the base64Binary encoded data
3 Improved compatibility between classes generated from XML schema and from ASN.

1 specification

DATATOOL — Code Generator and Data Converter Tool
1 Added option to convert data into JSON format
2 Improved support for XML schema, including circular includes, recursive type

definitions, definitions with multiple levels of inheritance, handling of comments
3 Improved support for DTD, including skipping general entities declarations and using

nmtokens in enumerated values
4 Added support for base64Binary encoded data
5 Improved compatibility between classes generated from XML schema and from ASN.

1 specification.

CGI — CGI and Fast-CGI Application Framework
1 CCgiUserAgent -- new method GetBrowserName()
2 Fixed a bug resulted in repeated creation of the session object each time the

CCgiRequest::GetSession() method was called

DBAPI -- Generic SQL Database Connectivity
1 Made ftds64 (instead of ftds8) the default FreeTDS driver, and renamed drivers

correspondingly:

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! ftds to ftds8
! ftds64 to ftds
! ftds64_odbc to ftds_odbc
! ftds64_dblib to ftds_dblib
! ftds64 driver now supports UTF-8 client character encoding

2 CTL_Connection::SetTimeout() -- implemented for the ftds64 driver
3 Discontinued support of msdblib and ftds63 drivers
4 Introduced a uniform driver-independent control of the total amount of concurrent

database connections. Maximum amount is set to 100 by default.
5 Reusable connections will not be closed after call to method Close() anymore, they

will return to the pool.
6 Sybase CTLIB driver -- cancellation of bulk-insert operation is not available now (to

avoid crash due to a bug in at least some versions of Sybase client)
7 Enable BCP by default with all database drivers.
8 Removed methods:
9 DBAPI_RegisterDriver_[CTLIB | DBLIB | FTDS | ODBC | MSDBLIB | MYSQL]

(I_DriverMgr& mgr)
10 DBAPI_RegisterDriver_MSDBLIB (void)
11 Deprecated methods:
12 I_LangCmd::More(const string&)
13 CDB_LangCmd::More(const string&)
14 CDB_Exception::Severity()
15 CDB_Exception::SeverityString(EDB_Severity)
16 Added methods:
17 I_DriverContext::MakeConnection()
18 CDBUDRandomMapper::Add() and CDBUDPriorityMapper::Add()
19 CTrivialConnValidator::GetAttr()
20 CTrivialConnValidator::GetName() and CConnValidatorCoR::GetName()
21 CDBHandlerStack::GetSize()
22 CDriverContext::ResetEnvSybase()
23 IResultSetMetaData::GetDirection()
24 Changed signature of Get_I_DriverContext()
25 Describe SQL statement input/output parameters
26 Lock SQL statement parameter binding after they have been used for the first time
27 Report extra debug information (such as SQL statement, name of stored procedure,

etc) with exceptions
28 Put server name, user name, and extra-message to the database error message in

CDB_UserHandler_Exception::HandleIt()

Python DBAPI module
1 Fixed 'callproc' to return modified copy of the input sequence.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 Added support for spliced and sparse alignments in mappers and Object Manager.
2 Added functions ConvertSeqLocsToPairwiseAln() and

SeqLocMapperToPairwiseAligns() to convert between seq-locs and seq-loc mappers
and pairwise alignments.

3 CSeq_id::IdentifyAccession recognizes more prefixes (DJ, EW-FE, FM-FR) and
(mixed-in) EMBL TPA protein accessions

4 CSeq_id::EAccessionInfo uses standardized values for all divisions, even those
associated only with a single accession type, and incorporates one bit of that to mark
definite genomic sequences

5 CSeq_id's FASTA converters use tr| rather than sp| as the tag for unreviewed UniProt
[formerly Swiss-Prot] IDs in both directions

6 CSeq_id's FASTA and raw parsers are generally more forgiving, and in particular
now recognize bare PRF/SEQDB loci

7 CFastaReader supports two new flags for more comprehensive input validation, both
off by default: fValidate and fUniqueIDs

ALGO/ALIGN -- Generic Alignment Algorithms
1 NW_ALIGNER -- the aligner moved to under the "src/app"
2 CBandAligner -- space requirements reduced by storing two dynprog cells per byte
3 Splign:

! the minimum singleton identity can now be specified in absolute units
! the maximum intron length has been upwardly revised
! 'auto' query direction mode introduced, in which the query is first aligned in

the direction of its maximum ORF, and then re-aligned in the opposite
direction if a non-consensus splice was found

4 COMPART -- in addition to using external BLAST hits, the application is now able
to go on its own by utilizing a novel hit search engine relying on use of participation
vector and index-to-index comparison. To utilize this mode, a user must prepare
BLAST databases (using formatdb) of cDNA and genomic sequences then specify
them in -qdb and -sdb arguments. The new engine does not require any external repeat
filtering, is faster and more sensitive than MEGABLAST. Its application scope is
same-species comparison. For cross-species, discontiguous MEGABLAST is
advised.

ALNMGR -- Bio-sequence Alignment Manager
1 Old-style alignment manager:

! Added implementation of IAlnSegmentIterator for CAlnVec:
CAlnVecIterator

! New segment types: fUnalignedOn{Left,Right}OnAnchor
2 New-style alignment manager:
3 Added alignment serialization
4 Added support for spliced seg alignments
5 Use a more specific {E,T}SegTypeFlags type instead of {EType,int}

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

6 Renamed MergeAlnRngColl to MergePairwiseAlns and moved it's definition to
aln_builders.cpp

7 Added conditional splitting of disc alignments when they are inserted in the container

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
1 Table features (seqtable.asn) are now supported in the object manager. Fast access to

table features is implemented via CSeq_feat_Handle.
2 Added CScope::GetLabel(seq_id), which could retrieve only label information if

possible
3 CObjectManager singleton now lives until the very end of application
4 CSeqVector and CSeqVector_CI modifications:

! CSecVector can now be created faster directly from CBioseq object.
! Class CNcbi2naRandomizer is renamed to interface INcbi2naRendomizer.
! CSeqVector now implements GetPackedSeqData() to get NCBI2na and

NCBI4na encodings in packed form (more than one base per char).
5 CSeqMap Several modifications:
6 Implemented CSeqMap_CI::IsSeqData()
7 Added CBioseq_EditHandle::SetSeqMap() to allow editing of sequence map

BLAST
1 WriteDB -- now supports building optional ISAM files mapping "sequence hash"

values to a list of OIDs
2 Use Int8 for ISAM numeric values internally, to support TI list filtering when TIs

exceed 32 bit range
3 Introduction of XML formatting for BLAST command line binaries
4 Implemented importing/exporting of search strategy in BLAST command line
5 binaries
6 Added segmasker application to filter protein sequences

BIO-TOOLS
1 objtools/eutils -- new API to access [http://eutils.ncbi.nlm.nih.gov/entrez/query/

static/eutils_help.html eUtils tools]
2 CFastaOstream -- now supports setting hard and soft masks, and sports virtual
3 Write* methods to ease subclassing
4 GetProteinWeights -- now supports proteins containing pyrrolysine (O) and leucine/

isoleucine ambiguities (J), and properly skips proteins containing Xs rather than
spuriously returning weight 0 in some cases

5 GenBank data loader -- no longer depends on the PubSeqOS backend, which is only
useful within NCBI and is therefore not part of the release

APPLICATIONS
1 NetCache:

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BUILD FRAMEWORK (UNIX)
1 A number of scripts and auxiliary files have moved into subdirectories to reduce

clutter. In particular, the configure frontends for various compilers are moving from
the "compilers" directory to its new "unix" subdirectory. This release continues to
include copies in the old location for convenience, but future releases will not.

PTB -- Project Tree Builder for MSVC++ .NET
1 Improved performance, redesigned analysis of project dependencies, enhanced

reporting
2 Modified project filter to use regular expressions
3 Redesigned description of DLL projects - to use special makefiles instead of single

dll_info.ini file (see the new "src/dll" subtree)

Documentation
Location

The documentation is available online as a searchable book "The NCBI C++ Toolkit": http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the up-to-date public or in-house versions
using source browsers Entrez, LXR, Doxygen and Library.

HEADS-UP: We have switched our source control system from CVS to SVN (Subversion).
Unfortunately, the SVN repository cannot (yet) be accessed from outside NCBI. The CVS code
repository now contains older version of the source trees (before mid-January 2007) but it still
can be accessed via a Web interface (see the sidebar box on each page of the C++ Toolkit
Book).

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms (but may also work on
other platforms). Since the previous release, some platforms were dropped from this list; just
because we do not use them inhouse anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
— in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.6.x (w/ LIBC 2.3.2, 2.3.5) x86-32 GCC 3.4.0
ICC 8.0 (build 20040520Z, package ID l_cc_pc_8.0.066_pe067.1)
(GCC 3.0.4, 3.4.2, 4.1.1- nominal support)

Linux-2.6.x (w/ LIBC 2.3.3, 2.3.5) x86-64 GCC 4.0.1
ICC 9.0 (build 20051201)
(GCC 4.1.1 - nominal support)

Linux x86-32 and x86-64 GCC 4.1.2
GCC 4.2.3 (nominal support only)

Linux-2.6.x x86-32 GCC 2.95.3 (support to be discontinued in the next release)

Solaris-10 SPARC Sun C++ 5.5 (Studio8) patch 113817-19
GCC 4.0.1 (32-bit mode only)

Solaris-10 x86-32 Sun C++ 5.5 (Studio8) patch 113819-19
GCC 4.1.1

Solaris-10 x86-64 Sun Studio 11 (C++ 5.8 Patch 121017-08)
(nominal support only)

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-6.1 x86-32 GCC 3.4.4

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows-32 MS Visual Studio .NET 2003 (C++ 7.1).
NOTE: We also ship an easily buildable archive of 3rd-party packages (including NCBI C Toolkit) for this platform.

MS Windows-32 MS Visual C++ 2005 (C++ 8.0)

MS Windows-64 MS Visual C++ 2005 (C++ 8.0)

Cygwin 1.5.1832 GCC 3.4.4 (nominal support only)

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Architecture Compilers

Darwin on MacOS X 10.4 ("Tiger") Native (PowerPC or x86-32) GCC 4.0.1

Darwin on MacOS X 10.4 - or newer Universal (PowerPC and x86-32) GCC 4.0.1

Darwin on MacOS X 10.4 ("Tiger") Native (PowerPC or x86-32) Xcode 1.5 - 2.2.1

Discontinued

Operating System Architecture Compilers

Solaris-9 x86-32 C++ 5.3 (WorkShop 6u2) patch 111686-13
GCC 3.4.3

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configXcode
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2008/Mar_17_2008/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configCygwin_GCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configGCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configGCC

Caveats and Hints
GCC 2.95

1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI as soon as we have any significant trouble with

its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. — Starting
with BINUTILS 2.12 linker tries to merge constant/debug strings marked for merging
in object files. But it seems it does this job very inefficiently - I've seen messages
about it in internet. GCC starting with version 3.2 marks section of string constants
ready for merging, and also has an option to disable this flag in object files (-fno-
merge-constants). Adding this flag to compilation stage allows avoiding slow linking.
GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significantly slower than
with GCC 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). BINUTILS 2.15
fixes this. The link time still 2 times slower than without symbol merge, but the
resultant executable is about two times smaller in size, and no compiler patching is
necessary. We are still testing it in-house. We had to patch GCC 3.3 in-house with
the fix described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3, [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 — until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 (and maybe 3.4.5+) and 4.0 have a bug in the C++ stream library
that affects some parts of our code, notably CGI framework. (Fixed in 4.0.1).

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Last Updated
This section last updated on April 15, 2008.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (August, 2007)

! Download
! Build
! New Developments

" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML)
" DATATOOL — Code Generator and Data Converter Tool
" CGI — CGI and Fast-CGI Application Framework
" BDB — Yet Another C++ API Based On BerkeleyDB
" DBAPI — SQL Database Connectivity
" ALGO/ALIGN — Spliced and Generic Alignment Algorithms
" BLAST
" BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM

++)
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
" PTB — Project Tree Builder for MSVC++ .NET
" APPLICATIONS
" GRID (DISTRIBUTED COMPUTING) FRAMEWORK

NetSchedule client API
Grid Worker Node Implementation Framework
remote_app and remote_cgi utilites

! Documentation
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X
" Discontinued

! Caveats and Hints
" GCC 2.95
" GCC 3.0.4
" GCC 3.3
" GCC 3.4.x, 4.0.x

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Download
Download the source code archives at:

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/
! ncbi_cxx--Aug_27_2007.tar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx--Aug_27_2007.gtar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx--Aug_27_2007.exe — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0) — self-extracting
! ncbi_cxx--Aug_27_2007.zip — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0)
The sources correspond to the NCBI production tree sources, which in turn roughly corresponds
to the development tree sources from July 30, 2007.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
! NCBI_C_Toolkit
! ThirdParty

Build
For guidelines to configure, build and install the Toolkit see here.

New Developments
CORELIB — Portability and Application Framework

1 NCBI_THROW*() macros — allow iostream-style message formatting.
2 AutoPtr<> — allow optional ownership of object pointer in AutoPtr<>; also, fixed

possible double delete in AutoPtr::reset().
3 IReader — added implementations for the C++ istream and for the low level reading

from file via system IO handle.
4 CDirEntry::CreateAbsolutePath() — new, to get an absoluite path from relative path.
5 CTime — new methods: MilliSecond(), GetMilliSecond(), Microsecond(),

GetMicroSecond(), Round().
6 CTime — added more checks on incorrect using time objects stores empty dates.
7 CProcess::Wait() — now can return additional information about the waited process.
8 CExec — new methods: IsExecutable(), ResolvePath().
9 CProcess::Kill() — remove 'linger_timeout' parameter, used only on MS Windows.

Now, use one timeout parameter as a sum of both timeouts.
10 CTime/CTimeSpan/CStopWatch — added support for different format types for the

string conversions. Added new helper class CTimeFormat.
11 CTime::Truncate() — added precision parameter.
12 CFileLock — new, to lock a file (by file descriptor or file name) for reading or writing.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/ThirdParty/README
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/ncbi_cxx--Aug_27_2007.tar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/ncbi_cxx--Aug_27_2007.gtar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/ncbi_cxx--Aug_27_2007.exe
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/ncbi_cxx--Aug_27_2007.zip
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/NCBI_C_Toolkit/README

13 Added support for Byte Order Mark in plain text data streams.
14 It is now possible to check whether the stream has such mark or not

(GetTextEncodingForm); or read all input text data from the stream and convert it
into UTF8 string (ReadIntoUtf8).

15 CRWLock — now supports optionally blocking new readers when would-be writers
are waiting, to avoid the possibility of starving them.

16 CException — now supports a polymorphic Throw() method that works for all classes
derived via NCBI_EXCEPTION_DEFAULT and related macros.

17 CArgDescriptions — extended to allow dependencies between arguments (an
argument can require or exclude another argument) and negated aliases for flag
arguments (-flag vs -no-flag).

18 System mutex implementation on MS-Windows changed to use critical section rather
than mutex.

19 CProcess::Fork() — new method, to update cached PID and other related variables
after forking the process.

20 FindFiles() — added a glob-style functionality, which takes a string pattern and
collects all matching files/directories.

21 StartTraceCollect() and StopTraceCollect() — new functions, to allow collecting
trace messages without printing them immediately. The collected messages can be
printed or discarded later (e.g. printed only if an error occurs).

22 Changed time format and added application state flag in the diagnostic messages.
23 ConvertRegToTree() — redesigned to synchronize path-style and SubNode-style

definitions in INI-files.
24 CPushback_Streambuf::seekoff() — now supports tellg()

CONNECT — Data streaming, Networking, and Dispatching
1 CThreadedServer — now supports optionally reserving its port in advance.
2 CServer — added timer functionality, using

IServer_ConnectionHandler::GetTimeout().
3 CSocketReaderWriter — implemented timeouts: {Get|Set}Timeout()
4 TRIGGER/CTrigger — a pollable object that can be used together with sockets
5 Implemented advanced (non-lingering) modes of close/abort of TCP sockets
6 CSocketAPI — added HostPortToString() and StringToHostPort()

UTIL — Miscellaneous Low-Level APIs
1 CIReaderLineReader — renamed to CBufferedLineReader, added buffering.
2 CMultiWriter — an implementation of IWriter interface which allows simultaneous

writing to different streams
3 ILineReader::UngetLine() — allows for a full-line lookahead.
4 ICompression — new, interface class for CCompression.
5 Compression API — added LZO compression support.
6 CTimeLine — new class, for fast approximate time tracking.
7 CTar:
Better diagnostics

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Handle hard links to the extent allowed by OS
Large file support added
Use flags to set case-sensitivity of the mask(s)
Relaxing requirements on native tar capabilities
Make sure normalized paths used throughout
Streaming extraction fully implemented

SERIAL — Data Serialization (ASN.1, XML, XML Schema)
1 Corrected serialization of data in XML format to recognize UTF8 byte order mark,

to read attributes of SET data type, to properly read XML containers with all optional
data members. Corrected serialization of boolean attributes of data objects generated
by XML specification.

2 SOAP library — implemented fault handling to comply with SOAP v1.1
specification.

DATATOOL — Code Generator and Data Converter Tool
1 Considerably enhanced XML schema parser by adding support for 'any' and 'all'

element types, data type definitions with documentation, recursive type definitions,
attribute groups and content model groups, mixed types, element defaults, type
extensions, top level annotations and ability to import schemata.

2 Extended the C++ code generator to allow an UTF8 string as choice variant.

CGI — CGI and Fast-CGI Application Framework
1 CCgiUserAgent — added check on well-known search robots, bots, web checkers

and link validators. Added IsBot() method.
2 CCgiRequest — now preserves the input stream for POST data with no Content-Type,

which may be a BLOB rather than "application/x-www-form-urlencoded" data.
3 CCgiApplicationCached — new base class for CGI applications to allow for the

caching of CGI results, which in some cases can help dramatically reduce CGI
response time.

4 Add HTTP_X_FWD_IP_ADDR into tracking environment

BDB — Yet Another C++ API Based On BerkeleyDB
1 Added alternative location for transaction logs.

This offers parallel I/O option and better transaction performance.
2 Added more controls for the background write.
3 Reworked split store to use thread local transaction model.
4 Changed BDB cache to use split store to do non-locking parallel IO.
5 New garbage collection algorithm based on timeline (in-memory bit-index).

DBAPI — SQL Database Connectivity
1 Increased max. size of CDB_VarBinary and VarChar to 8000 bytes
2 Added attribute 'max_connect' to ctlib-based drivers. This attribute lets you set up

max number of simultaneously opened connections (default value is 30)
3 C_DriverMgr::RegisterDriver(), C_DriverMgr::GetDriver() — deprecated

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

4 Deprecated the following functions:
DBAPI_RegisterDriver_CTLIB(I_DriverMgr& mgr),
DBAPI_RegisterDriver_DBLIB(I_DriverMgr& mgr)
DBAPI_RegisterDriver_FTDS(I_DriverMgr& mgr)
DBAPI_RegisterDriver_ODBC(I_DriverMgr& mgr)
DBAPI_RegisterDriver_MSDBLIB(I_DriverMgr& mgr)
DBAPI_RegisterDriver_MYSQL(I_DriverMgr& mgr) Please use functions with the same
name but without an argument instead.
5 CDB_UserHandler_Exception and CDB_UserHandler_Exception_ODBC — new

classes, to be used as database error message handlers which throw exception upon
an error message;

6 CDriverManager::DestroyDs(const IDataSource* ds) — new method
7 Added version number to the FreeTDS library names (libsybdb_ftds.so —>

libsybdb_ftds8.so; libtds_ftds.so —> libtds_ftds8.so)
8 Added DBLB_INSTALL_FACTORY macro in addition to

DBLB_INSTALL_DEFAULT. New macro takes a factory name as a parameter.
9 Added macro DBAPI_TRANSACTION for RAII transaction support. Resource

Acquisition Is Initialization (RAII) programming style is intended to revert a
transaction automatically if any exception occurs in a code block

10 ctlib/bcp supports LongChar and LongBinary.data types now
11 Improved behavior of ctlib and ftds64 drivers in case of dead connection

ALGO/ALIGN/SPLIGN — Spliced and Generic Alignment Algorithms
1 CScoreBuilder — supplemented with the support for computing BLAST scores
2 CMultiAligner — added performance optimizations to the alignment of filler regions
3 CProSplign — spliced protein to genomic alignment algorithm
4 HFilter now supports a pairwise mode. In the pairwise mode, the uniquification

algorithm is restricted to pairs of sequences. As a result, each sequence may have
intervals with overlapping alignments as long as none of the overlapping alignments
are between same two sequences.

5 An optional cross-filtering filtering has been added to the compartmentization
algorithm, which allows to immediately use the compartment hits as splice refinement
seeds.

6 Support for ASN.1 spliced segments was added. Spliced segment has been recently
introduced to the NCBI data model to represent spliced alignments.

BLAST
1 Fixed a performance regression encountered when performing megablast with many

queries and few database sequences
2 Added support for blastp or tblastn with a compressed alphabet and large word size
3 SeqDB (BLAST database access):
Add GetSequenceAsString() to fetch sequences as C++ strings.
Added DB filtering with Trace ID (TI) lists.
Added DB filtering with Seq-id lists.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Added DB filtering with negative GI or TI lists.
All SeqDB objects now share a global memory pool.
4 WriteDB (BLAST database creation):
WriteDB can now produce numerical ISAM files for trace IDs.
CBinaryListBuilder class for numerical list construction.
Reduced memory usage for ISAM construction.
Don't produce indexes or files that would be empty.
5 CBlastFastaReader — new class to read accessions, GIs, and Trace IDs.
6 CBlastScopeSource — to configure CScope objects to fetch sequence data from

BLAST databases first, then from Genbank.
7 Introduced query splitting for blastx and blastn, users of C++ BLAST APIs should

have transparent access to this feature.
8 Initial revisions of C++ BLAST command line binaries checked in src/app/blast (still

under development). Previous command line binaries have been removed.
9 Discontinuous Seq-aligns are no longer produced by BLAST APIs.
10 CLocalDbAdapter — new class to provide BLAST database interfaces (BlastSeqSrc

and
11 IBlastSeqInfoSrc) to the internal BLAST APIs.
12 Enabled the possibility to specify individual genetic codes for translated queries/

subjects.
13 Added BOOST based unit tests to xblast and blastinput libraries.

BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM++)
1 Added a low-level AGP line parser (CAgpRow) and a basic stream reader that detects

scaffolds (CAgpReader)
2 CSeq_id::IdentifyAccession() — recognizes more prefixes (DI, EM-EV) and
3 (mixed-in) EMBL TPA protein accessions.
4 CFastaReader — now supports some new flags, all off by default: fParseRawID,

fSkipCheck, and fNoSplit.

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
New functionality:

1. Allow getting CSeq_data object for gap segments.

2. Added CSeqMap::GetSegmentsCount().

3. Added CScope::UpdateAnnotIndex().

4. SSeq_align_Mapper — added a possibility to map a single alignment row rather than the
whole alignment.

5. GetOverlappingFeatures() — new function to get all features that overlap the specified Seq-
loc.

Bug fixes:

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

1. Fixed mapping of CSeq-align objects.

2. Fixed race condition in CSeq_id_Handle destructor.

3. Smart detection of when to warn about conflict in scope history.

4. Fixed loss of external annotations on edited Bioseq objects.

5. Fixed loss of Seq-ids from split-info.

6. Throw an exception instead of abort in case of duplicated blob-id.

7. GetBestXXX() and other overlap-related functions — fixed overlap types.

OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
(GenBank data loader)—New functionality:

1. Separated ID2 logic from transport protocol (ID2 or PubSeqOS).

2. Implemented PubSeqOS2 reader - ID2 functionality via PubSeqOS connection.

3. Added description of ID connection to exception message.

4. Re-compress uncompressed ID2 data before storing it in cache.

5. Added optional dumping of request in case of error.

Bug fixes:

1. Fixed loading of SNP table with octet strings.

PTB — Project Tree Builder for MSVC++ .NET
1 Added option to add build configurations for VTune.
2 Modified CONFIGURE project on MS Visual Studio 8 platform so that it always uses

project tree builder built in Release configuration, which makes it run faster.
3 Fixed makefile macro resolution on Unix platform, where PTB can be used to generate

"flat" makefile for the whole Toolkit tree.

APPLICATIONS
1. NetSchedule

a) Run time config reload implemented correctly

b) Parameters and statistics for locks and mutexes added

c) Robustness of restart enhanced (private environment, or automatic recovery of shared
environment)

d) Queries for the job tags and status added

e) Changes in the authorization system for easy migration - logging of invalid access added,
access granted

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

GRID (DISTRIBUTED COMPUTING) FRAMEWORK
NetSchedule client API

1 Allow to get queue configuration parameters from NetSchedule server.
2 Added QUERY and SELECT NetSchedule commands (to get job tags and status from

the server)

Grid Worker Node Implementation Framework
1 Added support for fast job status check, automatic control port discovery from a given

range, and an 'auto' value (which sets the # of threads according to the # of CPUs
available on the host) for 'max_threads' parameter

remote_app and remote_cgi utilites
1 'kill_timeout' — a new configuration parameter, to specify the maximum execution

time for the launched executables (working processes).

Documentation
Location

The documentation is available online as a searchable book "The NCBI C++ Toolkit": http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the up-to-date public or in-house versions
using source browsers Entrez, LXR, Doxygen and Library.

HEADS-UP: We have switched our source control system from CVS to SVN (Subversion).
Unfortunately, the SVN repository cannot (yet) be accessed from outside NCBI. The CVS code
repository now contains older version of the source trees (before mid-January 2007) but it still
can be accessed via a Web interface (see the sidebar box on each page of the C++ Toolkit
Book).

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms (but may also work on
other platforms). Since the previous release, some platforms were dropped from this list; just

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

because we do not use them inhouse anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
— in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.6.x (w/ LIBC 2.3.2, 2.3.5) x86-32 GCC 3.4.0

ICC 8.0 (build 20040520Z, package ID l_cc_pc_8.0.066_pe067.1)

(GCC 3.0.4, 2.95.3, 3.4.2, 4.1.1- nominal support)

Linux-2.6.x (w/ LIBC 2.3.3, 2.3.5) x86-64 GCC 4.0.1
ICC 9.0 (build 20051201)
(GCC 4.1.1 - nominal support)

Solaris-10 SPARC Sun C++ 5.5 (Studio8) patch 113817-19
GCC 4.0.1 (32-bit mode only)

Solaris-9
(Support will be discontinued in the next release)

x86-32 C++ 5.3 (WorkShop 6u2) patch 111686-13
GCC 3.4.3

Solaris-10 x86-32 Sun C++ 5.5 (Studio8) patch 113819-19
GCC 4.1.1

Solaris-10 x86-64 Sun Studio 11 (C++ 5.8 Patch 121017-08)

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-6.1 x86-32 GCC 3.4.4

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows-32 MS Visual Studio .NET 2003 (C++ 7.1).
NOTE: We also ship an easily buildable archive of 3rd-party packages (including NCBI C Toolkit) for this platform.

MS Windows-32 MS Visual Studio .NET 2005 (C++ 8.0)

MS Windows-64 MS Visual Studio .NET 2005 (C++ 8.0)

Cygwin 1.5.18 -32 GCC 3.4.4

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Architecture Compilers

Darwin on MacOS X 10.4 ("Tiger") Native (PowerPC or x86-32) GCC 4.0.1

Darwin on MacOS X 10.4 - or newer Universal (PowerPC and x86-32) GCC 4.0.1

Darwin on MacOS X 10.4 ("Tiger") Native (PowerPC or x86-32) Xcode 1.5 - 2.2.1

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configXcode
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Aug_27_2007/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configCygwin_GCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configGCC

Discontinued

Operating System Architecture Compilers

Solaris-8 SPARC C++ 5.3 (WorkShop 6u2)
GCC 3.4.3

Digital Tru64 Unix 5.1 (aka OSF1) ALPHA GCC 3.3.2

FreeBSD-4.10 x86-32 GCC 3.4.2

Caveats and Hints
GCC 2.95

1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI as soon as we have any significant trouble with

its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. — Starting
with BINUTILS 2.12 linker tries to merge constant/debug strings marked for merging
in object files. But it seems it does this job very inefficiently - I've seen messages
about it in internet. GCC starting with version 3.2 marks section of string constants
ready for merging, and also has an option to disable this flag in object files (-fno-
merge-constants). Adding this flag to compilation stage allows to avoid slow linking.
GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significantly slower than
with GCC 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). BINUTILS 2.15
fixes this. The link time still 2 times slower than without symbol merge, but the
resultant executable is about two times smaller in size, and no compiler patching is
necessary. We are still testing it in-house. We had to patch GCC 3.3 in-house with
the fix described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3, [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 — until we finally upgraded to binutils
2.15.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 (and maybe 3.4.5+) and 4.0 have a bug in the C++ stream library
that affects some parts of our code, notably CGI framework. (Fixed in 4.0.1).

Last Updated
This section last updated on September 17, 2007.

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (March, 2007)

! Download
! Build
! New Developments

" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML)
" DATATOOL — Code Generator and Data Converter Tool
" CGI — CGI and Fast-CGI Application Framework
" HTML — HTML Generation Library
" BDB — Yet Another C++ API Based On BerkeleyDB
" DBAPI — SQL Database Connectivity
" ALGO — Generic Algorithms
" ALGO/ALIGN — Spliced and Generic Alignment Algorithms
" ALNMGR — Bio-sequence Alignment Manager
" BLAST
" BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM

++)
" LDS — Local Data Storage
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
" BUILD FRAMEWORK (UNIX)
" PTB — Project Tree Builder for MSVC++ .NET
" APPLICATIONS
" GRID (DISTRIBUTED COMPUTING) FRAMEWORK

Grid Worker Node Implementation Framework
! Documentation
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints
" GCC 2.95
" GCC 3.0.4
" GCC 3.3
" GCC 3.4.x, 4.0.x

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Download
Download the source code archives at:

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/
! ncbi_cxx--Mar_12_2007.tar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx--Mar_12_2007.gtar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX
! ncbi_cxx--Mar_12_2007.exe — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0) — self-extracting
! ncbi_cxx--Mar_12_2007.zip — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0)
The sources correspond to the NCBI production tree sources, which in turn roughly corresponds
to the development tree sources from February 16, 2007.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
! NCBI_C_Toolkit
! ThirdParty

Build
For guidelines to configure, build and install the Toolkit see here.

New Developments
CORELIB — Portability and Application Framework

1 Redesigned diagnostics setup and introduced new logging info and formatting (it is
not turned on by default yet).

2 Enabled per-thread diagnostic properties (request status, client IP, session ID etc.).
3 Diag handlers now support atomic write to allow several applications to use the same

log file.
4 Added CStackTrace class to get/store stack trace information.
5 The stack trace is automatically reported by exceptions.
6 FindFiles2<> — new algorithm for file search.
7 NStr::ReplaceInPlace(), NStr::HexChar() — new string functions.
8 CStringUTF8 — added character buffer validation methods.
9 XStr — added template-based string comparison, one that does not depend on the

character type.
10 CTempString — provided with the clear() and assign() methods to better mimic

"std::basic_string"
11 CNcbiApplication — now loads a global configuration file (.ncbirc or ncbi.ini) in

addition to any application-specific configuration.
12 CSysLog — obtains the default facility to use from registry settings.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/ncbi_cxx--Mar_12_2007.tar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/ncbi_cxx--Mar_12_2007.gtar.gz
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/ncbi_cxx--Mar_12_2007.exe
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/ncbi_cxx--Mar_12_2007.zip
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_getcode_svn.code_retrieval#ch_getcode_svnchkout
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/NCBI_C_Toolkit/README

13 CDirEntry::CheckAccess() — to check effective access rights on directory entries.
14 CNcbiApplication — added option "-dryrun" to allow test runs of an application, just

to verify if the command line is correct and all preconditions are met.
15 NcbiSystem::GetMemoryUsage — new function to determine the current process's

approximate memory footprint.
16 CRWStreambuf — to allocate buffers per I/O direction; fixed write bug and

implemented xsputn() to speed up writing; fixed showmanyc() not to loop with zero
timeouts.

17 NcbiStreamCopy() — to directly copy contents of one stream into another.
18 Fix printable string and parse escapes to better match the C/C++ string representation

standard.
19 "include/corelib/mswin_no_popup.h" — header file to disable popup message boxes

on MS Windows. Also, SuppressSystemMessageBox() now can use new flag
fSuppress_Exception (unhandled exceptions).

CONNECT — Data streaming, Networking, and Dispatching
1 CServer — a replacement for the CThreadedServer. This multithreaded network

server framework allows many permanent connections without the burden of having
as many processing threads.

2 CPipe::ExecWait() — to run an external application, pass a stream with input data to
it, wait and monitor its execution, and get back its standard output and error streams.

3 SOCK_isip(), SOCK_isipEx(), SOCK_GetLocalHostAddress().
4 HTTP connector — to make path and arguments non-inheritable in redirects; to allow

relative redirects (not argument-only, however); and to take into account Content-
Length (and fail if not enough data received).

5 FTP connector — to use minus sign in default password to try to turn off human-
readable messages; also, fixed the handling of low-level status codes.

6 Reorganization of the heap manager API:
7 Faster heap with free blocks linked into a list; rename of HEAP_AttachEx() into

HEAP_AttachFast(); new API calls HEAP_AllocFast(), HEAP_FreeFast(), and
HEAP_Options().

8 CConnIniter (former CONNECT_InitInternal) — new helper class to simplify the
initialization of the library (and to reduce the chance of that been

9 forgotten) without a necessity of any changes in the existing user code.
10 Most CONNECT related APIs have been modified to take advantage of the initer.

UTIL — Miscellaneous Low-Level APIs
1 Compression API — Added automatic finalization for input streams.
2 Also, added an auto-detection and proper reading of uncompressed data (use flag

CCompression::fAllowTransparentRead).
3 CCompression*Stream::GetStatus() — new, to get status of the last compression/

decompression stream operation.
4 CChunkStreamWriter, CChunkStreamReader — new classes for serialization and

deserialization of interleaved sequences of control symbols and chunks of binary data.
These two classes are primarily intended for use with asynchronous stream readers/
writers.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 CMaskRegexp — new regexp based class to match string against set of masks.
6 CIStreamBuffer — now can be built directly on a memory buffer.
7 ILineReader — now can construct a line reader on top of a file thus utilizing more

efficient (mmap-based) implementations.
8 Added CIReaderLineReader (line readed based on IReader interface)
9 CFormatGuess - improved format prediction, fixed stream positioning.
10 CResourcePool - added locking traits as a template parameter to provide

syncronization where it is needed.
11 Library "xqueryparse" — a lexer/parser of query language, to parse PubMed queries

and/or limited SQL SELECT subset into a query tree, for further interpretation.
12 CTimeLine — an approximate time tracker that can track millions of uniquely

numbered objects. Used for timeout control and time based garbage collection.
13 CTar — fixed bug in the splitting of long filenames; added getters for the last access

and creation; now can restore the original atime (and virtually ctime) for old GNU
formats.

SERIAL — Data Serialization (ASN.1, XML, XML Schema)
1 CObjectIStream — added option to skip unknown choice variants.
2 Restructured and documented SERIAL library headers.
3 "app/sample/asn/" — a sample project showing how to generate source code from an

ASN.1 specification (see "sample_asn.asn") and then use that code to read, convert
and write data matching that specification.

DATATOOL — Code Generator and Data Converter Tool
1 Modified XML Schema parser to preserve comments found in the Schema

specification. Enhanced parsing of comments in ASN.1 specification.
2 Enhanced datatool to use data specification comments in generated C++ code.
3 Added option to convert data specification into an easily parsable format (e.g. to be

fed to the source browsers).

CGI — CGI and Fast-CGI Application Framework
1 CCgiUserAgent::GetPlatform() — added.
2 CGI applications can produce multipart responses and suggest destination filenames.
3 Added a cookie to track the progress of Web sessions.
4 Throw an exception if the output CGI stream goes bad.

HTML — HTML Generation Library
1 Added support for XHTML output format.
2 Added OPTGROUP tag support.
3 CPopupMenu — upgraded Sergey Kurdin's popup menu to v2.7.
4 CHTMLHelper — added HTMLDecode method to decode HTML entities and

character references.
5 CHTMLHelper::HTMLAttributeEncode() — new method to encode HTML tags

attributes.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BDB — Yet Another C++ API Based On BerkeleyDB
1 Implemented multi-row fetch for cursors. Works much faster than regular fetch.
2 Added BLOB read into a resizable buffer (e.g. std::vector).
3 Split store now can free some unused memory (necessary for use in long uptime

services).

DBAPI — SQL Database Connectivity
1 FreeTDS v64 based drivers (CTLIB, ODBC and ODBCW flavors) added.
2 Authentication protocol NTLMv2 was implemented and enabled with
3 ftds64 and ftds64_odbc drivers; NTLMv1 was disabled.
4 CDB_Exception::{Get/Set}SybaseSeverity(), CDB_RPCCmd::GetProcName() —

new.
5 Posting of a warning in case of a string truncation was added to DBAPI.
6 CWString and CDB_String — new classes, to help handle wide char strings.
7 ODBC based drivers — the timeout feature implemented.
8 CVariant — semantic changed so that CVariant constructed on an empty time assumes

a "null" value.
9 Integrate a local fallback copy of UnixODBC for the sake of FreeTDS v64.
10 CTLIB driver — now uses TDS protocol 12.5 (was 11.0) by default.

ALGO — Generic Algorithms
1 Added volume merge algorithm - a variant of merge sort for external storage. This

particular implementation can use storage concurrency and work efficiently on
multiple threads.

ALGO/ALIGN/SPLIGN — Spliced and Generic Alignment Algorithms
1 CBandAligner (banded spliced aligner) — no longer requires the band to be centered

at the main diagonal.
2 CCompartmentFinder (compartmentization algorithm) — the maximum intron length

has been set to one megabase to support extra-long introns. A command line demo
utility 'compart' has been added.

3 CHitFilter (greedy alignment reconciliation) — new method s_MergeAbutting() to
merge hits abutting on either of the sequences.

4 CSplignFormatter (splign alignment formatter) — redesigned to produce a more
readable and informative text alignment view featuring coding region translations.

ALNMGR — Bio-sequence Alignment Manager
1 CAlnMerger: Fixed logic when fAllowTranslocation is used. Added early detection

of failures to merge.
2 Introducing a new approach to alignment management. It comprises of a collection

of classes and functions designed to provide flexibility, simplicity and efficiency. The
components are independent of the original alignment manager and where possible,
independent of each other. While this is still a work in progress in alpha stage, the
new code is usable and already solves a number of problems.

3 For example of usage see: objtools/alnmgr/demo/aln_build_app.cpp.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

4 List of new entities: CAlnAsnReader, MergeAlnRngColl, BuildAln, CAlnContainer,
ConvertSeqAlignToPairwiseAln, ConvertDensegToPairwiseAln,
ConvertStdsegToPairwiseAln, ConvertDendiagToPairwiseAln,
ConvertSparseToPairwiseAl, CreateAnchoredAlnFromAln,
CreateAnchoredAlnVec, IAlnExplorer, IAlnSegment, IAlnSegmentIterator,
CNonDiagFilter, CreateSeqAlignFromAnchoredAln,
CreateDensegFromAnchoredAln, CreateDensegFromPairwiseAln,
SubtractAlnRngCollections, SubtractOnFirst, SubtractOnSecond, IAlnSeqId,
TAlnSeqIdIR, CAlnSeqId, CAlnStats, CAlnIdMap, CAlnUserOptions,
CAlnValidate

BLAST
1 CDbBlast -deprecated, superceded by CLocalBlast class.
2 Major redesign of the low-level nucleotide BLAST routines. blastn and megablast

should be significantly faster for smaller queries.
3 Lookup table improvements in CORE BLAST, optimized ScanSubject routines,

compressed query support.
4 Added functionality to use the Smith-Waterman algorithm instead of the BLAST

algorithm.
5 Added blastinput library to read FASTA files into BLAST input.
6 Added dbindex library to enable megablast search against a pre-indexed database.

This can speed up searches in case of short (<100Kbases) queries against a large fixed
database.

7 'makeindex' program located in dbindex/makeindex/ can be used to create indices
from either fasta files or directly from BLAST databases.

8 Added HSP range support, an interface to fetch parts of nucleotide sequences which
improves performance in the traceback stage.

9 Use CBlast4Field instead of hard coded strings in blast::CRemoteBlast.
10 Implemented feature to ignore strand blast::SSeqLoc::mask.
11 Preliminary alignment no longer computes traceback under any circumstances.

BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_align, CDense_diag, CStd_seg — allow negative offsets in OffsetRow
2 Sparse-seg, Sparse-align — use vector (instead of list) container
3 CSeq_id::IdentifyAccession() — recognizes more prefixes (AC_, EF-EL, plus

internal genome pipeline prefixes) and (mixed-in) EMBL TPA protein accessions,
and supports automatically loading the data it needs from an external file.

4 CFastaReader — handles excerpts as new local sequences with appropriate history
rather than gappy versions of their parents.

5 CFastaReader — stores deflines in user descriptors for reference.
6 CBioseq::PackAsDeltaSeq(), CDelta_ext::AddAndSplit() — new methods (powered

by new code in library sequtil) to pack nucleotide sequences with occasional
ambiguities in multiple pieces for better overall efficiency.

7 Improved seq-id matching rules in seq-id mapper.
8 CSeq_loc_Mapper_Base, CSeq_align_Mapper_Base — new classes which can be

used without creating ObjectManager.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

LDS — Local Data Storage
1 CLDS_Manager — major redesign.
2 lds_indexer — new utility to create or update index files for directories with FASTA

or ASN sequences.
3 Added indexing of file names

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
New functionality:

1 CBioseq_EditHandle(CBioseq_Handle) made public and explicit to avoid
unnecessary GetEditHandle() calls.

2 Introduced CSeq_feat_EditHandle.
3 Introduced CSeq_annot_ftable_CI and CSeq_annot_ftable_I.
4 Implemented TakeFeat() like methods.
5 Implemented user API to Update() annotation index.
6 Added RemoveTopLevelEntry(CSeq_entry_Handle).
7 AddXxx() and GetXxxHandle() accept extra control argument EMissing/EExist.
8 Added more exception types.
9 Added functions to calculate sequence map switch points.
10 Recognize Seq-data.gap.
11 Added feature ids index and retrieval.
12 Added information about local feat-ids to ID2 split specification.
13 Added generation of feature ids information in ID2 blob splitter.
14 Use feature lookup by feat-id in GetBestXxxForXxx().
15 Implemented seq-map switch editing.
16 Implemented SAnnotSelector::Reset*NamedAnnots().
17 Accept SNP quality data in OCTET STRING format.
18 Implemented full CSeqMap editing API.

Bug fixes:
1 Set name of Seq-annot only if desc.name is present.
2 MT-Safe management of the CSeqportUtil singleton.
3 Fixed removing top level entries.
4 Fixed killing threads of prefetch manager.
5 Fixed order of multi-id annotations.
6 Store annots indexing information to allow reindexing after modification.
7 Avoid feature mapping dependency on memory placement.
8 Disable multi-conversion of SNPs.
9 Added check for self-references in CSeqMap_CI.
10 Fixed GetRight() for single-strand CHandleRange.
11 PDB chain in Seq-id is case sensitive.
12 Fixed lost CSeq_data in split sequences.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

13 Preserve original type of Seq-inst after editing if possible.
14 Fixed incorrect usage of CSeqMap::x_GetSegmentsCount().
15 Clean Seq-id cache on edit start.
16 Automatically reset 'annot' field if it's empty.

RemapAlignToLoc(), CSeq_align::RemapToLoc() — new.

OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
(GenBank data loader)—New functionality:

1 Added parsing of feature ids information.
2 Allow unknown members/variants in split info.

Bug fixes:
1 Properly mark withdrawn and confidential records.
2 Limit number of simultaneously requested blobs to avoid hangs with PIG ids.
3 Detect 'suppressed' state.
4 Fixed exclude-blobs list.

BUILD FRAMEWORK (UNIX)
1 $(BLAST_LIBS), $(BLAST_FORMATTER_LIBS) — new macros to isolate users

from BLAST's internal dependency changes.
2 $(DLL_UNDEF_FLAGS) — new variable, normally set to $(ALLOW_UNDEF);

may alter to $(FORBID_UNDEF) to request strict dependency checking.

PTB — Project Tree Builder for MSVC++ .NET
1 Added option to allow setting linker additional dependencies and additional library

directries in MSVC tune-up files
2 LST-file filter now can recognize regular expressions in the directory names.
3 Enable configurations when:
3rd party library is absent, but not required
libraries with a choice where one of the choices is empty.
4 Added option to automate tweaking the toolkit tree for use with VTune.
5 Optimized to speed up the configuration on MSVC8.0.

APPLICATIONS
1. NetCache
! Added support of in-memory logs

2. NetSchedule
! Moved to new thread-per-request server framework (based on CServer)
! Implemented fast reply of idle worker node cluster. Important for the CGI request

processing.
! Implemented a dynamic creation/deletion of queues.
! Implemented tags for job grouping and reporting.

3. ASN2ASN

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! Allow conversion of multiple entries in file.

GRID (DISTRIBUTED COMPUTING) FRAMEWORK
Grid Worker Node Implementation Framework

1 Added "auto_shutdown_if_idle" parameter to worker nodes'
2 configuration files. It allows shutting down a worker node automatically if it is idle

for some period of time.
3 Added option to perform a monitor script from jobs running through "remote_app"

and "remote_cgi" utilities. This script allows getting a job's progress execution and
making a decision if the job should be terminated.

4 Redesigned and re-implemented low-level NetSchedule client API. It allows making
permanent connections to the load-balanced NetSchedule servers.

5 Moved all Grid Framework APIs and utilities to the new low-level NetSchedule API.
6 Added support from jobs' tags submission to "ns_submit_remote_job" utility.

Documentation
Location

The documentation is available online as a searchable book "The NCBI C++ Toolkit": http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the up-to-date public or in-house versions
using source browsers Entrez, LXR, Doxygen and Library.

HEADS-UP: We have switched our source control system from CVS to SVN (Subversion).
Unfortunately, the SVN repository cannot (yet) be accessed from outside NCBI. The CVS code
repository now contains older version of the source trees (before mid-January 2007) but it still
can be accessed via a Web interface (see the sidebar box on each page of the C++ Toolkit
Book).

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms (but may also work on
other platforms). Since the previous release, some platforms were dropped from this list; just
because we do not use them inhouse anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
— in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.6.x (w/ LIBC 2.3.2, 2.3.5) x86-32 GCC 3.4.0
ICC 8.0 (build 20040520Z, package ID l_cc_pc_8.0.066_pe067.1)
(GCC 3.0.4, 2.95.3, 3.4.2, 4.1.1- nominal support)

Linux-2.6.x (w/ LIBC 2.3.3, 2.3.5) x86-64 GCC 4.0.1ICC 9.0 (build 20051201)
(GCC 4.1.1 - nominal support)

Solaris-8
[Support will be discontinued in the next release!]

SPARC C++ 5.3 (WorkShop 6u2) patch 111685-24
(64-, 32-bit) (GCC 3.4.3 - nominal support)

Solaris-10 SPARC Sun C++ 5.5 (Studio8) patch 113817-19
GCC 4.0.1 (32-bit mode only)

Solaris-9 x86-32 C++ 5.3 (WorkShop 6u2) patch 111686-13
GCC 3.4.3

Solaris-10 x86-32 Sun C++ 5.5 (Studio8) patch 113819-19
GCC 4.1.1

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-4.10 x86-32 GCC 3.4.2

FreeBSD-6.1 x86-32 GCC 3.4.4

Digital Tru64 Unix 5.1 (aka OSF1)
[Support will be discontinued in the next release!]

ALPHA GCC 3.3.2 (limited support)

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows-32 MS Visual Studio .NET 2003 (C++ 7.1).NOTE: We also ship an easily buildable archive of 3rd-party packages (including
NCBI C Toolkit) for this platform.

MS Windows-32 MS Visual Studio .NET 2005 (C++ 8.0)

MS Windows-64 MS Visual Studio .NET 2005 (C++ 8.0)

Cygwin 1.5.18 -32 GCC 3.4.4

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Compilers

Darwin on MacOS X 10.4 ("Tiger") GCC 4.0.1

Darwin on MacOS X 10.4 ("Tiger") Xcode 1.5 - 2.2.1

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configXcode
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2007/Mar_12_2007/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configMS_Visual_C
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_configCygwin_GCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_configGCC

Caveats and Hints
GCC 2.95

1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI as soon as we have any significant trouble with

its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. — Starting
with BINUTILS 2.12 linker tries to merge constant/debug strings marked for merging
in object files. But it seems it does this job very inefficiently - I've seen messages
about it in internet. GCC starting with version 3.2 marks section of string constants
ready for merging, and also has an option to disable this flag in object files (-fno-
merge-constants). Adding this flag to compilation stage allows to avoid slow linking.
GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significantly slower than
with GCC 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). BINUTILS 2.15
fixes this. The link time still 2 times slower than without symbol merge, but the
resultant executable is about two times smaller in size, and no compiler patching is
necessary. We are still testing it in-house. We had to patch GCC 3.3 in-house with
the fix described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3, [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 — until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 (and maybe 3.4.5+) and 4.0 have a bug in the C++ stream library
that affects some parts of our code, notably CGI framework. (Fixed in 4.0.1).

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Last Updated
This section last updated on March 27, 2007.

Page 12

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (August, 2006)

! Download
! Build
! New Developments

" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML)
" DATATOOL — Code Generator and Data Converter Tool
" CGI — CGI and Fast-CGI Application Framework
" HTML — HTML Generation Library
" BDB — Yet Another C++ API Based On BerkeleyDB
" DBAPI — SQL Database Connectivity
" ALGO/ALIGN — Spliced and Generic Alignment Algorithms
" BLAST
" BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM

++)
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
" OM++ DEMO program (objmgr_demo)
" BUILD FRAMEWORK (UNIX)
" PTB — Project Tree Builder for MSVC++ .NET
" APPLICATIONS
" GRID (DISTRIBUTED COMPUTING) FRAMEWORK

CONNECT/SERVICES — Components for the Network Grid
Framework

Grid Worker Node Implementation Framework
! Documentation
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints
" GCC 2.95
" GCC 3.0.4
" GCC 3.3
" GCC 3.4.x, 4.0.x

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Download
Download the source code archives at:

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/
! ncbi_cxx--Aug_14_2006.tar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX/GCC
! ncbi_cxx--Aug_14_2006.gtar.gz — for UNIX'es (see the list of UNIX flavors below)

and MacOSX/GCC
! ncbi_cxx--Aug_14_2006.exe — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0) — self-extracting
! ncbi_cxx--Aug_14_2006.zip — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,

8.0)
! ncbi_cxx_mac_xcode--Aug_14_2006.gtar.gz — for MacOSX 10.4 / Xcode 1.5-2.2.1

The sources correspond to the NCBI production tree sources from patch
"RELEASE_AUG_2006", which in turn roughly corresponds to the development tree sources
from the very end of July, 2006.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
! NCBI_C_Toolkit
! ThirdParty

Build
For guidelines to configure, build and install the Toolkit see here.

New Developments
CORELIB — Portability and Application Framework

1 IBlobStorage::DeleteStorage() — new method, to delete the whole storage
2 CExec::Spawn*() — changed return type from 'int' to 'CResult'
3 CExec::QuoteArg() — new method to help quote cmd.line arguments
4 CExec::Wait() — now can work with a *list* of process handles
5 NStr::Split(), Tokenize(), TokenizePattern() — can optionally return the tokens'

positions in the string
6 CTime — use special new type TSeconds to represent seconds
7 CStopWatch::AsSmartString() — new method to facilitate the printing of time span
8 FindFilesInDir<> — now can find files in sub-directories without applying masks to

sub-directory names
9 Diagnostics — output now can be split and sent to several log files: error, trace and

application access log
10 Added diag-stream manipulators Severity() and Message.
11 Command-line arguments — allow '-' in argument names. Allow '=' as separator

between argument's name and value. Allow to omit separator for single-char names.
Added argument aliases.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/ncbi_cxx--Aug_14_2006.tar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/ncbi_cxx--Aug_14_2006.gtar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/ncbi_cxx--Aug_14_2006.exe
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/ncbi_cxx--Aug_14_2006.zip
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/ncbi_cxx_mac_xcode--Aug_14_2006.gtar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/NCBI_C_Toolkit/README

12 stream_utils.hpp — moved from UTIL to CORELIB
13 CRWStreambuf — now can report the stream's current position
14 CNcbiApplication::SetExitCode() — new (protected) method to force
15 AppMain() to return a specified value, either unconditionally or only on uncaught

exceptions

CONNECT — Data streaming, Networking, and Dispatching
1 CPipe — allow to specify current working directory and environment for the child

processes
2 Generic routines, which are not connection-related, such as GetUsername,

GetVMPageSize, CRC32 moved from ncbi_connutil.[ch]pp to ncbi_util.[ch]pp
3 UTIL_MatchesMaskEx() — new function, to control over whether case-sensitive

comparison must be done when matching the mask
4 ncbi_local.[ch] — implements LOCAL service mapper, the one that does not require

NCBI or load-balancer to resolve services
5 SConnNetInfo::http_referer — new field, added and supported throughout HTTP/

service connections
6 ncbi_service.c — use HTTP referrer for services, if specified. Otherwise, set a default

one, according to the mapper type being used
7 SSendMailInfo::mx_options — new bitmask field, to replace boolean field

SSendMailInfo::mx_no_header. It's backward-compatible; the new options are to
control how to deal with incomplete host names (non-FQDN), stricter mailer agents,
and for future extensions. MX_PORT, MX_HOST and MX_TIMEOUT retired.

UTIL — Miscellaneous Low-Level APIs
1 CRegexp::WildcardToRegexp() — new method to convert wildcard search pattern

to the regular expression one
2 CZipCompression::EstimateCompressionBufferSize() — added
3 CBlobStorage_File — new, file based implementation of IBlobStorage interface
4 CCache::CreateElement() — new callback to allow creation of absent elements on

the fly
5 ILineReader — new lightweight interface for getting lines of text with minimal

memory copying
6 CStreamLineReader, CMemoryLineReader — implementations of interface

ILineReader for input streams and memory regions, respectively

SERIAL — Data Serialization (ASN.1, XML)
1 Data objects generated from DTD or XML schema specs now can be serialized in

ASN.1 text or binary format so that writing such object in ASN.1 format and reading
it back re-creates an exact copy of the original object.

DATATOOL — Code Generator and Data Converter Tool
1 XML Schema parsing — now, in addition to ASN.1 and DTD specifications, it is

possible to generate the C++ serialization code out of the XML Schema specs
2 XML Schema code generation — redesigned to preserve in ASN.1 the local elements

defined in XML Schema

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 DTD parser — now can preserves comments found in DTD specification and print
them out when converting the specification to other formats (ASN.1 or XML Schema)

CGI — CGI and Fast-CGI Application Framework
1 Set session tracking cookie by default
2 New CGI log formatting. Default log location set to /log/<port >/.
3 [FastCGI] WatchFile.RestartDelay — new configuration parameter, directing

FastCGIs to stagger their restarts over the corresponding number of seconds

HTML — HTML Generation Library
1 CNCBINode::RemoveChild() — added
2 CHTMLPage — changed CreateTemplate(), LoadTemplateLibFile() and
3 SetTemplateFile() to minimize system calls if file template caching is enabled

BDB — Yet Another C++ API Based On BerkeleyDB
1 Implemented a split BLOB storage.

DBAPI — SQL Database Connectivity
1 CDB_ classes — interface and implementation have been separated
2 "sqlite3" — new driver, for SQLite v3 database. It implements LanfCmd and

BCPCmd interfaces.
3 CDB_UserHandler — is inherited from CObject now.
4 CDBConnectionFactory — new methods CalculateConnectionTimeout() and

CalculateLoginTimeout().
5 CDB_Exception — server and user names have been added as members. Also, added

Set/GetServerName() and Set/GetUserName() access methods
6 CDB_Exception::Get/SetSybaseSeverity — new methods. Sybase severity will be

available with Sybase ctlib/dblib driver only. It is not available with other drivers
7 I_SendDataCmd::Cancel(), CDB_SendDataCmd::Cancel() — new
8 C***Cmd::Release() — deprecated
9 C_ITDescriptorGuard — deprecated
10 I_BaseCmd::WasSent(), I_BaseCmd::WasCanceled() — deprecated
11 I_DriverContext — argument EOwnership has been added to methods

PushCtxMsgHandler() and PushDefConnMsgHandler()

ALGO/ALIGN/SPLIGN — Spliced and Generic Alignment Algorithms
1 CSplign — upon completion of alignment, compartments with identities below the

threshold specified by the minimal singleton identity parameter are screened off. Extra
penalty is given to in-cds indels to void unneccesary frameshifts. Coding regions are
identified on the fly as longest ORFs. Splign's pairwise mode benefited from using
the new version of the FASTA reader. The common 'sense' and 'antisense' terminology
is now used to designate cDNA alignment direction.

2 CHitFilter — Coordinate marging argument introduced to balance between RAM and
speed. Length and identity cut-offs are applied at the output. A new parameter
(retain_overlap) has been introduced to exempt alignments overlapping over intervals
longer than this parameter from uniquification.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BLAST
1 Reorganization of the BlastQueryInfo structure
2 Residues 'O' and 'J' are replaced by 'X' in queries
3 Standard scoring matrices are first searched for inside XUTIL library — before

attempting to read them from the file system
4 Introduced functionality to compute blastn word size to optimize the probability of

finding hits with the specified properties
5 Allow for 26- and 28-letter alphabets in RPS-BLAST databases
6 Enabled the use of composition-based statistics for blastp by default
7 Refactoring and optimization of DiagStruct to reduce size of working set
8 CRemoteServices — new class, to retrieve data from BLAST that is not associated

with a particular RID
9 CSeqDBExpert — new class, for obscure, internal, and experimental features
10 Add an experimental option for computing a p-value based on the composition of two

sequences and for combining this value with an alignment E-value to produce a
"unified" E-value

11 Composition adjustment library — made compatible with either a 26- or 28-letter
amino acid alphabet, to reflect the recent addition of 'J' and 'O' to the alphabet used
by BLAST blastp — to compute approximate gapped alignments in the preliminary
stage of the BLAST search (see reference in s_RestrictedGappedAlign)

BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_align::CreateDensegFromDisc() — new
2 CSeq_align::RemapToLoc() — deprecated
3 CSeq_id::IdentifyAccession() — support the new prefixes EC-EE
4 CSeq_id — loosen syntax requirements for bare PDB accessions
5 CFastaReader — new reader for FASTA files, implemented as a class designed to

support a wide range of potential specialized subclasses
6 CFeature_table_reader::ReadSequinFeatureTables() — new method that takes a

CSeq_entry& on which to place the feature tables read
7 PackAsUserObject, UnpackUserObject — add support for BitString and AnyContent

values

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
1 Allow use of separate scopes in standard prefetch actions.
2 Implemented waiting in CStdAction.
3 Implemented CPrefetchSequence for real limited prefetch.
4 Added CScope::GetObjectManager().
5 Added limiting range argument to CSeqMap_CI constructor.
6 Added overloaded CScope::GetObjectHandle() & CScope::GetObjectEditHandle().
7 Added CSeq_annot_ftable_CI.
8 CSeq_loc_Mapper — fixed mapping of std-segs, gaps in alignments, order of

intervals in mapped locations, duplicate mappings, etc. Make it convert the mapped
seq-loc-mix into packed-int if possible.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

9 TestForOverlap() — new type eOverlap_CheckIntRev, to fix overlap testing in
GetBestXXXForCds()

OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
1 Added description of STS external annotations.

OM++ DEMO program (objmgr_demo)
1 id2_fetch — new option "-count" to issue repeated queries

BUILD FRAMEWORK (UNIX)
1 Configure supports a new "--with-flat-makefile" option that produces an alternative

top-level Makefile.flat with rules for all configured applications and libraries
2 Meta-makefiles now can define XML-schema-based libraries by setting XSD_PROJ

PTB — Project Tree Builder for MSVC++ .NET
1 PTB now can work on UNIX. UNIX shell script 'scripts/create_flat_makefile.sh'

builds PTB locally, and then uses it to generate flat makefile (Makefile.flat) in the
build directory. The flat makefile allows for an effective use of parallel and distributed
make, which considerably speeds up the build. It also makes it a breeze to build any
single target application or library, with all needed dependencies.

2 Makefile.*.msvc tune-up files — now can redefine makefile macros on MS Windows
platfrom

APPLICATIONS
1 NetCache

! Implemented cache cleaning function for ICache interface.
! Fixed bug in automatic session management shutdown.

2 NetSchedule
! Allow to give the status summary for the given affinity token
! Added return code to failure reporting
! Added output argument to PutFailure
! Fixed bug in job expiration/prolongation/restart algorithm
! Implemented methods to delay job expiration
! Implemented cout/cerr redirection for worker nodes
! Added option to immediately delete job when it is done
! More detailed log on the causes of server shutdown
! Added support for job flags (such as "exclusive" jobs)

3 NetBVStore — new (very experimental) server to provide a distributed storage of bit
vectors, with convenient access to the selected parts of the bit vector data

GRID (DISTRIBUTED COMPUTING) FRAMEWORK
CONNECT/SERVICES — Components for the Network Grid Framework

1 CRADispatcherClient — new client API to remotely run command-line applications
working under the control of the GRID framework, using HTTP (see also
remote_app_dispatcher.cgi)

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 Added new configuration parameters for grid worker nodes:
! infinite_loop_time - maximum execution time for a job
! check_status_period - how often the node should check the state of jobs which

are being processed

Grid Worker Node Implementation Framework
1 remote_cgi — an utility to run an arbitrary CGI application as a component of the

Grid Framework
2 ns_remote_job_control — an utility to monitor and manage various components of

the Grid Framework
3 remote_app and remote_cgi — provided with the new configuration parameters:

! keep_alive_period - how often to send notification messages to the queue
server

! max_app_run_time - limit application's maximum run time
! non_zero_exit_action - what to do if the remote application returns a non-

zero exit code
4 Remote Application — added support for an optional saving of STDOUT and

STDERR into local files
5 Worker Node — now supports so-called Exclusive Jobs. The exclusive job is a job

which is expected to occupy all resources of a worker node, so the worker node must
not get any other jobs while an excusive job is being processed.

6 remote_app_dispatcher.cgi — a gateway CGI to give access to the Remote
Applications via Web (see also its client API, CRADispatcherClient). In particular,
it can allow non-NCBI clients to take advantage of the Remote Applications running
on NCBI servers.

Documentation
Location

The documentation is available online as a searchable book "The NCBI C++ Toolkit": http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search runs a CGI script that lists the library name where
the symbol (such as function) is defined in.

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms — but may also work
on other platforms. Since the previous release, some platforms were dropped from this list, just
because we do not use them here anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
— in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.6.x (w/ LIBC 2.3.2, 2.3.5) x86-32 GCC 3.4.0
ICC 8.0 (build 20040520Z, package ID l_cc_pc_8.0.066_pe067.1)
(GCC 3.0.4, 2.95.3, 3.4.2, 4.1.1- nominal support)

Linux-2.6.x (w/ LIBC 2.3.3, 2.3.5) x86-64 GCC 4.0.1
ICC 9.0 (build 20051201)
(GCC 4.1.1 - nominal support)

Solaris-8 SPARC C++ 5.3 (WorkShop 6u2) patch 111685-23 (64-, 32-bit)
(GCC 3.4.3 - nominal support)

Solaris-10 SPARC Sun C++ 5.5 (Studio8) patch 113817-18
GCC 4.0.1 (32-bit mode only)

Solaris-9 x86-32 C++ 5.3 (WorkShop 6u2) patch 111686-13
GCC 3.4.3

Solaris-10 x86-32 Sun C++ 5.5 (Studio8) patch 113819-15
GCC 4.1.1

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-4.10 x86-32 GCC 3.4.2

Digital Tru64 Unix 5.1 (aka OSF1) ALPHA GCC 3.3.2

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows-32 MS Visual Studio .NET 2003 (C++ 7.1).
NOTE: We also ship an easily buildable archive of 3rd-party packages (including NCBI C Toolkit) for this platform.

MS Windows-32 MS Visual Studio .NET 2005 (C++ 8.0)

MS Windows-64 MS Visual Studio .NET 2005 (C++ 8.0)

Cygwin 1.5.18 -32 GCC 3.4.4

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_config.Cygwin_GCC
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_config.MS_Windows
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/ThirdParty/README
file://localhost/Users/Laura/Desktop/pdf/ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Aug_14_2006/NCBI_C_Toolkit/README
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_config.MS_Visual_CNET_80
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.MS_Windows#ch_config.MS_Visual_CNET_80

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Compilers

Darwin on MacOS X 10.4 ("Tiger") GCC 4.0.1

Darwin on MacOS X 10.4 ("Tiger") Xcode 1.5 - 2.2.1

Caveats and Hints
GCC 2.95

1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI as soon as we have any significant trouble with

its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. — Starting
with BINUTILS 2.12 linker tries to merge constant/debug strings marked for merging
in object files. But it seems it does this job very inefficiently - I've seen messages
about it in internet. GCC starting with version 3.2 marks section of string constants
ready for merging, and also has an option to disable this flag in object files (-fno-
merge-constants). Adding this flag to compilation stage allows to avoid slow linking.
GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significantly slower than
with GCC 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). BINUTILS 2.15
fixes this. The link time still 2 times slower than without symbol merge, but the
resultant executable is about two times smaller in size, and no compiler patching is
necessary. We are still testing it in-house. We had to patch GCC 3.3 in-house with
the fix described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3, [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 — until we finally upgraded to binutils
2.15.

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_config.Xcode
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.section.ch_config.Mac_OS_X#ch_config.GCC

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 (and maybe 3.4.5+) and 4.0 have a bug in the C++ stream library
that affects some parts of our code, notably CGI framework. (Fixed in 4.0.1).

Last Updated
This section last updated on August 22, 2006.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (April 30, 2006)

! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" PLATFORMS AND CONFIGURATIONS
" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML)
" CGI — CGI and Fast-CGI Application Framework
" HTML — HTML Generation Library
" BDB — Yet Another C++ API Based On BerkeleyDB
" Local data storage
" DBAPI — Generic SQL Database Connectivity
" ALGO/ALIGN/SPLIGN — Spliced Alignment Algorithms
" ALNMGR — Bio-sequence Alignment Manager
" BLAST
" BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM

++)
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
" OM++ DEMO program (objmgr_demo)
" BUILD FRAMEWORK (UNIX)
" PTB — Project Tree Builder for MSVC++ .NET
" APPLICATIONS
" GRID (DISTRIBUTED COMPUTING) FRAMEWORK

! Documentation
" Document Location
" Document Content

! Building on the MacOS
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints
" GCC 2.95

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! GCC 3.0.4
! GCC 3.3
! GCC 3.4.x, 4.0.x

" Last Updated

Download Location
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/

Source Archive Contents
Source Code Archives

" ncbi_cxx--Apr_30_2006.tar.gz — for UNIX'es (see the list of UNIX flavors below)
and MacOSX/GCC

" ncbi_cxx--Apr_30_2006.gtar.gz for UNIX'es (see the list of UNIX flavors below) and
MacOSX/GCC

" ncbi_cxx--Apr_30_2006.exe — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,
8.0) — self-extracting

" ncbi_cxx--Apr_30_2006.zip — for MS-Windows (32- and 64-bit) / MSVC++ (7.1,
8.0)

" ncbi_cxx_mac_xcode--Apr_30_2006.gtar.gz — for MacOSX 10.4 / Xcode 1.5-2.2.1
The sources correspond to the NCBI production tree sources from patch
"CATCHUP_APR_2006", which in turn roughly corresponds to the development tree sources
from the very beginning of April, 2006.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
" NCBI_C_Toolkit
" ThirdParty

New Development
PLATFORMS AND CONFIGURATIONS

A Newly (re)supported:
1 MS Visual Studio 2005 (both 32- and 64-bit).
2 Mac OS X 10.4 (Tiger).
3 GCC/Cygwin. NOTE: As of now, it supports static builds only, DLLs are

not buildable.
4 GCC with GNU ld on Solaris 10 (as long as the patch from http://

sourceware.org/bugzilla/show_bug.cgi?id=1031 has been applied)
B Discontinued:

1 CodeWarrior on MacOSX

CORELIB — Portability and Application Framework
1 CDirEntry::SplitPathEx() — new function, to split a path string into its basic

components (not OS-specific version).

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://sourceware.org/bugzilla/show_bug.cgi?id=1031
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/ncbi_cxx--Apr_30_2006.tar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/ncbi_cxx--Apr_30_2006.gtar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/ncbi_cxx--Apr_30_2006.exe
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/ncbi_cxx--Apr_30_2006.zip
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/ncbi_cxx_mac_xcode--Apr_30_2006.gtar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/NCBI_C_Toolkit/README
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/ThirdParty/README
http://sourceware.org/bugzilla/show_bug.cgi?id=1031

2 CDir::SetCwd() — new function, to change the current working directory.
3 CFileUtil::GetFileSystemInfo() — new function.
4 CMemoryFile — new method.added constructor parameters for automatic creating/

extention of the mapped file. Added new Extend() method.
5 NStr::TStringToNumFlags — replaced by the integer-based counterparts. Replace

NStr::fStringToNumDefault by 0 if you have compile errors.
6 NStr::StringToDouble() — added TStringToNumFlags flags support.
7 CStopWatch::Stop() — new function, to suspend a "timer".
8 SetCpuTimeLimit() — added new parameter - maximum process termination time

(default 5 seconds)
9 CProcess::Kill() — added linger_timeout parameter to more control of process

termination.
10 Sleep*() — try to utilize unslept part of the time if interrupted by a signal.
11 CExec::RunSilent() — new function to run console applications on MS Windows

without terminal window. On UNIX, it is equivalent to SpawnL().
12 IBlobStorage:

! changed its name from bormer INetScheduleStorage
! moved to the corelib (from connect/services)
! got equipped with a class factory CBlobStorageFactory

13 CSafeStatic[Ptr|Ref] — added life span parameter for safe static objects. By default
protect only initialization of an object, but do not control its lifetime.

14 Added groups and error handler for application arguments.
15 IReader/IWriter abstraction as well as stream implementation on top of IReader/

IWriter-based stream buffer moved from UTIL to here.
16 CPluginManager — new methods, to tune the DLL search paths: ResetDllSearchPath

(), SetDllStdSearchPath() and GetDllStdSearchPath().
17 Macros NCBI_RESTRICT and NCBI_FORCEINLINE — now available on all

platforms.

CONNECT — Data streaming, Networking, and Dispatching
1 CPipe::Poll() — new function to check for the immediate availability of data in the

pipe.
2 SOCK_HostPortToString() and SOCK_StringToHostPort() — new functions

equivalent to the now obsolete HostPortToString() and StringToHostPort().
3 CONNUTIL_GetUsername() and ConnNetInfo_SetupStandardArgs() — new.

UTIL — Miscellaneous Low-Level APIs
1 CCache — new class template, implements a generic cache of objects..
2 CRegexp — added new methods Escape(), IsMatch().
3 CBlockingQueue<>, CPoolOfThreads<> — reworked to support increased user

control (via handles) and optionally run callbacks upon status changes.
4 CBlockingQueue<>::Put, CPoolOfThreads<>::[x_]Accept[Urgent]Request —

Accept an optional timeout in which space may become available, defaulting to zero
for consistency with existing behavior.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

SERIAL — Data Serialization (ASN.1, XML)
1 Added support of BIT STRING type data in serialization streams.
2 Added serial stream manipulators with parameters: MSerial_Format,

MSerial_VerifyData, MSerialXml_DefaultStringEncoding.
3 Added input stream object iterators:

CIStreamObjectIterator and CIStreamStdIterator
4 Added an option to write 64 bits integer data in ASNTOOL-compatible way.
5 ASN.1-based-object converter (for integrating C Toolkit code) — accommodate the

C Toolkit's nonstandard treatment of Int8 fields, and allow text mode as an option in
case other binary-representation issues somehow crop up.

6 RPC clients (for ID1, Entrez2, etc.) automatically retry in a wider range of
circumstances.

CGI — CGI and Fast-CGI Application Framework
1 CCgiSession — new class, to pass user data between CGI calls. The default storage

for the data is uses NetCache, but that can be easily changed by implementing
ICgiSessionStorage interface in any other way.

2 CCgiException — added HTTP status code and message.
CCgiApplication — generates HTTP status header if it is set in CCgiException.

HTML — HTML Generation Library
1 CHTMLPage — added possibility to cache template files and template libraries.

BDB — Yet Another C++ API Based On BerkeleyDB
1 CBDB_Env — added method to control reverse splitting of pages (RevSplitOff()).

Local data storage
1 Added read-only open mode.

DBAPI — SQL Database Connectivity
1 IConnValidator — new interface, to detect the status of database connection.
2 CTrivialConnValidator and CConnValidatorCoR implementations of

IConnValidator.
3 I_DeriverContext::ConnectValidated() — new method, to check for the overall

validity of the database connection after establishing the connection.
4 Close() — method added to all context/command-aware classes.
5 Treat database messages with severity == 10 && msgnumber == 0 as having

informational severity. Replaced fatal severity of SQL Server error messages with
error severity.

6 Added new sample application dbapi_conn_policy.

ALGO/ALIGN/SPLIGN — Spliced Alignment Algorithms
1 CSplign -

Min singleton identity parameter re-introduced to control the identity cut-off for
compartments unique per subject per strand. Parts of the code have been optimized
including data loading and core dynamic programming

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 CHitFilter -
Maximal Greedy Reconciliation algorithm have been introduced to enforce non-
redundancy of pairwise alignments across multiple sequences.

ALNMGR — Bio-sequence Alignment Manager
1 CAlnMix::fRemoveLeadTrailGaps — new flag, to remove end gaps.

BLAST
1 * Variable word size feature has been removed.
2 * Removed (no longer needed) per-search-type constructors for CRemoteBlast.
3 Optimizations to lookup table width choice.
4 Introduced new varieties of composition based statistics.
5 Enable the use of composition based statistics for tblastn.
6 Added interruptible API to CBl2Seq.
7 * Add support for user-specified query masked locations in CRemoteBlast.
8 Optimizations to RPS-BLAST word finder.
9 Set number of subjects per database chunk adaptively.
10 Changed how the B, Z, X and U residues are scored within the composition adjustment

library. Most significantly, the method of computing scores involving X has changed.
The score of aligning X to a character is the expected score of aligning that character
to any true amino acid, subject to the restriction that the score be at most -1. The score
of aligning X to itself is the expected score of aligning any two true amino acids, again
subject to the restriction that the score be at most -1. U is treated as equivalent to X.
The score of aligning a true amino acid to the rare B or Z characters is computed by
a log odds formulation that uses the sum of the target or background frequencies of
the two characters each ambiguity character represents as the target or background
frequency of the ambiguity character.

BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM++)
1 * CSeq_id — ParseFastaIds() treats untagged numeric IDs as local IDs rather than

GIs, which must be tagged gi|... in this context.
2 * CSeq_id — use (and accept) the FASTA ID tag pgp|... for "pre-grant

patents" (applications).
3 CSeq_id — disregard extra trailing vertical bars in FASTA-style IDs.
4 CSeq_id — IdentifyAccession() supports several new prefixes (DX through EB).
5 Support the new amino acid codes J/Xle and O/Pyl.

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
1 CSeqLocMapper — if intervals get truncated while mapping, it is now idicated by

setting fuzz to lim tl/tr.
2 CSeqLocMapper — added flag to check strands before mapping (allows to filter out

locations which are not on the source strand).
3 Added methods to collect only the annotations of selected types rather than all

annotation objects.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
1 Modified Phrap reader to allow aligned segment to be shorter than base segment, skip

WR, CT and RT tags in some cases. Generate warnings when skipping tags.

OM++ DEMO program (objmgr_demo)
1 Added options to use LDS and BLAST data loaders.

BUILD FRAMEWORK (UNIX)
1 * The minimum supported Berkeley DB version is now 4.3. (4.4 is also fully

supported.)
2 Configure now supports —with-distcc, which behaves similarly to —with-ccache

apart from being off by default.
3 compilers/GCC.sh now supports looking for a specific GCC version, which the user

can supply as an optional first argument.
4 Configure now supports a —with-gbench option that ensures correct compilation

options (—with-mt —with-dll) and errors out if any of the third-party libraries
Genome Workbench requires are unavailable.

PTB — Project Tree Builder for MSVC++ .NET
1 Added DATASPEC-ALL project, which includes all Toolkit projects with

automatically generated sources.

APPLICATIONS
1 NetCache:

! Server-side: added session management, such as automatic shutdown when
the last client is logged off.

! Client-side: added an implementation of ICache interface with NetCache.
2 NetSchedule:

! Optimization of use of BDB in order to reduce number of collisions and
deadlocks when running transactions

! Reduced memory consumption
! Changed queue truncation algorithm not to overflow in-memory transaction

log
! Fixed scheduling bug related to job affinity
! Added client registration command

GRID (DISTRIBUTED COMPUTING) FRAMEWORK
CONNECT/SERVICES — Components for the Network Grid Framework

1 CNetScheduleNSSStorage_NetCache — renamed to CBlobStorage_NetCache and
moved to a separate library.

Grid Worker Node Implementation Framework
1 Idle task facility — to allow worker node to perform some task when it is not executing

any "real" jobs.
2 "remote_app" worker node — to launch external applications or scripts via network

using NetSchedule/NetCache services.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 "max_failed_jobs" worker node configuration parameter — to specify the maximum
number of failed jobs after which the worker node will shutdown itself.

4 "use_embedded_storage" configuration parameter for the worker node (and its client
too) — to specify if the worker node should try to use a NetSchedule's internal storage
instead of NetCache blobs for passing its input/output data. This reduces the network
load and increases the data exchange.

5 "reuse_job_object" worker node configuration parameter — to have only one instance
of the IWorkerNodeJob interface per job's thread (instead of creating a new object for
each job).

6 "use_permanent_connection" worker node configuration parameter — to keep a
permanent connection to NetSchedule server (rather than to establish a new
connection for each job exchange).

Documentation
Document Location

The documentation is available online at http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
rid=toolkit.TOC&depth=2 as a book titled "The NCBI C++ Toolkit". This is an online
searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search runs a CGI script that lists the library name where
the symbol (such as function) is defined in.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

Building on the MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench), some test and a few demo applications. We also build the FLTK library's GUI editor,
fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps.

GCC
Uses a regular Unix build pattern: run configure, then make.

Xcode
When building the toolkit with Xcode, the latest version of Xcode (at least 1.5) is required for
the trouble-free build. Build procedure is as follows: open, build and run a project file in
compilers/xCode. This is a GUI tool to generate a new NCBI C++ Toolkit Xcode project. You'll
have an option to specify third-party installation directories and choose which packages (libs,
applications and tests) to include into the final project. The option to automatically download
and install all the third-party libraries is also available.

Xcode build fully supports all the latest Apple innovations: distributed builds, optional CPU
specific optimization, pre-compiled headers, fix & continue, code cleanup and Zero Link (with
few exceptions).

Xcode build has a Shell Script build phase for each Target dependent on generated ASN files.
These shell scripts use datatool to regenerate source files each time the ASN specification files
do change.

Xcode builds all libraries as a Mach-O dynamically linked shared ones (.dylib) and all Genome
Workbench plugins as Mach-O bundles (also .dylib extension). Note, that Xcode will place
Genome Workbench plugins inside Genome Workbench application bundle (Genome
Workbench.app/Contents/MacOS/plugins).

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms — but may also work
on other platforms. Since the previous release, some platforms were dropped from this list, just
because we do not use them here anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
— in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 2. Unix OS's and Supported Compilers
Operating System Architecture Compilers

Linux-2.6.x (w/ LIBC 2.3.2) x86-32 GCC 3.4.0
ICC 8.0 (build 20040520Z, package ID l_cc_pc_8.0.066_pe067.1)
(GCC 3.0.4, 2.95.3, 4.1.0 - nominal support)

Linux-2.6.x (w/ LIBC 2.3.3) x86-64 GCC 4.0.1
ICC 9.0 (build 20051201)

Solaris-8 SPARC C++ 5.3 (WorkShop 6u2) patch 111685-23 (64-, 32-bit)
(GCC 3.4.3 - nominal support)

Solaris-10 SPARC Sun C++ 5.5 (Studio8) patch 113817-15
GCC 4.0.1 (32-bit mode only)

Solaris-9 x86-32 C++ 5.3 (WorkShop 6u2) patch 111686-13
GCC 3.4.3

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-4.10 x86-32 GCC 3.4.2

Digital Tru64 Unix 5.1 (aka OSF1) ALPHA GCC 3.3.2

Table 3. MS Windows and Supported Compilers
Operating System Compilers

MS Windows-32 MS Visual Studio .NET 2003 (C++ 7.1). See documentation for building the Toolkit with MS Visual C++ .NET
NOTE: We also ship an easily buildable archive of 3rd-party packages (including NCBI C Toolkit) for this
platform.

MS Windows-32 MS Visual Studio .NET 2005 (C++ 8.0)

MS Windows-64 MS Visual Studio .NET 2005 (C++ 8.0)

Cygwin 1.5.18 on MS
Windows-32

GCC 3.4.4

Table 4. Mac OS X, and Supported Compilers
Operating System Compilers

Darwin on MacOS X 10.4 ("Tiger") GCC 4.0.1

Darwin on MacOS X 10.4 ("Tiger") Xcode 1.5 - 2.2.1

Caveats and Hints
GCC 2.95

1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI as soon as we have any significant trouble with

its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/NCBI_C_Toolkit/README
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2006/Apr_30_2006/ThirdParty/README

3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in
3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. — Starting
with binutils 2.12 linker tries to merge constant/debug strings marked for merging in
object files. But it seems it does this job very inefficiently - I've seen messages about
it in internet. GCC starting with version 3.2 marks section of string constants ready
for merging, and also has an option to disable this flag in object files (-fno-merge-
constants). Adding this flag to compilation stage allows to avoid slow linking. GCC
3.3 also sets merge flag for debug sections and unfortunately there is no option to
disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). Binutils 2.15 fixes
this. The link time still 2 times slower than without symbol merge, but the resultant
executable is about two times smaller in size, and no compiler patching is necessary.
We are still testing it in-house. We had to patch GCC 3.3 in-house with the fix
described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3, [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 — until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 and 4.0 have a bug in the C++ stream library that affects some parts
of our code, notably CGI framework. (Fixed in 4.0.1).

Last Updated
This section last updated on May 5, 2006.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (December 31, 2005)

! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" CORELIB — Portability and Application Framework
" CONNECT — Data streaming, Networking, and Dispatching
" UTIL — Miscellaneous Low-Level APIs
" SERIAL — Data Serialization (ASN.1, XML)
" CGI — CGI and Fast-CGI Application Framework
" HTML — HTML Generation Library
" BerkeleyDB API (bdb) — Much Enriched C++ API Based On BerkeleyDB
" DBAPI — Generic SQL Database Connectivity
" PYTHON database module based on DBAPI
" ALGO/ALIGN — Generic Alignment Algorithms
" ALNMGR — Bio-sequence Alignment Manager
" BLAST
" BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM

++)
" BIO-TOOLS
" LDS - Local data storage
" OM++ — Object Manager — For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
" OM++ DEMO program (objmgr_demo)
" BUILD FRAMEWORK (UNIX)
" PTB — Project Tree Builder for MSVC++ .NET
" APPLICATIONS
" GRID (DISTRIBUTED COMPUTING) FRAMEWORK

! Documentation
" Document Location
" Document Content

! Building on the MacOS
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! MacOS 10.X / CodeWarrior 9.2
! MacOS 10.2/GCC 3.3
! GCC 2.95
! GCC 3.0.4
! GCC 3.3
! GCC 3.4.x, 4.0.x

" Last Updated

Download Location
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Dec_31_2005/

Source Archive Contents
Source Code Archives

" ncbi_cxx--Dec_31_2005.tar.gz — for UNIX'es (see the list of UNIX flavors below)
and MacOSX/GCC

" ncbi_cxx--Dec_31_2005.gtar.gz — for UNIX'es (see the list of UNIX flavors below)
and MacOSX/GCC

" ncbi_cxx--Dec_31_2005.exe — for MS-Windows / MSVC++ 7.1 (self-extracting)
" ncbi_cxx--Dec_31_2005.zip — for MS-Windows / MSVC++ 7.1
" ncbi_cxx_mac_cw--Dec_31_2005.tgz — for MacOSX 10.4 / CodeWarrior DevStudio

for MacOS 9.5
" ncbi_cxx_mac_xcode--Dec_31_2005.gtar.gz — for MacOSX 10.4 / Xcode 1.5-2.2.1

The sources correspond to the NCBI production tree sources from patch
"CATCHUP_DEC_2005", which in turn roughly corresponds to the development tree sources
from the very beginning of December, 2005.

There are also two sub-directories, containing easily buildable source distributives of the NCBI
C Toolkit (for MS Windows and UNIX) and selected 3rd-party packages (for MS Windows
only). These are the versions that the NCBI C++ Toolkit should build with. For build
instructions, see README files there:
" NCBI_C_Toolkit
" ThirdParty

New Development
CORELIB — Portability and Application Framework

A. File system
1 CDirEntry — added EGetEntriesFlags type and 'flag' versions of GetEntries[Ptr]()

methods. Marked all 'enum' versions as obsolete.
2 CDirEntry::GetObjectType() implemented for all CDirEntry based classes.
3 Added class CFileUtil, now with GetDiskSpace() and GetFreeDiskSpace() methods.

B. Strings
1 NStr::JavaScriptEncode() — new method.
2 NStr::StringToXxx() — the obsolete versions (ones using 'enum') are removed for

good.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/ThirdParty/README
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Dec_31_2005
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/ncbi_cxx--Dec_31_2005.tar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/ncbi_cxx--Dec_31_2005.gtar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/ncbi_cxx--Dec_31_2005.exe
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/ncbi_cxx--Dec_31_2005.zip
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/ncbi_cxx_mac_cw--Dec_31_2005.tgz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/ncbi_cxx_mac_xcode--Dec_31_2005.gtar.gz
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/NCBI_C_Toolkit/README

3 NStr::XxxToString() — added new radix base parameter.
4 CStringUTF8 class — enhanced to also support ISO8859-1 (Latin1) and Windows

CP-1252 character encodings, and to guess the encoding of a text.

C. Time
1 CTime — now using bit fields and fixed-size types for class members, to save

memory.
2 CStopWatch —added new constructor CStopWatch(EStart). CStopWatch(bool)

declared as deprecated.
3 CFastLocalTime::GetLocalTimezone() — new method, to obtain the difference

between UTC and current local time.

D. Application parametrization
1 CParam<> — new class to handle application run-time parameters.
2 CTreeNode — redesigned to support both simple values and key-value pairs, added

search methods, removed CPairTreeNode.
3 Configuration file syntax now permits the use of CR, LF and TAB separators

in .Include, .SubNode etc. values.

E. Miscellaneous
1 Functions to convert "streampos" to/from "Int8", where possible.
2 ArraySize — template (sometimes a macro) to get a number of elements in a static

or stack array.

CONNECT — Data streaming, Networking, and Dispatching
1 HTTP connectors have got "flushable" feature (controlled by constructor's

fHCC_Flushable flag): "flushable" connectors allow forced CONN_Flush() to
actually flush the accumulated contents down to server (previous implementation
defined this as no operation, until an explicit READ or WAIT-ON-READ conditions).
This flag has also been added to SERVICE connectors (to access the cases when
HTTP is the underlying implementation).

2 CRC32 (pure C version) added; declared in <connect/ncbi_connutil.h>.
3 CSocket::ReadLine() — new method that mimics behavior of its C counterpart, and

is aimed to speed up reading by reducing the number of reallocations when filling up
a string.

UTIL — Miscellaneous Low-Level APIs
1 Implemented ZIP-style CRC32.
2 Ensure that functions to compute erf() and erfc() are available, using system-supplied

implementations where possible.

SERIAL — Data Serialization (ASN.1, XML)
1 Enhanced character encoding support in the XML serialization.
2 Corrected stream position calculations to support large (greater than 2GB) files on

the capable platforms.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 Reviewed and classified fail flags in serial object streams to allow for a more detailed
reporting of an input stream state after the read operations. In particular, it's now easier
to tell whether EOF occured in the middle of an object or between the objects.

4 Added support of ASN.1 BIT STRING data type.
5 CClassTypeInfoBase::GetRegistered{Module,Class}Names — new methods, to get

the list of registered module and class names.
6 Implemented serialization of set and map with custom comparator.

CGI — CGI and Fast-CGI Application Framework
1 CCgiUserAgent — new class, to parse user agent strings.
2 CCgiArgs_Parser, CCgiArgs — new classes to handle (parse, hold and compose) CGI

arguments.
3 CUrl — new class, to handle URLs.

HTML — HTML Generation Library
1 CHTMLHelper — added HTMLJavaScriptEncode() method.
2 CHTMLOpenElement — added parsing mapping tags <@...@> for attributes.
3 CHTML_Table::GetCurrent[Row|Col] return 0 instead of -1 if current row/column

in the table is not defined. By default, the current row/col in the table always is (0,0).

BerkeleyDB API (bdb) — Much Enriched C++ API Based On BerkeleyDB
1 Implemeneted the reading of BLOBs in cursors.
2 BDB Environment - added methods to customize locking. Added option to place

transaction logs in memory.
3 Added a bit vector storage file.

DBAPI — SQL Database Connectivity
1 DBAPI driver library names have changed from 'dbapi_driver_*' to 'ncbi_xdbapi_'.
2 CDB_DateTime, CDB_SmallDateTime — now 'null' if initializated with empty

CTime.
3 Handle SYBUNIQUE data type as eDB_VarBinary in case of the FTDS driver.
4 I_DriverContext - added methods Set/GetApplicationName, Set/GetHostName.

PYTHON database module based on DBAPI
1 Now use TDS protocol version 12.5 when connecting to Sybase servers.
2 Fixed the reading of LOB (Text/Image) data types.

ALGO/ALIGN/SPLIGN — Spliced Alignment Algorithms
1 Splign code — now uses Object Manager data loaders and LDS to load and look up

sequence data. Handling of sequence data has been optimized which led to a dramatic
improvement in the overall batch performance.

2 CSplign::SetMaxGenomicExtent()— new method, to adjust the maximum span of
genomic sequence beyond the hit boundaries where SPLIGN should look for terminal
exons.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 Compartmentization code has been moved to the 'xalgoalignutil' library. See
CCompartmentFinder interface for details.

4 SPLIGN application — now supports traditional pairwise text output.

ALNMGR — Bio-sequence Alignment Manager
1 CSeq-align:

! CreateDensegFromStdseg now copies the Seq-align's scores too.
2 CAlnMixMerger interface:

! Derive from CTaskProgressReporter
! Delegated truncation to CDiagRangeCollection.
! Added progress feedback.

3 CAlnMix interface:
! Derive from CTaskProgressReporter
! Added progress feedback.

4 CAlnMrgApp:
! Added optional progress feedback.

5 CDiagRangeCollection:
! Implemented initial version of a diagonal alignment range collection.

BLAST
1 Added search classes to perform preliminary and traceback stages of the BLAST

search separately.
2 Added location-transparent, uniform search interface with support for limited

functionality (algo/blast/api/uniform_search.hpp).
3 Renamed headers for PSSM engine (algo/blast/api/blast_psi.hpp -> algo/blast/api/

pssm_engine.hpp)
4 Added query sequence retrieval interface to allow sequence data retrieval with and

without the NCBI C++ Object Manager.
5 Introduced usage of precomputed statistical parameters for blastn:

! Added support for blastn reward/penalty values of 1/-5, 3/-4, and 3/-2.
! Added adjustment of odd blastn scores when match reward = 2

6 Simplified and made organization of filtering locations data
(BlastMaskLoc::seqloc_array) more consistent throughout the code.

7 Gapped alignment changes in CORE BLAST:
! Remove ability to decline alignments
! Streamlined memory usage in core dynamic programming routines.
! Capped at 1000 the number of diagonals examined by the greedy aligner.

8 Changed convention for unset gap parameters — from zero to negative number.
9 CPsiBl2Seq — new class, to perform PSSM to protein sequence comparisons.
10 New library dependencies:

! xblast now depends on composition_adjustment
! xblastformat now depends on xblast

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

11 Created a new library in algo/blast/composition_adjustment. This library contains
routines for adjusting the scoring system of blastp and tblastn searches to reflect the
composition of the sequences being aligned. The composition_adjustment library is
used in the blastpgp executable compiled from the C toolkit. The library is included
because it will be used in the future to provide composition adjustment to BLAST
executables compiled from the C++ Toolkit. One goal is to implement as much of
this functionality as possible in a library that is shared between the C and C++
Toolkits.

BIO-OBJECTS — Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_id — allow (but do not require) FASTA-style dbSNP IDs to have "extra"

vertical bars per historical practice.
2 CSeq_id — support new prefix "DV" in IdentifyAccession() method.

BIO-TOOLS
1 CFastaOstream — improve output when instantiating gaps, and streamline internally.

LDS - Local data storage
1 Library lds_admin merged with lds.lib
2 Improved indexing of large files. Use 64-bit file offsets.

OM++ — Object Manager — For Retrieving and Processing Bio-Objects
1 Implemented new feature editing API.
2 Added CBioseq_Handle::IsProtein() & IsNucleotide().
3 CSeq_loc_Mapper — adjust segment length when mapping between nucleotide and

protein.
4 CAlign_CII — now reports (as warning) and skips alignments of zero length.

OM++ LOADERS/READERS — Data Retrieval Libraries for OM++
GenBank data loader:

1 Changed default reader to ID2.
2 HaveCache(), PurgeCache()— new methods, for cache control.

OM++ DEMO program (objmgr_demo)
1 Added options to use LDS and BLAST data loaders.

BUILD FRAMEWORK (UNIX)
1 Support running the test suite under auxiliary checkers such as 'valgrind'.
2 Add checks for wxWidgets 2.6 and Freetype (version 2), and make small

improvements to checks for other third-party libraries.
3 Add an NCBI_DEPRECATED macro that can be used to mark deprecated functions.
4 Allow projects to specify "negative requirements", which must be unsatisfied (but

known to 'configure') for them to be buildable.
5 Relink applications and libraries when their makefiles change (but recompile them

only by explicit request, or if actual sources change).

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

PTB — Project Tree Builder for MSVC++ .NET
1 Pay more attention to project requirements when analyzing project tree —

"unrecognized" requirements now result in the exclusion of the project.
2 Added support of negation of requirements in source makefile.
3 Implemented processing of local (for a specific makefile) macros.

APPLICATIONS
1 WindowMasker:

WindowMasker is a program that identifies and masks out highly repetitive DNA sequences
and DNA sequences with low complexity in a genome using only the sequence of the genome
itself.

WindowMasker is described in: Morgulis A, Gertz EM, Schaffer AA, Agarwala R;
WindowMasker: Window based masker for sequence genomes. Bioinformatics, to appear.
Advance access: Nov. 15, 2005. (Please cite this paper in any publication that uses
WindowMasker.)

2 DustMasker:
DustMasker is a program that identifies and masks out low complexity parts of a genome using
a new and improved DUST algorithm. The main advantages of the new algorithm are symmetry
with respect to taking reverse complements, context insensitivity, and much better
performance.

The new DUST algorithm is described in: Morgulis A, Gertz EM, Schaffer AA, Agarwala R;
A Fast and Symmetric DUST Implementation to Mask Low-Complexity DNA Sequences.
Journal of Computational Biology, to appear. (Please cite this paper in any publication that
uses DustMasker.)

GRID (DISTRIBUTED COMPUTING) FRAMEWORK
1 NetSchedule - number of performance optimizations and bug fixes.
2 NetCache

! Implemented new transmission protocol with error checking.
! Improved error processing. Fixed bugs in communication protocol.
! Implemented no-wait-if-locked mode in GetBlob.
! Implemented BLOB locking detection. Improved overflow file management.

3 CWorkerNodeJobContext::PutProgressMessage() — added an optional parameter to
allow sending progress messages regardless of the rate control.

4 CRemoteCgiApp::PutProgressMessage() — added an optional parameter to allow
sending progress messages regardless of the rate control.

5 CGridCgiApplication — new optional parameter "expect_complete" in the
configuration file, to control for how long the CGI should wait before showing the
"wait" HTML page. If during this time the result fromWorker Node is received, then
the "real" result HTML page is showed.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Documentation
Document Location

The documentation is available online at http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
rid=toolkit.TOC&depth=2 as a book titled "The NCBI C++ Toolkit". This is an online
searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search runs a CGI script that lists the library name where
the symbol (such as function) is defined in.

Building on the MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench), some test and a few demo applications. We also build the FLTK library's GUI editor,
fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the CodeWarrior projects.

GCC
Uses a regular Unix build pattern: run configure, then make.

Xcode
When building the toolkit with Xcode, the latest version of Xcode (at least 1.5) is required for
the trouble-free build. Build procedure is as follows: open, build and run a project file in

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

compilers/xCode. This is a GUI tool to generate a new NCBI C++ Toolkit Xcode project. You'll
have an option to specify third-party installation directories and choose which packages (libs,
applications and tests) to include into the final project. The option to automatically download
and install all the third-party libraries is also available.

Xcode build fully supports all the latest Apple innovations: distributed builds, optional CPU
specific optimization, pre-compiled headers, fix & continue, code cleanup and Zero Link (with
few exceptions).

Xcode build has a Shell Script build phase for each Target dependent on generated ASN files.
These shell scripts use datatool to regenerate source files each time the ASN specification files
do change.

Xcode builds all libraries as a Mach-O dynamically linked shared ones (.dylib) and all Genome
Workbench plugins as Mach-O bundles (also .dylib extension). Note, that Xcode will place
Genome Workbench plugins inside Genome Workbench application bundle (Genome
Workbench.app/Contents/MacOS/plugins).

CodeWarrior
To build the toolkit with CodeWarrior use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command-line tool osascript also works.

On running the scripts you will be prompted as to which targets you want to build. Or if you
always build the same targets they can be specified by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: Debug and Final. For example, to build only the Debug targets
use: "Build Debug", to build both debug and release (final) versions: "Build".

If you install the C++ Toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in a Mac format (e.g. disk:Users:username :) not in Unix format (e.g. /Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (see Table 1) are required to build some parts of the C++ toolkit.
The scripts will try and find them if they are in your home directory, or you can specify where
they were installed using properties at the beginning of the script.

Table 1. Third Party Libraries
Library Property Example

FLTK 1.1.6 (w/ NCBI patches #5) pFLTKRootFolder "home:mhome:fltk-1.1.6-ncbi5"

BerkeleyDB 4.3.21 pBdbRootFolder "Users:myhome:mylibs:db-4.3.21"
(or "... db-4.3.21")

SQLite 2.8.13 gSqliteFolder

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and CodeWarrior along with the Toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any CodeWarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the user's Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.4 works. We think
10.1 still works, 10.2 might work, and 10.3 most probably works.

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms — but may also work
on other platforms. Since the previous release, some platforms were dropped from this list, just
because we do not use them here anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
— in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Table 2. Unix OS's and Supported Compilers
Operating System Architecture Compilers

Linux-2.4.23 (w/ LIBC 2.3.2) INTEL GCC 3.4.0
ICC 8.0
(GCC 3.0.4, 2.95.3 - nominal support)

Linux-2.6.11.10 (w/ LIBC 2.3.3) INTEL-64 GCC 4.0.1
ICC 9.0

Solaris-8 SPARC C++ 5.3 (WorkShop 6u2) patch 111685-23 (64-, 32-bit)
(GCC 3.4.3 - nominal support)

Solaris-10 SPARC Sun C++ 5.5 (Studio8) patch 113817-15,
GCC 4.0.1

Solaris-9 INTEL C++ 5.3 (WorkShop 6u2) patch 111686-13

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-4.10 INTEL GCC 3.4.2

Tru64 (OSF1) V5.1 ALPHA GCC 3.3.2

Table 3. MS Windows and Supported Compilers
Operating System Compilers

MS Windows MSVC++ 7.1. See documentation for building the Toolkit with MS Visual C++ .NET
.NOTE: We also have 3rd-party packages archive for this platform, easily built with MSVC++ .NET (7.1).

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 4. Mac OS X, and Supported Compilers
Operating System Compilers

MacOS 10.4 (darwin7.9.0) GCC 3.3

MacOS 10.4 CodeWarrior 9.5

MacOS 10.4 Xcode 1.5 - 2.2.1

Caveats and Hints
MacOS 10.X / CodeWarrior 9.2

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK (1.1.x), BerkeleyDB (4.3.x) and SQLite

(2.x) should be present. See the installation instructions for details.

MacOS 10.2/GCC 3.3
At least the GCC 3.3 update for Dec. 2002 Developers Tools required from Apple.

GCC 2.95
1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI as soon as we have any significant trouble with

its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. — Starting
with binutils 2.12 linker tries to merge constant/debug strings marked for merging in
object files. But it seems it does this job very inefficiently - I've seen messages about
it in internet. GCC starting with version 3.2 marks section of string constants ready
for merging, and also has an option to disable this flag in object files (-fno-merge-
constants). Adding this flag to compilation stage allows to avoid slow linking. GCC
3.3 also sets merge flag for debug sections and unfortunately there is no option to
disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). Binutils 2.15 fixes
this. The link time still 2 times slower than without symbol merge, but the resultant
executable is about two times smaller in size, and no compiler patching is necessary.

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

We are still testing it in-house. We had to patch GCC 3.3 in-house with the fix
described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3, [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 — until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 and 4.0 have a bug in the C++ stream library that affects some parts
of our code, notably CGI framework. (Fixed in 4.0.1).

Last Updated
This section last updated on January 25, 2006.

Page 12

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (August, 2005)

! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" CORELIB -- Portability and Application Framework
" CONNECT -- Data streaming, Networking, and Dispatching
" UTIL -- Miscellaneous Low-Level APIs
" SERIAL -- Data Serialization (ASN.1, XML, Schema)
" DATATOOL -- Code Generator and Data Converter Tool
" CGI -- CGI and Fast-CGI Application Framework
" HTML -- HTML Generation Library
" Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
" DBAPI -- Generic SQL Database Connectivity
" PYTHON database module based on DBAPI
" ALGO/ALIGN -- Generic Alignment Algorithms
" BLAST
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM

++)
" OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
" OM++ TEST programs
" OM++ DEMO program (objmgr_demo)
" CTOOLS -- C-to-C++ NCBI Toolkit connectivity
" BUILD FRAMEWORK (UNIX)
" BUILD FRAMEWORK (MSVC++.NET)
" PTB -- Project Tree Builder for MSVC++ .NET
" 3RD-PARTY PACKAGES
" GRID (DISTRIBUTED COMPUTING) FRAMEWORK

! Documentation
" Document Location
" Document Content

! Building on MacOS
" GCC
" Xcode
" CodeWarrior

! Platforms (OS's, compilers used inside NCBI)

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! Unix
! MS Windows
! Mac OS X

" Caveats and Hints
! MacOS 10.X / CodeWarrior 9.2
! MacOS 10.2/GCC 3.3
! GCC 2.95
! GCC 3.0.4
! GCC 3.3
! GCC 3.4, 4.0

" Last Updated

Download Location
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Aug_31_2005/

Source Archive Contents
Source Code Archives

" ncbi_cxx_unix--Aug_31_2005.tar.gz -- for UNIX'es (see the list of UNIX flavors
below) and MacOSX/GCC

" ncbi_cxx_unix-- Aug_31_2005.gtar.gz -- for UNIX'es (see the list of UNIX flavors
below) and MacOSX/GCC

" ncbi_cxx_win-- Aug_31_2005.exe -- for MS-Windows / MSVC++ 7.1 (self-
extracting)

" ncbi_cxx_win-- Aug_31_2005.zip -- for MS-Windows / MSVC++ 7.1
" ncbi_cxx_mac_cw-- Aug_31_2005.tgz -- for MacOS 10.3.4 / CodeWarrior DevStudio

for MacOS 9.2
" ncbi_cxx_mac_xcode-- Aug_31_2005.tgz -- for MacOS 10.3.4 / xCode 1.[1-5]

The sources correspond to the NCBI production tree sources from patch
"CATCHUP_AUG_2005", which in turn roughly corresponds to the development tree sources
from 8-12 of August, 2005.

New Development
CORELIB -- Portability and Application Framework

1 NStr class:
" Revamp of StringToXxx() and XxxToString() methods. Added versions with

a bit-wise flag parameter. Old enum methods made obsolete and will be
removed in the next release. Please use versions with the flag parameter!

" TokenizePattern() -- new method using a string (rather than a set of
characters) for the delimiter.

2 CDll class - added TFlags type and new constructors. Added RTLD_LOCAL/
RTLD_GLOBAL support (UNIX only).

3 CDirEntry class:

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Aug_31_2005/

! IsNewer() -- added time_t and CTime versions, and a flag to specify what to
do if the directory entry does not exist or is not accessible.

! New method Stat() and struct SStat -- to get non-POSIX OS-dependent info.
! SetTime[T]() -- allow to set creation time.
! New method IsIdentical().
! Copy() can copy all supported types now.
! Rename() -- try to "copy/remove" if "rename" failed.
! New method GetEntriesPtr() -- faster for listing extra-large directories.
! Stat() has changed to return bool, instead of int.
! GetPath() has changed to return reference, instead of a copy.
! Rename() to copy on EACCES on Unix; introduce special bits a la chmod().

4 CFileDeleteList and CFileDeleteAtExit -- to help schedule deletion of files at the
application exit.

5 CThread::fRunNice -- flag to run threads with low priority (MS-Windows only).
6 CException -- now can keep a severity attribute, and pass it to the Toolkit diagnostic

stream.
7 Diagnostics -- DIAG_COMPILE_INFO now retrieves function/method name on all

platforms except SUN Workshop.
8 CDiagFilter - changed semantic of the "!" (negation) operator from NOT to AND

NOT for the expression evaluation purposes. Fixed some bugs along the way.
9 CDllResolver -- case-insensitive comparison of directory names on Windows in

FindCandidates. Also, implemented a new algorithm for DLLs name resolving.
10 Added driver version traits class CDefaultDriverVersion to a Plugin Manager

framework. Replaced NCBI_INTERFACE_VERSION(IFace) macro with the
GetDefaultDrvVers() method call. Use CDefaultDriverVersion here and there
(IClassFactory, CPluginManager, CSimpleClassFactoryImpl) instead of hard-coded
template parameter TIfVer.

11 CVersionInfo -- fixed Match() and IsBetterVersion() methods. Added method
IsUpCompatible(), improved version string parsing.

12 Changed signature of CNcbiApplicaion::DisableArgDescriptions() method. Now it
takes variable of TDisableArgDesc type instead of bool.

13 Sleep*() API -- a better (more native) implementation for Linux.
14 ncbi_system::GetVirtualMemoryPageSize() -- to support platforms that define

_SC_PAGE_SIZE.
15 CMetaRegistry -- support reloading .ini files that have changed since they were

previously loaded.
16 CSysLog -- new diagnostic handler that uses the standard Unix system logging

mechanism.
17 CNcbiApplication -- when the user explicitly requests help, send it to standard output

rather than standard error.
18 P{Case,Nocase}_CStr -- new functors to reduce overhead when working with C

strings (useful with CStaticArray{Map,Set}).
19 CObjectMemoryPool -- new class, to allow allocation of CObject derived objects

from local memory pool. It can reduce time used on memory allocation due to thread

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

locality. It also reduces used memory. CObject remembers source of memory for the
object and deallocates it correspondingly.

20 pair_base_member<> -- new template, for empty base optimization.
21 CRef<> and CConstRef<> -- added second template parameter, for locking.

CONNECT -- Data streaming, Networking, and Dispatching
1 Default request method for HTTP has been changed to pseudo-name ANY, which is

figured out to be either POST or GET depending on the content length of the request
being created. Formerly, it was POST explicitly. The change should be fully
backward compatible.

2 Additional flags introduced for FTP and SOCK connectors, mostly for fine control
over data/command logging.

3 Some minor fixes in Conn_IOStream-derived classes; automatic CONNECT_Init()
from constructor - to make logging easier and setup free.

4 SOCK_, CSocket API -- new call GetLoopbackAddress(). Also, allow '\r\0' as a line
terminator in ReadLine().

UTIL -- Miscellaneous Low-Level APIs
1 CZipCompressionFile -- rewritten using compression streams. Use GZIP file format

by default. CompressFile() now can write file name and mtime into GZIP file header.
2 CTar class:

! Update() -- new method to refresh archive content with new versions of the
files that it already contains.

! Added support for (re)storing of file permissions, owner, and times.
! Made compatible with many TAR implementations in use these days.
! Underwent a significant redesign and troubleshooting.

3 RangeCollection -- fixed problems with unsigned ranges starting at zero and special
values.

4 CThreadNonStop -- optimized thread shutdown procedure, using semaphores.

SERIAL -- Data Serialization (ASN.1, XML, Schema)
1 XML serialization::

! Implemented for containers of elements with mixed content.
! Corrected for elements with attributes -- to preserve leading white spaces in

data.
! Fixed delayed reading of strings in XML data (strings were lost before).
! Corrected and optimized serialization of elements with content of type ANY.

2 Fix to not intercept user-defined exceptions thrown by user code from inside the object
streams' hooks.

3 Allow for the allocation of serializable objects in CObjectMemoryPool.
4 CUnionBuffer<> -- new template for inlined objects in choices, to allow the

placement of choice variants inside choice object even for non-primitive types.
5 Optimized parsing of binary ASN.1.
6 Use vector<Uint1> instead of inefficient vector<bool>.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

7 Used enums to represent ASN.1 constants whenever possible.

DATATOOL -- Code Generator and Data Converter Tool
1 Allow white spaces in file paths.
2 Allow using multiple -m and -M command line arguments, to specify multiple input

files with blanks in their names.
3 Fixed generation of the C++ code that uses multi-level namespaces.
4 Added possibility to tune-up generated C++ code for classes of types (using DEF file),

that is, by data type rather than just element name.
5 Implemented generation of modular XML schema by ASN specification.
6 Implemented analysis of module dependency tree to generate correct modular DTD

and XML schema.
7 Corrected generation of XML schema for elements of boolean type with default.
8 Improved diagnostics.

CGI -- CGI and Fast-CGI Application Framework
1 Added flags to control URL encoding/decoding of the cookies.
2 CCgiCookies -- allow handling invalid cookies: allow skipping or storing them.

Added CCgiCookie::IsInvalid(). Throw an exception on an attempt to write a
malformed cookie.

3 CgiContext -- allow creating a CGI context from an input stream.
4 CCgiRequest -- new Serialize() and Deserialize() methods, to pass the request through

a stream.
5 CCgiCookie[s] -- new Write() method, to serialize cookie[s] content to a stream.

HTML -- HTML Generation Library
1 CHTMLNode::AttachPopupMenu() -- changed type of 3rd parameter from bool to

TPopupMenuFlags. Also added parameter for canceling default event processing
(default is true).

2 CHTML_input_button -- new class for <input type=button>.
3 CHTML_button -- resurrected, as most modern browsers support <button> tag,

specified in the HTML 4.0.
4 CNCBINode -- added method ReInitialize().
5 CHTMLPage -- added support for #include command in HTML template libraries.

Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
1 Limit BLOB TTL prolongation on read. This fixes potential vulnerability (DDOS).
2 Added "overflow limit" cache parameter.
3 Optimized BDB cache shutdown procedure.

DBAPI -- Generic SQL Database Connectivity
1 Revamp of DBAPI exception class CDB_Exception. It is now inherited from the

CException class, uses severity level from the CException class, and has method
Clone().

2 Implemented a driver based on the new version of FreeTDS (v0.63).

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 IStatement - added SetAutoClearInParams() and IsAutoClearInParams() methods.
4 CDB_Object -- added GetTypeName() method.
5 Database unit test suite has been moved from CPPUNIT to Boost.Test.
6 Merged ftds/interfaces.hpp into dblib/interfaces.hpp
7 FreeFTDS8 driver -- fixed bind data types for variable-sized data types with Bulk

operations.
8 DBLIB driver -- fixed column data buffer size to hold up to 8k in case of Bulk

operations.

PYTHON database module based on DBAPI
1 CCursor - added get_proc_return_status method.
2 Moved Python DBAPI module test suite to Boost.Test.

ALGO/ALIGN -- Generic Alignment Algorithms
1 Cross-species flag added to Splign application. This flag only has effect in pair wise

mode, i.e. when blast hits are computed internally.
2 In Splign's compartmentization algorithm, the default compartment penalty has been

adjusted and additional parameter, minimal compartment identity has been introduced
to filter out low-scoring compartments while still being able to identify them.

3 Assertion has been added to make sure that the scoring matrix is re-initialized with
SetScoreMatrix(NULL) after every call to SetWm() and SetWms() (nucleotide case
only).

BLAST
1 Added Seq-align-set representation of results to CRemoteBlast similar to that

produced by local search classes (CBl2Seq).
2 PHI BLAST implementation reorganization and cleanup (CORE BLAST).
3 Nucleotide sequence filtering is delegated to ncbi::CSymDustMasker in the C++

BLAST APIs.
4 Reorganization of setup code to allow NCBI C++ object manager-free interfaces.
5 Added PSSM frequency ratios as input to PSSM engine.
6 Added engine version information (CORE/API BLAST).
7 Updated documentation.

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_id, CTextseq_id -- refactored, introducing Set() methods that can be called on

previously initialized IDs, and a static ParseFastaIDs() method.
2 New CSeqIdException class for uniform error reporting.
3 CSeq_id -- support several new prefixes in IdentifyAccession() method.
4 CSeq_id_Handle -- support new type of Seq-id: gpipe.

OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
1 Added CBioseq_Handle::IsSynonym().
2 CSeq_loc_Mapper -- extends partial ranges when mapping from a protein to a

nucleotide.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 CScope::GetBioseqHandles() -- to request multiple bioseqs.
4 Added option to change letter case in output of CSeqVector/CSeqVector_CI.
5 Added annotation iterator constructors from CBioseq_Handle, CRange, and strand.
6 Implemented 'Removed' handles. Use 'Removed' handles when transferring object

from one place to another. Added invalidation of handles to removed objects.
7 Distinguish between shared and private manually added Seq-entries.
8 Redirect all open handles to new TSE when detaching from data loader.

OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
1 Added Phrap (ACE) format reader (supports both old and new format versions).

Added ace2asn sample application to convert from ACE to ASN.1.
2 GenBank Data Loader -- added support for tRNA external annotations.

OM++ TEST programs
1 GenBank data loader test suite:

! Added option -no_external to exclude external annotations to applications
test_objmgr_data and test_objmgr_data_mt.

! Test CSeqVector_CI post increment operator.
! Added test of non-location feature iterators.
! Added test of CAnnot_CI.

2 Object Manager test suite:
! Test insertion of removed handle.
! Added test for CFeat_CI over CBioseq_Handle without explicit Seq-id.
! Test the unlocking of handles.

OM++ DEMO program (objmgr_demo)
1 Added test of edit interface.

CTOOLS -- C-to-C++ NCBI Toolkit connectivity
1 Introduced routines to convert the severity values between C and C++ Toolkits.

BUILD FRAMEWORK (UNIX)
1 Support building with GCC 4.0.x, WorkShop 5.5, and modern versions of ICC

(though we do not yet support ICC 9.0 on 32-bit platforms).
2 Added checks for some more third-party libraries: Boost.Test and IBM's International

Components for Unicode (ICU). Improved checks for some other third-party libraries.
3 CONFIGURE:

! Use consistent (more debugging-friendly) settings for "--with-debug --with-
optimization" builds.

! Run the build project lists (used by "--with-projects" and by
update_projects.sh") through the C preprocessor to support #include
directives.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BUILD FRAMEWORK (MSVC++.NET)
PTB -- Project Tree Builder for MSVC++ .NET

1 CONFIGURE-DIALOG -- new, GUI project for user to interactively confirm or
modify configuration parameters.

2 Added filtering projects by optional project tag, which may be present in the project
makefile.

3 Allow inclusion of list files into project list files via #include.
4 Allow white spaces in file paths.
5 Made it possible in generated projects to reference missing libraries without creating

project dependencies.
6 Reuse the same PTB executable in all build configurations.
7 Prohibit single-threaded build configurations in projects that require multi-threading.
8 Added possibility to generate a custom build step with macro substitution.
9 Recognize and remove circular dependencies between ASN libraries.
10 Implemented conditional macro based on presence of a file.

3RD-PARTY PACKAGES
1 Updated ZLIB to version 1.2.3.

GRID (DISTRIBUTED COMPUTING) FRAMEWORK
1 Added Grid Worker Node Framework. This framework utilizes NetCache and

NetScheduler components and simplifies development of distributed applications.
2 Added Remote CGI Framework. This framework uses Grid Worker Node Framework

and offers an ease way for converting an existing CGI into a distributed application.
Among other things, this helps solve the problem of the hogging of the Web servers'
CGI slots by long-running CGIs, and server-side timeouts.

3 NetCache server improvements:
! Improved diagnostics and error messaging
! Added new more fault protected network protocol for storing BLOBs
! netcache_control program -- new option -t to get statistics

4 NetCache client API changes:
! Added backup service (works when no other instances are available)
! Reimplemented blob storage using fault tolerant network protocol

5 NetSchedule server improvements:
! Implemented config realoding without server restart
! Added admin utility with various options of remote queue monitoring
! Added progress messages for long running jobs
! Implemented client version control for grid management
! Added support of load balancing

6 NetSchedule client API changes:
! Added GetQueueList() method (retieve list of queues)
! DumpQueue() can dump individual jobs

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! Added methods to submit and receive progress messages
! Added support for client version control
! Implemented remote queue monitoring

Documentation
Document Location

The documentation is available online at http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
rid=toolkit.TOC&depth=2 as a book titled "The NCBI C++ Toolkit". This is an online
searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search finds the library(es) where the symbol (such as
function) is defined in.

Building on MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench), some test and a few demo applications. We also build the FLTK library's GUI editor,
fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command-line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the CodeWarrior projects.

GCC
Uses a regular Unix build pattern: run configure, then make.

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

Xcode
When building the toolkit with Xcode, the latest version of Xcode (at least 1.5) is required for
the trouble-free build. Build procedure is as follows: open, build and run a project file in
compilers/xCode. This is a GUI tool to generate a new NCBI C++ Toolkit Xcode project. You'll
have an option to specify third-party installation directories and choose which packages (libs,
applications and tests) to include into the final project. The option to automatically download
and install all the third-party libraries is also available.

Xcode build fully supports all the latest Apple innovations: distributed builds, optional CPU
specific optimization, pre-compiled headers, fix & continue, code cleanup and Zero Link (with
few exceptions).

Xcode build has a Shell Script build phase for each Target dependent on generated ASN files.
These shell scripts use datatool to regenerate source files each time the ASN specification files
do change.

Xcode builds all libraries as a Mach-O dynamically linked shared ones (.dylib) and all Genome
Workbench plugins as Mach-O bundles (also .dylib extension). Note, that Xcode will place
Genome Workbench plugins inside Genome Workbench application bundle (Genome
Workbench.app/Contents/MacOS/plugins).

CodeWarrior
To build the toolkit with CodeWarrior use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command-line tool osascript also works.

On running the scripts you will be prompted as to which targets you want to build. Or if you
always build the same targets they can be specified by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: Debug and Final. For example, to build only the Debug targets
use: "Build Debug", to build both debug and release (final) versions: "Build".

If you install the C++ Toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in a Mac format (e.g. disk:Users:username:) not in Unix format (e.g. /Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (see Table 1) are required to build some parts of the C++ toolkit.
The scripts will try and find them if they are in your home directory, or you can specify where
they were installed using properties at the beginning of the script.

Table 1. Third Party Libraries
Library Property Example

FLTK 1.1.6 (w/ NCBI patches) pFLTKRootFolder "home:mhome:fltk-1.1.6-ncbi3"

BerkeleyDB 4.2
(or 4.3)

pBdbRootFolder "Users:myhome:mylibs:db-4.2.52"
(or "... db-4.3.21")

SQLite 2.8.13 gSqliteFolder

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and CodeWarrior along with the Toolkit libraries. Just unpack the source bundles in your home

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version
the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any CodeWarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the user's Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.3 works. We think
10.1 still works, and 10.2 might work.

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms -- but may also work
on other platforms. Since the previous release, some platforms were dropped from this list, just
because we do not use them here anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
-- in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.4.23 (LIBC 2.3.2) INTEL GCC 3.4.0, 3.0.4, 2.95.3

Linux-2.4.23 (LIBC 2.3.2) INTEL ICC 8.0

Linux-2.6.11 (LIBC 2.3.3) INTEL/64 GCC 3.4.3, 4.0.1

Linux-2.6.11 (LIBC 2.3.3) INTEL/64 ICC 9.0

Solaris-8 SPARC Sun C++ 5.3 (WorkShop 6 update 2) Patch 111685-21 (64-bit, 32-bit)

Solaris-8 SPARC GCC 3.4.3

Solaris-10 SPARC Sun C++ 5.5 Patch 113817-13 (64-bit, 32-bit)

Solaris-9 INTEL Sun C++ 5.3 (WorkShop 6 update 2) Patch 111685-13

Solaris-9 INTEL GCC 3.4.3

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-4.10 INTEL GCC 3.4.2

Tru64 (OSF1) V5.1 ALPHA GCC 3.3.2

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows MSVC++ .NET (7.1). See documentation for building the Toolkit with MS Visual C++ .NET.
NOTE: We also have 3rd-party packages archive for this platform, easily built with MSVC++ .NET (7.1).

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Compilers

MacOS 10.3 GCC 3.3

MacOS 10.3 CodeWarrior 9.2

MacOS 10.3 (PowerPC, Intel) Xcode 1.5 - 2.2

Caveats and Hints
MacOS 10.X / CodeWarrior 9.2

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK (1.1.x), BerkeleyDB (4.x) and SQLite

(2.x) should be present. See the installation instructions for details.

MacOS 10.2/GCC 3.3
At least the GCC 3.3 update for Dec. 2002 Developers Tools required from Apple.

GCC 2.95
1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI rather soon -- as soon as we have any significant

trouble with its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. -- Starting
with binutils 2.12 linker tries to merge constant/debug strings marked for merging in
object files. But it seems it does this job very inefficiently - I've seen messages about
it in internet. GCC starting with version 3.2 marks section of string constants ready
for merging, and also has an option to disable this flag in object files (-fno-merge-
constants). Adding this flag to compilation stage allows to avoid slow linking. GCC
3.3 also sets merge flag for debug sections and unfortunately there is no option to
disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). Binutils 2.15 fixes
this. The link time still 2 times slower than without symbol merge, but the resultant
executable is about two times smaller in size, and no compiler patching is necessary.

Page 12

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

We are still testing it in-house. We had to patch GCC 3.3 in-house with the fix
described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4.x, 4.0.x
1 The "Painfully slow linking..." (see GCC3.3,! [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 -- until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files (we didn't test whether 4.0.x fixed
this).

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

4 GCC 3.4.3, 3.4.4 and 4.0 have a bug in the C++ stream library that affects some parts
of our code, notably CGI framework. (Fixed in 4.0.1)

Last Updated
This section last updated on October 04, 2005.

Page 13

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (April, 2005)

! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" CORELIB -- Portability and Application Framework
" CONNECT -- Data streaming, Networking, and Dispatching
" UTIL -- Miscellaneous Low-Level APIs
" SERIAL -- Data Serialization (ASN.1, XML)
" DATATOOL -- Code Generator and Data Converter Tool
" CGI -- CGI and Fast-CGI Application Framework
" Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
" DBAPI -- Generic SQL Database Connectivity
" ALGO/ALIGN -- Generic Alignment Algorithms
" BLAST
" ALNMGR -- Bio-sequence Alignment Manager
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM

++)
" OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
" OM++ TEST programs
" OM++ DEMO program (objmgr_demo)
" ID2
" BUILD FRAMEWORK (MSVC++.NET)
" PTB -- Project Tree Builder for MSVC++ .NET
" 3RD-PARTY PACKAGES
" PYTHON -- Scripting Language Support

! FRAMEWORKS
! Documentation

" Document Location
" Document Content

! Building on the MacOS
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! MacOS 10.X / CodeWarrior 9.2
! MacOS 10.2/GCC 3.3
! GCC 2.95
! GCC 3.0.4
! GCC 3.3
! GCC 3.4

" Last Updated

Download Location
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Apr_22_2005/

Source Archive Contents
Source Code Archives

" ncbi_cxx_unix--Apr_22_2005.tar.gz -- for UNIX'es (see the list of UNIX flavors
below) and MacOSX/GCC

" ncbi_cxx_unix-- Apr_22_2005.gtar.gz -- for UNIX'es (see the list of UNIX flavors
below) and MacOSX/GCC

" ncbi_cxx_win-- Apr_22_2005.exe -- for MS-Windows / MSVC++ 7.1 (self-
extracting)

" ncbi_cxx_win-- Apr_22_2005.zip -- for MS-Windows / MSVC++ 7.1
" ncbi_cxx_mac_cw-- Apr_22_2005.tgz -- for MacOS 10.3.4 / CodeWarrior DevStudio

for MacOS 9.2
" ncbi_cxx_mac_xcode-- Apr_22_2005.tgz -- for MacOS 10.3.4 / xCode 1.[1-5]

The sources correspond to the NCBI production tree sources from patch
"RELEASE_APR_2005", which in turn roughly corresponds to the development tree sources
from the very end of March, 2005.

New Development
Some of the new development that may introduce potentially backward-incompatible changes
are marked with an asterisk(*).

CORELIB -- Portability and Application Framework
1 Modified CNcbiApplication class to add yet another command line flag - to

distinguish between "short" and "detailed" help printout. The detailed help is printed
only upon request.

2 CDll - added 'auto_unload' parameter to constructors to be able to unload DLL in a
destructor.

3 CPluginManager_DllResolver - added 'unload_dll' parameter to a constructor to be
able to unload driver DLLs in the destructor.

4 CPluginManager - CPluginManager won't unload its drivers by default. All drivers
that used to be unloaded previously kept old behavior.

5 File API (CDirEntry, CFile, CDir) -- dropped native (non-UNIX) MacOS 9 support.
6 CDirEntry added methods:

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Apr_22_2005/

! CreateObject() -- construct CDirEntry based object of specified type (file, dir,
symlink).

! operator= -- assignment operator.
! Copy() -- copy one dir entry to another (should have equal type).
! CopyToDir() -- copy dir entry to to some directory.
! SetBackupSuffix() -- set suffix used to create backup copies of dir entries.
! GetBackupSuffix() -- get current backup suffix.
! Backup() -- create backup copy for dir entry.
! IsLink() -- check if directory entry a symbolic link.
! LookupLink() -- get entry name that link is pointed to.
! DereferenceLink() -- dereference symbolic link, replace current object entry

name with entry name that link is pointed to
! IsNewer() -- check if current entry is newer than some other.
! GetOwner() -- get owner of dir entry.
! SetOwner() -- set new owner for dir entry.
! Get/SetTimeT() -- get/set dir entry time using time_t.

7 CDirEntry -- added CMask versions of MatchesMask(), GetEntries(), FindFiles() and
FindFilesInDir() methods.

8 CDirEntry::Rename() -- added flags parameter.
9 CFile -- added new methods:

! Copy() -- copy one file to another.
! Compare() -- compare file's content.

10 CDir::Copy() -- new method to copy directories.
11 CDir::GetEntries(), CDirEntry::MatchesMask() - added parameter for case sensitive/

insensitive matching.
12 CSymLink -- new class to work with symbolic links (UNIX specific).
13 SuppressSystemMessageBox() -- new function to suppress popup messages on

execution errors in both runtime and in debug libraries, as well as all General
Protection Fault messages. (Windows specific).

14 CDllResolver::AddExtraDllPath() -- added support of multiply paths in the NCBI
runpath.

15 NStr::MatchesMask() -- added parameter for case sensitive/insensitive matching.
16 CTime::IsValid() -- added leapsecond support.
17 CTimeSpan::IsEmpty() -- new method to check if time span is empty.
18 CFastLocalTime -- new class for support quick-and-dirty getter of local time.
19 CNcbiRegistry -- support taking settings from the environment.
20 Added support for safe boolean operators to prevent their accidental use in non-

boolean context.
21 CPluginManager now keeps track of registered entry points.
22 CPluginManager: add lib prefix to dll name mask.
23 Configuration files: added possibility to include sections. Merge subnodes and values

having the same id.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

24 New CProcess::GetParentPid() -- to retrieve parent's PID on UNIX/Windows.

CONNECT -- Data streaming, Networking, and Dispatching
1 New BASE64_{En|De}code API to perform BASE64 (RFC1521) encoding and

decoding.
2 ConnNetInfo_Create() to always set SConnNetInfo::user_header from environment/

registry key CONN_HTTP_USER_HEADER.
3 New method CConn_IOStream::Close() for forced stream closure.
4 HTTP_CreateConnector() is now overriding additional user header instead of

formerly setting it (thus the value is able to get preserved if it is not conflicting with
the overriding one).

5 Major bug fix in "\r\n" parsing in both header and body.

UTIL -- Miscellaneous Low-Level APIs
1 CRequestRateControl -- new class to cap the rate of requests to a resource.
2 CTar -- new class for basic TAR archive support.
3 Implemented CIStreamBuffer::HasMore().

SERIAL -- Data Serialization (ASN.1, XML)
1 Implemented serialization of XML elements with mixed content.
2 CClassPrePostReadWrite -- implements PreRead and PostWrite serialization hooks.

DATATOOL -- Code Generator and Data Converter Tool
1 Implemented XML elements with mixed content in DTD parsing and writing.
2 Modified DATATOOL to produce correct output when converting DTD to DTD.
3 Corrected generation of XML schema: fixed syntax errors, corrected definition of

default values, fixed "real" data type (changed "decimal" to "double").
4 Corrected C++ code generation to correctly handle custom data types for ASN data

of ENUMERATED type.

CGI -- CGI and Fast-CGI Application Framework
1 Major fixes in the use of CArgs argument description mechanism for CGI

applications.

Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
1 Added cursor reopen operation.
2 Added PrintStat method to output BTREE statistics.

DBAPI -- Generic SQL Database Connectivity
1 Database driver manager revamped to use "core" CPluginManager.
2 Added a new method I_DriverMgr::AddDllSearchPath to be able to get

I_DriverContext from a TPluginManagerParamTree.
3 Added a new method I_DriverMgr::GetDriverContextFromTree to allow adding a

driver search path for the driver manager.
4 Developed a unit-test for DBAPI.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 An initial version of a Python DBAPI module was released.
6 Renamed bdb_cache and dbapi_cache libs to ncbi_xcache_*.
7 CDB_Connection::Abort() -- new method to severe a connection to database on

socket level (so there are no post-mortem communications with the database server
and related risks of network hanging).

ALGO/ALIGN -- Generic Alignment Algorithms
1 CSeq_id -- support several new prefixes in IdentifyAccession() method.
2 FASTA reader -- fix handling of non-IUPAC residues, runs of hyphens, and

semicolon-started comments.
3 The formatting classes are now using CSeq_id objects instead of plain strings to

represent sequences IDs.
4 CNWAligner::SetTranscript() -- new method to simulate the alignment.

BLAST
1 Introduction of structures to represent the filtering string in CORE BLAST.
2 BlastSeqSrc implementations clean up (API BLAST).
3 Addition of composition-based statistics for PSI-BLAST (code to perform IMPALA-

style scaling of PSSMs in blast_posit.[ch]).
4 Introduction of interval trees, a binary tree data structure that greatly speeds up the

search for alignments that envelop/contain other alignments. Used in the preliminary
gapped alignment phase of all BLAST programs and in the traceback phase for all
programs except MEGABLAST.

5 Improvements in speed and sensitivity to DUST (blast_dust.c).
6 Changes to how score matrices are stored in CORE BLAST (SBlastScoreMatrix).
7 Major refactoring of greedy alignment routines, minor refactoring of in-frame and

out-of-frame gapped alignments routines (in-frame and out-of-frame gapped
alignment outines now allocate memory for auxiliary structures dynamically, instead
of allocating the worst case amount of memory when initializing).

8 Change in tie-breakers for score comparisons.
9 Rewrite of uneven gap HSP linking.
10 Unification of traceback generation functions (memory usage has been greatly

reduced).

ALNMGR -- Bio-sequence Alignment Manager
1 CAlnMap -- added a print class CAlnMapPrinter.
2 CAlnVec -- added a print class CAlnVecPrinter.
3 CAlnMix -- rearranged into a set of classes with a preserved CAlnMix front-end

interface. The new classes are:
a CAlnMixMatches -- container for CAlnMixMatch plus methods,
b CAlnMixSegments -- container for CAlnMixSegment plus methods,
c CAlnMixSequences -- container for CAlnMixSeq plus methods,
d CAlnMixMerger -- the merging algorithm.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

4 CAlnMix -- abstracted the CalculateScore method so that it could be delegated to the
caller. Added handling for best reciprocal hits.

5 CAlnMrg -- added a sortseqbyscore flag, extended to reading multiple dense-segs,
and added handling for best reciprocal hits.

6 CAlnVwr::GetAlnPosFromSeqPosDemo() -- new method.

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_id -- support several new prefixes in IdentifyAccession() method.
2 FASTA reader -- fix handling of non-IUPAC residues, runs of hyphens, and

semicolon-started comments.
3 Added possibility to use GetSeq_idByType() with containers of CSeq_id_Handle.
4 Preserve fuzz when merging/adding seq-locs in seq-loc operations.
5 Sequence::GetId() now returns CSeq_id_Handle.

ALGO/PHY_TREE -- Phylogenetic and bio tree algorithms
1 Minor bug fixes and improvements.

OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
2 Implemented setters for 'descr' field of CBioseq_Handle.
3 Implemented CBioseq_EditHandle AddId() & RemoveId().
4 Added methods to get feature type and subtype.
5 Added getter for feature type and subtype to CMappedFeat.
6 SSNP_Info structure is defined in separate header to reduce dependencies.
7 Added "SNP" symbols to names of CSeq_feat_Handle methods used to access SNP

table.
8 Added CScope::RemoveFromHistory(), CScope::RemoveTopLevelSeqEntry() and

CScope::RemoveDataLoader().
9 Added state flags to CBioseq_Handle. Report conflicts using state flag, do not throw

exception.
10 Added CBioseq_Handle::ContainsSegment with optional depth and limit object.
11 CBioseq_Handle::RemoveDesc() -- now returns CRef<CSeqdesc> (was bool).
12 Added SAnnotSelector(TFeatSubtype). Added flag to SAnnotSelector for skipping

multiple SNPs from the same seq-annot.
13 CSeq_loc_Mapper -- added direction flag for mapping between top level sequence

and segments.
14 Iterators: ignore e_Locs annotations with unknown format (used to fail before).
15 CBioseq_CI iterator with CSeq_inst::eMol_na now includes both dna and rna bioseqs.

Added constructor accepting CBioseq_set_Handle.

OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
1 Added auto cleaning of indexes with id resolution information.
2 Commented out obsolete classes CRefresher, CMutexPool, and CGBLGuard.
3 GenBank data loader now has new schema of readers/writers.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

4 It's now possible to use GenBank loader cache by specifying it in registry, e.g.
"[GENBANK] ReaderName = cache;id1", or via environment
"GENBANK_LOADER_METHOD=cache;id1".

OM++ TEST programs
1 Added few tests for loading split data from ID2 server.

OM++ DEMO program (objmgr_demo)
1 Added flag -print_mapper to check CSeq_loc_Mapper.
2 Added scan of all features in TSE when -whole_tse is specified.
3 Added option to allow loading Seq-annot from file.

ID2
1 Added split-version to ID2S-Request-Get-Chunks structure of ID2 protocol.
2 Allow storing skeleton Seq-entry together with split info in ID2.

BUILD FRAMEWORK (MSVC++.NET)
PTB -- Project Tree Builder for MSVC++ .NET

1 Now can keep track of subproject types (expendable, potential) and propagate it down
the project tree, and to generate MSVC projects for all subprojects, not only for those
listed in Makefile.in.

3RD-PARTY PACKAGES
1 CPPUNIT was added to 3rd-party packages. To use CPPUNIT just add REQUIRES

= CPPUNIT to your Makefile.in, $(CPPUNIT_INCLUDE) to CPPFLAGS and $
(CPPUNIT_LIBS) to LIBS respectively in your app file.

PYTHON -- Scripting Language Support
1. An initial version of a Python DBAPI module was released.

FRAMEWORKS
A beta version of grid computing components, including:

1 NetCache -- daemon for network-distributed data cache,
2 NetSchedule -- daemon to support network-distributed request queues,
3 GridWorker -- API to create grid computing nodes,
4 Cgi_Tunnel2Grid -- CGI to tunnel request to GridWorkers.

Documentation
Document Location

The documentation is available online at http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
rid=toolkit.TOC&depth=2 as a book titled "The NCBI C++ Toolkit". This is an online
searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=toolkit.TOC&depth=2

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search runs a CGI script that lists the library name where
the symbol (such as function) is defined in.

The current release notes as well as past release notes are now in an appendix in the C++ Toolkit
Book and a link to the current release notes appears on each page of the online Toolkit
document.

Building on the MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench), some test and a few demo applications. We also build the FLTK library's GUI editor,
fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the CodeWarrior projects.

When building the toolkit with xCode, the latest version of xCode (at least 1.5) is required for
the trouble-free build. Build procedure is as follows: open, build and run a project file in
compilers/xCode. This is a GUI tool to generate a new NCBI C++ Toolkit xCode project. You'll
have an option to specify third-party installation directories and choose which packages (libs,
applications and tests) to include into the final project.

xCode build fully support all the latest Apple innovations: distributed builds, optional CPU
specific optimization , pre-compiled headers, fix & continue, code cleanup and Zero Link (with
few exceptions).

xCode builds all libraries as a Mach-O dynamically linked shared ones (.dylib) and all Genome
Workbench plugins as Mach-O bundles (also .dylib extension). Note, that xCode will place

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

Genome Workbench plugins inside Genome Workbench application bundle (Genome
Workbench.app/Contents/MacOS/plugins).

To build the toolkit with CodeWarrior use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

On running the scripts you will be prompted as to which targets you want to build. Or if you
always build the same targets they can be specified by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: Debug and Final. For example, to build only the Debug targets
use: "Build Debug", to build both debug and release (final) versions: "Build".

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g. /Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (see Table 1) are required to build some parts of the C++ toolkit.
The scripts will try and find them if they are in your home directory, or you can specify where
they were installed using properties at the beginning of the script.

Table 1. Third Party Libraries
Library Property Example

FLTK 1.1.6 (w/ NCBI patches) pFLTKRootFolder "home:mhome:fltk-1.1.6-ncbi3"

BerkeleyDB 4.2 (or 4.3) pBdbRootFolder "Users:myhome:mylibs:db-4.2.52"(or "... db-4.3.21")

SQLite 2.8.13 gSqliteFolder

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and CodeWarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version
the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any CodeWarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the user's Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.3 works. We think
10.1 still works, and 10.2 might work.

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms -- but may also work
on other platforms. Since the previous release, some platforms were dropped from this list, just
because we do not use them here anymore, and some were added (these new platforms are

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
-- in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.4.23 (w/ LIBC 2.3.2) INTEL GCC 3.4.0, 3.0.4, 2.95.3

Linux-2.4.26 (w/ LIBC 2.3.2) INTEL GCC 3.4.0

Linux-2.6.7 (w/ LIBC 2.3.3) INTEL/64 GCC 3.4.3

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL ICC 8.0

Solaris-8,9 SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-21 (64-bit, 32-bit)

Solaris-8 SPARC GCC 3.4.3

Solaris-9 INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris-9 INTEL GCC 3.4.3

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-4.10 INTEL GCC 3.4.2

Tru64 (OSF1) V5.1 ALPHA GCC 3.3.2

Tru64 (OSF1) V5.1 ALPHA Compaq C++ V6.5-014

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows MSVC++ 7.1. See documentation on MS Visual C++.NET.

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Compilers

MacOS 10.3 GCC 3.3

MacOS 10.3 CodeWarrior 9.2

MacOS 10.3 xCode 1.5

Caveats and Hints
MacOS 10.X / CodeWarrior 9.2

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK (1.1.x), BerkeleyDB (4.x) and SQLite

(2.x) should be present. See the installation instructions for details.

MacOS 10.2/GCC 3.3
At least the GCC 3.3 update for Dec. 2002 Developers Tools required from Apple.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

GCC 2.95
1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI rather soon -- as soon as we have any significant

trouble with its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. -- Starting
with binutils 2.12 linker tries to merge constant/debug strings marked for merging in
object files. But it seems it does this job very inefficiently - I've seen messages about
it in internet. GCC starting with version 3.2 marks section of string constants ready
for merging, and also has an option to disable this flag in object files (-fno-merge-
constants). Adding this flag to compilation stage allows to avoid slow linking. GCC
3.3 also sets merge flag for debug sections and unfortunately there is no option to
disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). Binutils 2.15 fixes
this. The link time still 2 times slower than without symbol merge, but the resultant
executable is about two times smaller in size, and no compiler patching is necessary.
We are still testing it in-house. We had to patch GCC 3.3 in-house with the fix
described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken.

GCC 3.4
1 The "Painfully slow linking..." (see GCC3.3,! [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 -- until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files.

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

Last Updated
This section last updated on April 27, 2005.

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (February, 2005)

! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" CORELIB -- Portability and Application Framework
" CONNECT -- Data streaming, Networking, and Dispatching
" UTIL -- Miscellaneous Low-Level APIs
" SERIAL -- Data Serialization (ASN.1, XML)
" DATATOOL -- Code Generator and Data Converter Tool
" CGI -- CGI and Fast-CGI Application Framework
" HTML -- HTML Generation Library
" Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
" DBAPI -- Generic SQL Database Connectivity
" ALGO/ALIGN -- Generic Alignment Algorithms
" BLAST
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM

++)
" ALGO/PHY_TREE -- Phylogenetic and bio tree algorithms
" OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
" BUILD FRAMEWORK (UNIX)
" BUILD FRAMEWORK (MSVC++.NET)
" PTB -- Project Tree Builder for MSVC++ .NET
" 3RD-PARTY PACKAGES
" PYTHON -- Scripting Language Support

! APPLICATIONS
! Documentation

" Document Location
" Document Content

! Building on the MacOS
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints
" MacOS 10.X / CodeWarrior 9.1

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! MacOS 10.2/GCC 3.3
! GCC 2.95
! GCC 3.0.4
! GCC 3.3
! GCC 3.4

" Last Updated

Download Location
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Feb_17_2005/

Source Archive Contents
Source Code Archives

" ncbi_cxx_unix--Feb_17_2005.tar.gz -- for UNIX'es (see the list of UNIX flavors
below) and MacOSX 10.[2-3] /GCC 3.3

" ncbi_cxx_unix--Feb_17_2005.gtar.gz -- for UNIX'es (see the list of UNIX flavors
below) and MacOSX 10.[2-3] /GCC 3.3

" ncbi_cxx_win--Feb_17_2005.exe -- for MS-Windows / MSVC++ 7.1 (self-extracting)
" ncbi_cxx_win--Feb_17_2005.zip -- for MS-Windows / MSVC++ 7.1
" ncbi_cxx_mac_cw--Feb_17_2005.tgz -- for MacOS 10.3.X / CodeWarrior 9.2
" ncbi_cxx_mac_xcode--Feb_17_2005.tgz -- for MacOS 10.3.X / xCode 1.5

The sources correspond to the NCBI production tree sources from patch
"RELEASE_FEB_2005", which in turn closely corresponds to the development tree sources
from January 18-19, 2005.

New Development
Some of the new development that may introduce potentially backward-incompatible changes
are marked with an asterisk(*).

CORELIB -- Portability and Application Framework
1 CNcbiRegistry -- refactored, with base classes split out at various levels. Along the

way, it gained support for prioritized collections of sub-registries.
2 CMetaRegistry -- the default search path has changed, and become easier to tune via

environment settings.
3 CNcbiRegistry -- added functions for easy retrieval of configuration parameters:

GetConfigString, GetConfigInt, and GetConfigFlag.
4 CArgDescriptions -- new flag to allow multiple command-line arguments

(EFlags::fAllowMultiple).
5 CDir::Create() -- return TRUE if creating directory already exists.
6 NStr::MatchesMask() -- added string version of this function.
7 Command line arguments processing, added constraint inversion (NOT).
8 CVersionInfo -- added support for version srtings (like "2.5.1")
9 Diagnostics -- now allows configuring message filtering by severity.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2005/Feb_17_2005/

10 Removed operator bool() from CRef<> and CConstRef<> templates. Pointer
conversion will be used instead. Added helper template and macro for easy
implementation of boolean operator via pointer.

11 Moved obj_store and plugin_manager_store to CORELIB.
12 Plugin Manager -- added CDllResolver_Getter() to get default DLL resolver.

CONNECT -- Data streaming, Networking, and Dispatching
1 CNamedPipe -- added automatic generation of OS-specific pipe names.
2 FTP client connector (FTP_CreateDownloadConnector) and stream

(CConn_FTPDownloadStream) have been implemented (only for download).
3 NetCache client -- implemented BLOB update, allow to engage NCBI load balancer.

UTIL -- Miscellaneous Low-Level APIs
1 CZipDecompressor -- fixed bug in Process() when fCheckFileHeader flag is set.
2 util/bitset -- integrated new version of BM library into NCBI toolkit.

SERIAL -- Data Serialization (ASN.1, XML)
1 XML output stream -- corrected writing namespace of NamedType.
2 XML input stream -- fixed the reading of empty sequence with all optional members

represented by self-closed tag.
3 CTreeIterator -- implemented context-dependent filtering.

DATATOOL -- Code Generator and Data Converter Tool
1 Made it possible to process multiple objects in input stream when converting data

from one format to another.
2 Implemented parsing of conditional sections in DTD, processing of entities in

attribute definition, and processing of compound identifier names (those made of
several entities).

3 Corrected generation of XML schema for "sequence of choice" types with attributes,
and simple type with a default.

4 Corrected generation of links in DOXYGEN comments.

CGI -- CGI and Fast-CGI Application Framework
1 CCgiApplication -- new callback OnEvent() to allow one catch and handle a variety

of states and events happening in the CGI and Fast-CGI applications.
2 CCgiEntry -- keep track of Content-Type headers from POST submissions. Added

missing operators !=. Moved operators == and != into class.
3 Added CArgDescriptions class support for CGI. Now it is possible to describe CGI

arguments as if they were command-line key arguments.
4 CCgiRequest -- new flag fCaseInsensitiveArgs to allow case-insensitive arguments

in query string.

HTML -- HTML Generation Library
1 CHTML_map and CHTML_area -- new classes to support HTML MAP and AREA

tags.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
1 CBDB_BlobFile -- added UpdateInsert().
2 Cursors -- implemented BLOB update, added support for Read-Modify-Write

(RMW) locks.
3 CBDB_Cache -- implemented adaptive checkpoints and individual BLOB timeouts,

improved performance. Code moved into a separate library, which is set up as a
"standard NCBI plug-in", with registration entry point, fixed interface, class factory,
driver name, versioning, etc.

4 Ported to work with Berkeley DB 4.3.

DBAPI -- Generic SQL Database Connectivity
1 FreeTDS database driver -- now works on MS Windows.
2 Refactoring of dbapi/driver/samples DBAPI sample applications -- refactored, now

all are based on a common class CDbapiSampleApp.
3 CDBAPI_Cache -- code moved into a separate library, which is set up as a "standard

NCBI plug-in", with registration entry point, fixed interface, class factory, driver
name, versioning, etc.

ALGO/ALIGN -- Generic Alignment Algorithms
1 Reorganzation of the algo/align branch: XALGOALIGN moved under algo/align/nw

and renamed to XALGOALIGNNW. XALGOSPLIGN renamed to
XALGOALIGNSPLIGN.

2 CSplignFormatter -- Seq-align output now includes percent identity score.
3 CSplignFormatter -- was modified to use CSeq_id objects in place of strings.

BLAST
1 CBlastNucleotideOptionsHandle -- removed some member functions to simplify its

usage.
2 Applications under src/algo/blast/api/demo and src/app/blast_client are NOT meant

to provide full functionality of the BLAST C Toolkit binaries, please do not use them
as such.

3 Improved error handling when initializing BlastSeqSrc implementations.
4 Removal of eSkipTbck from EBlastTbackExt enumeration, consolidation of means

to avoiding the traceback stage of the algorithm.
5 Removal of total HSP limit option from low level structures and options API.
6 Made fetching sequences via the C++ Object Manager more robust and consistent

with the C Toolkit.
7 BlastQueryInfo structure -- refactored.
8 RPS-BLAST now supports multiple queries. Streamlined the initialization of RPS-

BLAST structures.
9 Reorganization of Blast*Options and Blast*Parameter structures.
10 Various file and functions renamed to improve clarity of the code and adherence to

C++ Toolkit coding conventions.
11 Implemented reevaluation with ambiguities for translated ungapped searches.
12 Added methods to retrieve warnings/errors from CBl2Seq and CDbBlast.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_id -- support several new prefixes in IdentifyAccession() method.
2 CGen_code_table -- new LoadTransTable() method to support optionally replacing

the built-in copy with an updated or customized version.
3 CSeq_id_Handle -- added helper functions to avoid getting intermediate instance of

CSeq_id_Mapper: HaveMatchingHandles(), HaveReverseMatch(),
GetMatchingHandles(), GetReverseMatchingHandles().

ALGO/PHY_TREE -- Phylogenetic and bio tree algorithms
1 Added new test-demo to algo/phy_tree/test/test_biotree.cpp.
2 New converters for phylogenetic trees. PhyTree serialization support.

OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
1 Added class CTSE_Handle.
2 Implemented auto-release of unused TSEs in scope. TSEs are locked from release by

any object manager handle or iterator. Scope keeps last few unlocked TSEs from
immediate release. Scope also maintains links from one TSE to indirectly used ones,
like TSEs with far segments of segmented sequence. Number of unlocked TSEs can
be changed by configuration variable SCOPE_AUTORELEASE_SIZE in OBJMGR
section of configuration file. TSE auto-release can be turned off by setting
SCOPE_AUTORELEASE boolean flag to FALSE.

3 Added CSeqVector constructor from CBioseq_Handle to allow used TSE linking.
4 Added CSeqMap::CanResolveRange() with SSeqMapSelector argument to allow

used TSE linking.
5 Added SAnnotSelector::SetExcludeExternal().
6 Added helper class CBlobIdKey to use it as key, and to print BlobId.
7 Added method CSeq_annot_Handle GetAnnot() to various annotation iterators:

CFeat_CI, CGraph_CI,and CAlign_CI.
8 Changed TSE suppression levels to blob state flags.
9 Removed many methods previously marked as deprecated.
10 Fixed sorting of circular features.
11 Redesigned CBioseq_CI not to collect all bioseqs in constructor.
12 Added CBioseq_Handle::GetRangeSeq_loc(): creates CSeq_loc to be used with

annotation iterators instead of start/stop values.
13 Added proxy methods for CSeq_annot getters.
14 Reduced number of CSeqMap::FindResolved() methods, simplified BeginResolved

() and EndResolved().
15 CTSE_Handle -- added new methods to get blob state IsSuppressed*() and IsDead().
16 Simplified resulting seq-loc in Add/Merge/Subtract. Moved seq-loc operations to

CSeq_loc, modified flags. Removed old SeqLocMerge.

OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
1 LDS data loader now can read sequence entries out of binary ANS.1 RefSeq release

files.
2 Added possibility to reload TSEs by their BlobId in GenBank loader.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 Added conversion of BlobId to string in GenBank loader.
4 Merged "ID1" and "cached ID1" libraries. ID1 reader class factory now can create

any of these two -- depending on parameters.
5 Loaders and readers are now set up as "standard NCBI plug-ins", with registration

entry point, fixed interface, class factory, driver name, versioning, etc.

BUILD FRAMEWORK (UNIX)
1 CONFIGURE now allows for a wider range of Berkeley DB layouts by honoring

settings of BERKELEYDB_{INCLUDE,LIBPATH,LIBS} from the environment
when --with-berkeleydb=... has not been supplied.

2 Makefiles may specify DTD_PROJ, a la ASN_PROJ.

BUILD FRAMEWORK (MSVC++.NET)
1 Modified import_project.wsf and new_project.wsf to reduce dependency on CVS.
2 Changed new_project.wsf to generate new project in a separate folder, and to make

it possible to enter the data interactively.
3 Improved diagnostics output.

PTB -- Project Tree Builder for MSVC++ .NET
1 Generate and use configuration-dependent site localization file - ncbiconf_msvc_site.

$(ConfigurationName).h.
2 Configure libraries with choice and 3rd-party library dependencies and macros for

each build configuration independently.
3 In 3rd-party library description (project_tree_builder.ini): allow macros, treat library

INCLUDE as list, and made it possible to add standard libraries along with 3rd-party
ones (STDLIB).

4 Corrected handling of project lists, and configurable macros. Correctly process
MSVC project tuning files for DLLs (Makefile.*.msvc). In generated solution,
correctly set dependency on user projects.

5 Process DTD_PROJ entry in Makefile.in - to generate library project by a DTD
specification.

6 Improved diagnostic output.

3RD-PARTY PACKAGES
1 Upgraded code to work with newer versions of some 3rd-party packages.
2 The 3rd-party sources' bundle for MSVC++ has some packages upgraded to their

newer version.

PYTHON -- Scripting Language Support
1 dbapi/lang/python -- the first draft of a Python database extension module based on

the NCBI C++ Toolkit's DBAPI. It implements a big part of the Python Database API
Specification v2.0 (http://www.python.org/peps/pep-0249.html), and allows Python
developers to work with the databases supported by DBAPI (such Sybase and MS
SQL Server.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

APPLICATIONS
APP/NetCache -- General Purpose Network Cache

1 Fixed a number of bugs, improved performance, added logging. Some optimization
changes to reduce server choking under heavy load.

Documentation
Document Location

The documentation is available online at http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2 as a book titled "The NCBI C++
Toolkit". This is an online searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content
Documentation has been grouped into chapters and sections that provide a more logical
coherence and flow. New sections and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. The chapter titled "Introduction to the
C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains links to other
chapters containing more details on a specific topic and is a good starting point for the new
comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search runs a CGI script that lists the library name where
the symbol (such as function) is defined in.

The current release notes as well as past release notes are now in an appendix in the C++ Toolkit
Book and a link to the current release notes appears on each page of the online Toolkit
document.

Building on the MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench), some test and a few demo applications. We also build the FLTK library's GUI editor,
fluid.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the CodeWarrior projects.

When building the toolkit with xCode, the latest version of xCode (at least 1.5) is required for
the trouble-free build. Build procedure is as follows: open, build and run a project file in
compilers/xCode. This is a GUI tool to generate a new NCBI C++ Toolkit xCode project. You'll
have an option to specify third-party installation directories and choose which packages (libs,
applications and tests) to include into the final project.

xCode build fully support all the latest Apple innovations: distributed builds, optional CPU
specific optimization , pre-compiled headers, fix & continue, code cleanup and Zero Link (with
few exceptions).

xCode builds all libraries as a Mach-O dynamically linked shared ones (.dylib) and all Genome
Workbench plugins as Mach-O bundles (also .dylib extension). Note, that xCode will place
Genome Workbench plugins inside Genome Workbench application bundle (Genome
Workbench.app/Contents/MacOS/plugins).

To build the toolkit from a command line use an AppleScript editor to open and run the script
files makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

Projects include targets to compile with BSD/Apple headers and libraries and with MSL
headers and libraries, but plugins (for gbench) built with MSL do not link properly, and so,
because of lack of interest to keep up with changes, some source code does not currently
compile with MSL. Hopefully this will become easier to work with and get fixed with
CodeWarrior v.9.

Targets to be compiled can be controlled by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: MSL, BSD, Debug and Final. For example, to build only the
BSD Debug targets use: "Build BSD Debug", to build both BSD debug and release (final)
versions: "Build BSD". The default is to build everything.

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g. /Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (see Table 1) are required to build some parts of the C++ toolkit.
The scripts will try and find them if they are in your home directory, or you can specify where
they were installed using properties at the beginning of the script.

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 1. Third Party Libraries
Library Property Example

FLTK 1.1.5rc2 (w/ NCBI patches) pFLTKRootFolder "usr:local:src:fltk-1.1.5rc2:"

BerkeleyDB 4.3.21 pBdbRootFolder "Users:myhome:mylibs:db-4.3.21"

SQLite 2.8.13 gSqliteFolder

dlcompat pDLRootFolder "usr:"

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and CodeWarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version
the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any CodeWarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the user's Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.2 works. We think
10.1 still works, and 10.3 might work.

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on at least the following platforms -- but may also work
on other platforms. Since the previous release, some platforms were dropped from this list, just
because we do not use them here anymore, and some were added (these new platforms are
highlighted using bold font). Also, it can happen that some projects would not work (or even
compile) in the absence of 3rd-party packages, or with older or newer versions of such packages
-- in these cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get
you through.

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Unix
Table 2. Unix OS's and Supported Compilers

Operating System Architecture Compilers

Linux-2.4.23 (w/ LIBC 2.3.2) INTEL GCC 2.95.3, 3.0.4, 3.4.0

Linux-2.4.26 (w/ LIBC 2.3.2) INTEL GCC 3.4.0

Linux-2.6.7 (w/ LIBC 2.3.3) INTEL/64 GCC 3.4.3

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL ICC 8.0

Solaris-8 SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-13 (64-bit, 32-bit)

Solaris-8 SPARC GCC 3.4.3

Solaris-9 INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris-9 INTEL GCC 3.4.3

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.3m (64-bit, 32-bit)

FreeBSD-4.10 INTEL GCC 3.4.2

Tru64 (OSF1) V5.1 ALPHA GCC 3.3.2

Tru64 (OSF1) V5.1 ALPHA Compaq C++ V6.5-014

MS Windows
Table 3. MS Windows and Supported Compilers

Operating System Compilers

MS Windows MSVC++ 7.1. See documentation on MS Visual C++.NET.

Mac OS X
Table 4. Mac OS, and Supported Compilers

Operating System Compilers

MacOS 10.2, 10.3 GCC 3.3

MacOS 10.3 CodeWarrior 9.2

Caveats and Hints
MacOS 10.X / CodeWarrior 9.2

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK (1.1.x), BerkeleyDB (4.x) and SQLite

(2.x) should be present. See the installation instructions for details.

MacOS 10.2/GCC 3.3
At least the GCC 3.3 update for Dec. 2002 Developers Tools required from Apple.

GCC 2.95
1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI rather soon -- as soon as we have any significant

trouble with its maintenance.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3
Other than the feature described below, GCC 3.3.2 had been very good to us; it had a lot of
very ugly bugs finally fixed.

1 Painfully slow linking in debug mode on Linux with GCC-3.3 compiler. -- Starting
with binutils 2.12 linker tries to merge constant/debug strings marked for merging in
object files. But it seems it does this job very inefficiently - I've seen messages about
it in internet. GCC starting with version 3.2 marks section of string constants ready
for merging, and also has an option to disable this flag in object files (-fno-merge-
constants). Adding this flag to compilation stage allows to avoid slow linking. GCC
3.3 also sets merge flag for debug sections and unfortunately there is no option to
disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4. The slowdown rate depends on size of debug strings section and it's
non-linear, so bigger projects will suffer more of this bug (N^2). Binutils 2.15 fixes
this. The link time still 2 times slower than without symbol merge, but the resultant
executable is about two times smaller in size, and no compiler patching is necessary.
We are still testing it in-house. We had to patch GCC 3.3 in-house with the fix
described at http://lists.boost.org/MailArchives/boost/msg53004.php.

2 Long-file support still broken (first broken in 3.1).

GCC 3.4
1 The "Painfully slow linking..." (see GCC3.3 [1] above) was an issue, and we had to

patch it in-house to speed up, a la GCC 3.3 -- until we finally upgraded to binutils
2.15.

2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls
an ioctl that doesn't work properly for large files.

3 At least on Linux, GCC 3.4.[0,1] optimizer (very rarely) generates incorrect code
when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

Last Updated
This section last updated on March 9, 2005.

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (November 22, 2004)

Abstract
! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" CORELIB -- Portability and Application Framework
" CONNECT -- Data streaming, Networking, and Dispatching
" UTIL -- Miscellaneous Low-Level APIs
" SERIAL -- Data Serialization (ASN.1, XML)
" DATATOOL -- Code Generator and Data Converter Tool
" CGI -- CGI and Fast-CGI Application Framework
" HTML -- HTML Generation Library
" Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
" DBAPI -- Generic SQL Database Connectivity
" ALGO/ALIGN -- Generic Alignment Algorithms
" BLAST
" ALNMGR -- Bio-sequence Alignment Manager
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
" OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
" ID2
" BIO-TOOLS
" ALGO/PHY_TREE -- Phylogenetic and bio tree algorithms
" BUILD FRAMEWORK (UNIX)
" PTB -- Project Tree Builder for MSVC++ .NET
" 3RD-PARTY PACKAGES

! APPLICATIONS
! Documentation

" Document Location
" Document Content

! Building on the MacOS
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! MacOS 10.X / CodeWarrior 9.1
! MacOS 10.2/GCC 3.3
! GCC 2.95
! GCC 3.0.4
! GCC 3.3
! GCC 3.4

" Last Updated

Release Notes (November 22, 2004)
Download Location

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Nov_30_2004/

Source Archive Contents
Source Code Archives
" ncbi_cxx_unix--Nov_30_2004.tar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
" ncbi_cxx_unix--Nov_30_2004.gtar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
" ncbi_cxx_win--Nov_30_2004.exe-- for MS-Windows / MSVC++ 7.1 (self-

extracting)
" ncbi_cxx_win--Nov_30_2004.zip-- for MS-Windows / MSVC++ 7.1
" ncbi_cxx_mac_cw--Nov_30_2004.tgz-- for MacOS 10.3.4 / CodeWarrior DevStudio

for MacOS 9.2
" ncbi_cxx_mac_xcode--Nov_30_2004.tgz-- for MacOS 10.3.4 / xCode 1.[1-5]
" ncbi_cxx_mac_gcc--Nov_30_2004.tar.gz-- for MacOS 10.2, 10.3.4 / GCC 3.3.2

The sources correspond to the NCBI production tree sources from patch
"RELEASE_NOV_2004", which in turn corresponds to the development tree sources from
October 26-29, 2004.

New Development
Some of the new development that may introduce potentially backward-incompatible changes
are marked with an asterisk(*).

CORELIB -- Portability and Application Framework
1 CNcbiApplication -- allow to treat standard I/O as binary on MS Windows.

CArg_***File -- do set standard I/O streams to "binary" mode if so specified by the
argument's description.

2 CNcbiApplication -- implemented setting up logfile from configuration file. Gave
access to the logfile name to allow switching of diagnostics handlers.

3 CNcbiApplication -- changed standard exit codes to positive values. Exit codes must
be in the range 0..255.

4 NCBI_GetRunpath() -- added implementation for MS-Windows.
5 StringToUInt8_DataSize() -- new function to converts data size constants (100MB,

256KB) to integer.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Nov_2004/

6 CTime -- added new format letters support:'d' - day without leading zero, 'l' -
milliseconds, 'r' - microseconds, 'p' and 'P' - AM/PM.

7 CTimeSpan -- new string conversion function AsSmartString().
8 (*) CTimeSpan -- renamed GetTotal*() -> GetComplete*().
9 CStopWatch -- added operator << to dump current stopwatch time to an output stream.
10 CDirEntry -- always delete trailing path separator except some special cases, like root

dir and DOS disk names. Fixed NormalizePath() to prevent crashing on some path
strings and corrected for the processing of root dirs variations.

11 Added ERound and ESign enumerators to use instead of senseless booleans.
12 (*) Case-insensitive comparisons now always treat letters on lowercase, in keeping

with most (all?) standard library implementations.
13 CDiagCompileInfo -- new class to collect compile time information

(__FILE__LINE__ and MODULE_NAME at this time). DIAG_COMPILE_INFO --
a convenience macro to make an instance of CDiagCompileInfo.
CNcbiDiag::CNcbiDiag*() and CException::CException*() now accept
CDiagCompileInfo instead of __FILE__ and __LINE__.

14 Added functionality to set/get module, class and function name in CNcbiDiag and
CException.

15 SetDiagFilter() -- new function to setup diagnostic messages filtering based on source
file path and/or module, class and function name

16 CNcbiApplication -- understands [DIAG].*_FILTER entries in config file to specify
the diagnostic filtering rules.

17 CConfig -- new class to conveniently access a hierarchical tree of configuration
parameters.

CONNECT -- Data streaming, Networking, and Dispatching
1 Added client API for the NCBI NetCache server.
2 ncbi_buffer.[ch] -- new methods BUF_Erase(), BUF_Append(), and BUF_Prepend

(). Append/Prepend allow to insert a chunk of data into the buffer without making a
copy of the data.

3 CConn_Streambuf -- added tracking of input position, for std::istream::tellp().
4 CONNECT_Init() -- now can be set up to be called automatically whenever a CONN-

based C++ stream is constructed.
5 MEMORY_CreateConnectorEx(), CConn_MemoryStream -- new constructors, to

allow building the connector on top of a BUF for the cases when an arbitrary data
area is to be converted to an input/output stream in-place.

6 CConn_MemoryStream::ToString() -- added.
7 DisableOSSendDelay() -- new method for CSocket and SOCK API, to allow turning

off the Nagle algorithm.

UTIL -- Miscellaneous Low-Level APIs
1 CStdPoolOfThreads -- fixed potential race conditions.

SERIAL -- Data Serialization (ASN.1, XML)
1 Corrected writing namespace name of NamedType in XML output stream.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 RPC clients (for ID1, Entrez2, etc.) propagate persistent low-level exceptions.
3 Fixed the "delayed" object parsing. Allow to disable delayed parsing via registry or

environment.
4 Provided thread-safe initialization in s_SerFlags().

DATATOOL -- Code Generator and Data Converter Tool
1 Improved diagnostics in datatool when parsing ASN.1 spec that contains an identifier

with a wrong name (DATATOOL crashed formerly with no meaningful message).

CGI -- CGI and Fast-CGI Application Framework
1 Improve handling of unopenable FastCGI watch files.
2 Ensure that FastCGI IPC file descriptors don't get propagated to child processes,

which could do no good with them.
3 CCgiApplication -- standard I/O streams to work in binary mode, to override MS-

Windows default that opens them in text mode.
4 CGI API's exceptions -- re-structurize to distinguish between user- and server- errors

by the exception type.

HTML -- HTML Generation Library
1 CHTMLText -- allow to disable internal buffering, at the cost of losing some

functionality related to the recursive tag mapping; "disabled" is the default now.
2 Modified StripTags() to strip mapping tags <@...@> before stripping HTML tags.

Added possibility to remove single closing tags.

Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
1 CBDB_Cache - added option to run a maintenance thread to do garbage collection

(remove obsolete cache elements) and to cleanup old unused transaction log files.
Naturally, it is available only in multi-thread applications.

2 CBDB_Cache - implemented flexible (traffic based) transaction checkpoint.
Improved database stability.

3 Fixed bug in the IWriter implementation provided by CBDB_Cache.
4 CBDB_Cache - added new class factory configuration options to control the use of

transactions and the level of I/O syncronicity.
5 CBDB_Env::SetLogFileMax() -- new method, to limit the size of log files.

DBAPI -- Generic SQL Database Connectivity
1 By default, rename DBLIB symbols in built-in FreeTDS in order to avoid a potential

name clash with Sybase DBLIB (when linking the two statically together).
2 Fixed bug in binding NULL-valued CDB_Char, CDB_VarChar, CDB_Binary and

CDB_VarBinary.
3 CVariant - Added SetNull() method.

ALGO/ALIGN -- Generic Alignment Algorithms—New general purpose tree algorithms:
1 CBandAligner -- a new class, derived from CNWAligner to provide a version of the

band-limited global alignment algorithm. The applicability of the algorithm is limited
to a special but important case when the upper band limit can be given prior to running

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the algorithm. The running time and space are then both have an order of band
multiplied by the sequence length.

2 A strategy of cutting short terminal exons in splign has been adjusted.
3 CCompartmentFinder -- a small intron length penalty was introduced to favor more

compact models over more stretched ones.

BLAST
1 (*) Removal of unneeded functionality from the BlastSeqSrc API and addition of the

IBlastSeqInfoSrc interface.
2 Bug fixes to gapped blastx/tblastn and ungapped blastx/tblastn for sum statistics.
3 (*) Updated code to use new version of scoremat.asn specification
4 Added structure group customization to PSSM engine to ignore query sequence.

Improved input data validation and error handling in PSSM engine.
5 Made consistent the sorting of HSPs on entrance and exit of all public functions after

the preliminary gapped alignment. Also, HSPs are sorted by score (not by e-value)
after traceback.

6 Moved RPS blast initialization into the BLAST engine instead of forcing applications
to manually do it, added support for concatenated queries to RPS blast.

ALNMGR -- Bio-sequence Alignment Manager
1 CAlnMap:

! Fixed the support for unaligned regions in GetRawSeg.
! Fixed the range of the Unaligned chunk in case it spans over multiple gaps.
! Extended Get{Aln,Seq}Chunks() with the ability to obtain [implicit]

unaligned regions.
! Completed AlnRange swapping.
! Flags for the new functionality -- fUnaligned and fAddUnalignedChunks.

2 CAlnVec::GetColumnVector() -- added argument check.
CAlnVec::GetAlnSeqString() -- added translation.

3 CAlnMix -- the use (or not) of OM++ now only depends on whether a scope was
provided at construction time.

4 CAlnMix::fPreserveRows -- new flag.
5 CAlnVwr -- PopsetStyle flags changed.

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 CSeq_id -- support several new prefixes in IdentifyAccession() method.
2 Splitted id2 and seqsplit libraries
3 CSeq_loc_CI -- added IsSetStrand().
4 CSeq_loc -- added ChangeToMix(), ChangeToPackedInt().
5 CDense_seg::FillUnaligned() -- new method, to create a dense-seg with all unaligned

pieces (implicit inserts), if any, added between segments.
6 CDense_seg::FromTranscript() -- new method, to facilitate initialization from the

alignment transcript string.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

7 Auth-list.names marked for delayed parsing to reduce memory usage by entries with
huge publication sets.

8 CSeq_id_Handle -- new methods GetMapper() and MatchesTo(), fixed the matching
of Genbank, Embl, and Ddbj Seq-ids.

9 CSeq_id_Mapper::GetInstance() - made thread-safe.

OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
1 Added mapping of code-breaks and anticodons in feature iterator.
2 Preserve fuzz from the original location or use it to indicate truncated intervals in

annotation iterators.
3 Added flag for handling unresolved IDs (search/ignore/fail) and method for external

annotations search in SAnnotSelector.
4 Fixed behaviour of CSeq_loc_Mapper to match results produced by iterators.
5 Added new constructors to annotation iterators, marked many constructors and

methods as deprecated.
6 Implemented CScope::AddSeq_annot().
7 Fixed processing of 'partial' flag in mapped features.
8 Features truncated while mapping now get correct Int-fuzz values to mark truncation

place.
9 Fixed thread safety in several places: CAnnot_Index::x_InitIndexTables(),

CObjectManager::GetInstance().
10 CSeqMap::End() -- fix to allow reverse iteration from the end.
11 CSeqVector -- use 0xff to represent gaps in NCBI2na encoding rather than throw an

exception.
12 Added methods for working with gaps in CSeqVector: IsInGap(), SkipGap(),

SkipGapBackward(), GetGapSizeForward(), GetGapSizeBackward().

OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
1 Added support for "orphan" annotations - for annotations-only data loaders.
2 (*) One of overloaded GetRecords() methods was renamed to GetDetailedRecords()

to avoid name conflicts.
3 Fixed default implementation of GetIds().
4 Allow the caching ID1 reader to cache intermediate gi.
5 Try to deal with withdrawn and private blobs without exceptions in GenBank loader

to reduce problems with old GCC.
6 Added support for SNP_graph annotations.

ID2
1 ID2-Reply-Get-Blob-Id.blob-id -- made optional to report errors.
2 (*) SeqSplit specs -- modified to allow splitting non-gi sequences. WARNING: If you

use split_cache application you'll have to resplit your data in the cache since SeqSplit
specification was changed.

3 ID2S locations and Seq-id selections made consistent and orthogonal.
4 Added support for loading split descriptors in CSeqdesc_CI.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 Added support for split assembly history.
6 Updated splitter library for new SeqSplit specs.

BIO-TOOLS
1 sequence::GetTitle -- when generating protein titles, include extra protein names only

when the new flag fGetTitle_AllProteins is given.
2 sequence::GetTitle -- pick gene names more reliably in the case of overlaps.
3 seq_loc_util.[ch]pp -- added seq-loc operations (Add/Subtract/Merge).
4 TestForOverlap() -- added processing of multi-strand locations.
5 TestForOverlap() -- to perform all calculations with Int8 and check for overflow when

returning int. x_TestForOverlap() allows to get the Int8 value.

ALGO/PHY_TREE -- Phylogenetic and bio tree algorithms— CBioTree- New node
design, improved usability.

BUILD FRAMEWORK (UNIX)
1 Configure now supports an explicit --without-64 option for use on bi-arch systems

that produce 64-bit binaries by default.
2 The Toolkit now automatically regenerates makefiles as needed, so it should generally

no longer be necessary to run reconfigure.sh after editing or even adding the
configurable ("*.in") makefiles.

PTB -- Project Tree Builder for MSVC++ .NET
1 PTB to rely more on UNIX makefile tree when generating MSVC projects: parse the

contents of Makefile.in and process requested projects and subfolders only.
2 Take into account LIB_OR_DLL flag in makefiles: if a specific project is marked as

DLL, then do not build it as static library in the DLL builds.
3 Made it possible to specify which header files go into a specific MSVC project -- the

headers can now be listed in the "HeadersInInclude" and "HeadersInSrc" entries of
section "[AddToProject]" in Makefile.*.msvc.

4 Added dependency on DATATOOL into ASN projects, so they are forced to re-built
when DATATOOL changes.

5 Process configurable sources (*.in) a la UNIX "configure" utility.
6 Tune the projects and defines for each build configuration individually and

independently of other configurations (so if you have some 3rd-party lib available in
only some configurations it will be used in those).

3RD-PARTY PACKAGES
1 Prepare an easy-to-build bundle of 3rd-party packages (in source codes) for MSVC+

+, put it to a public FTP along with the NCBI C++ Toolkit sources.

APPLICATIONS
1 NetCache -- new server-side daemon to share temporary data between several hosts.

Mostly to be used for keeping CGI session context and immediately reusable
(temporary yet expensive to re-calculate) data.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 AlnVwr (a demo of various alignment viewers to illustrate the usage of CAlnMap
and CAlnVec). Added Seq-align as input type; its segs must be of type Dense-seg.
Implemented a demo view using the new CAlnPos_CI class.

3 AlnMrg (a demo program to illustrate the usage of CAlnMix). The default output now
is Seq-align, but Dense-seg can be chosen by the "-dsout" command-line argument.
Added viewers, mostly to be able to view translated Dense_segs (DS + m_Widths).

4 objmgr_demo.
a Added more options to control demo application: -range_loc -overlap -

by_product -desc_type -count_subtypes
b Added output of CSeq_loc_Mapper result.
c Added bidirectional tests for CSeqMap_CI.
d BDB cache options tuned for better performance.

5 seqvec_bench. Test for "block" fetching with GetSeqData().
6 test_objmgr_data[_mt]. Allow showing the processing time in verbose mode.
7 id1_fetch_simple. Allow to change ID1 service name via command line arguments.

Documentation
Document Location—The documentation is available online at http://
www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
as a book titled "The NCBI C++ Toolkit". This is an online searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content—Documentation has been grouped into chapters and sections that
provide a more logical coherence and flow. New sections and paragraphs continue to be added
to update and clarify the older documentation or provide new documentation. The chapter titled
"Introduction to the C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains
links to other chapters containing more details on a specific topic and is a good starting point
for the new comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search runs a CGI script that lists the library name where
the symbol (such as function) is defined in.

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

The current release notes as well as past release notes are now in an appendix in the C++ Toolkit
Book and a link to the current release notes appears on each page of the online Toolkit
document.

Building on the MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench). We do not build any of the many test or demo apps (except testvalidator). We also
build the FLTK library's GUI editor, fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the Codewarrior projects.

Build procedure is still the same: use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

Projects include targets to compile with BSD/Apple headers and libraries and with MSL
headers and libraries, but plugins (for gbench) built with MSL do not link properly, and so,
because of lack of interest to keep up with changes, some source code does not currently
compile with MSL. Hopefully this will become easier to work with and get fixed with
Codewarrior v.9.

Targets to be compiled can be controlled by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: MSL, BSD, Debug and Final. For example, to build only the
BSD Debug targets use: "Build BSD Debug", to build both BSD debug and release (final)
versions: "Build BSD". The default is to build everything.

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g. /Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (see Table 18) are required to build some parts of the C++ toolkit.
The scripts will try and find them if they are in your home directory, or you can specify where
they were installed using properties at the beginning of the script.

Table 18
Third Party Libraries

Library Property Example

FLTK 1.1.5rc2 (w/ NCBI patches) pFLTKRootFolder "usr:local:src:fltk-1.1.5rc2:"

BerkeleyDB 4.2.52 pBdbRootFolder "Users:myhome:mylibs:db-4.2.52"

SQLite 2.8.15 gSqliteFolder

dlcompat pDLRootFolder "usr:"

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and Codewarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any Codewarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the users Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.2 works. We think
10.1 still works, and 10.3 might work.

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on the following platforms -- but may also work on other
platforms. Since the previous release, some platforms were dropped from this list, just because
we do not use them here anymore, and some were added (these new platforms are highlighted
using bold font). Also, it can happen that some projects would not work (or even compile) in
the absence of 3rd-party packages, or with older or newer versions of such packages -- in these
cases, just skipping such projects (e.g. using flag "-k" for make on UNIX), can get you through.

Unix
Table 19

Unix OS's and Supported Compilers
Operating System Architecture Compilers

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL GCC 2.95.3, 3.0.4, 3.4.0

Linux-2.4.26 (w/ LIBC 2.3.2) INTEL GCC 3.4.0

Linux-2.6.7 (w/ LIBC 2.3.3) INTEL/64 GCC 3.4.0

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL ICC 8.0

Solaris-8 SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-13 (64-bit, 32-bit)

Solaris-8 SPARC GCC 3.0.4

Solaris-9 INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris-9 INTEL GCC 3.3.3

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.2m (64-bit, 32-bit)

FreeBSD-4.5 INTEL GCC 3.0.4

FreeBSD-4.10 INTEL GCC 3.4.2

Tru64 (OSF1) V5.1 ALPHA GCC 3.3.2

Tru64 (OSF1) V5.1 ALPHA Compaq C++ V6.5-014

MS Windows
Table 20

MS Windows and Supported Compilers
Operating System Compilers

MS Windows MSVC++ 6.0 Service Pack 5. No longer supported.

MS Windows MSVC++ 7.1. See documentation on MS Visual C++.NET.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Mac OS X
Table 21

Mac OS, and Supported Compilers
Operating System Compilers

MacOS 10.2, 10.3.4 GCC 3.3

MacOS 10.3.4 CodeWarrior 9.2

Caveats and Hints
MacOS 10.X / CodeWarrior 9.1

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK (1.1.x), BerkeleyDB (4.x) and SQLite

(2.x) should be present. See the installation instructions for details.

MacOS 10.2/GCC 3.3—At least the GCC 3.3 update for Dec. 2002 Developers Tools
required from Apple.

GCC 2.95
1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI rather soon -- as soon as we have any significant

trouble with its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3—Other than the feature described below, GCC 3.3.2 has been very good for us; it
has a lot of very ugly bugs finally fixed.

Painfully slow linking in debug mode on Linux with GCC-3.3 compiler:
1 Starting with binutils 2.12 linker tries to merge constant/debug strings marked for

merging in object files. But it seems it does this job very inefficiently - I've seen
messages about it in internet.

GCC starting with version 3.2 marks section of string constants ready for merging,
and also has an option to disable this flag in object files (-fno-merge-constants).
Adding this flag to compilation stage allows to avoid slow linking.

GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4.

The slowdown rate depends on size of debug strings section and it's non-linear, so
bigger projects will suffer more of this bug (N^2).

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Binutils 2.15 fixes this. The link time still 2 times slower than without symbol merge,
but the resultant executable is about two times smaller in size, and no compiler
patching is necessary. We are still testing it in-house.

We had to patch GCC 3.3 in-house with the fix described at http://lists.boost.org/
MailArchives/boost/msg53004.php.

2 Long-file support still broken (first broken in 3.1).

GCC 3.4
1 The "Painfully slow linking..." (see GCC3.3 [1] above) is still an issue. -- Again, had

to patch it in-house to speed it up, a la GCC 3.3.
2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls

an ioctl that doesn't work properly for large files.
3 At least on Linux, GCC 3.4.[1,2] optimizer (very rarely) generates incorrect code

when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

Last Updated
This section last updated on November 24, 2004

Page 12

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://lists.boost.org/MailArchives/boost/msg53004.php
http://lists.boost.org/MailArchives/boost/msg53004.php

Release Notes (October 2, 2004)

! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" CORELIB -- Portability and Application Framework
" CONNECT -- Data streaming, Networking, and Dispatching
" HTML -- HTML Generation Library
" UTIL/COMPRESSION -- Data Compression (GZIP, BZ2)
" SERIAL -- Data Serialization (ASN.1, XML)
" DATATOOL -- Code Generator and Data Converter Tool
" CGI -- CGI and Fast-CGI Application Framework
" Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
" DBAPI -- Generic SQL Database Connectivity
" ALGO/ALIGN -- Generic Alignment Algorithms
" ALGO/PHY_TREE -- Phylogenetic and bio tree algorithms
" ALGO/ALIGN -- Generic Alignment Algorithms
" BLAST
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM

++)
" OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
" ID2
" BIO-TOOLS
" BUILD FRAMEWORK (MSVC++ 6.0)
" BUILD FRAMEWORK (MSVC++ .NET)

! APPLICATIONS
" OBJMGR DEMO program (objmgr_demo)
" OBJMGR TEST programs (test_objmgr_data & test_objmgr_data_mt)

! Documentation
" Document Location
" Document Content

! Building on the MacOS
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! Caveats and Hints
" MacOS 10.X / CodeWarrior 9.1
" MacOS 10.2/GCC 3.3
" GCC 2.95
" GCC 3.0.4
" GCC 3.3
" GCC 3.4

! Last Updated

Release Notes (October 2, 2004)
Download Location

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Oct_02_2004/

Source Archive Contents
Source Code Archives
! ncbi_cxx_unix--Oct_02_2004.tar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
! ncbi_cxx_unix--Oct_02_2004.gtar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
! ncbi_cxx_win--Oct_02_2004.exe-- for MS-Windows / MSVC++ 7.1 (self-extracting)
! ncbi_cxx_win--Oct_02_2004.zip-- for MS-Windows / MSVC++ 7.1
! ncbi_cxx_mac_cw--Oct_02_2004.tgz-- for MacOS 10.3.4 / CodeWarrior DevStudio

for MacOS 9.2
! ncbi_cxx_mac_xcode--Oct_02_2004.tgz-- for MacOS 10.3.4 / xCode 1.[1-5]
! ncbi_cxx_mac_gcc--Oct_02_2004.tar.gz-- for MacOS 10.2, 10.3.4 / GCC 3.3.2

The sources correspond to the NCBI production tree sources from patch "CATCHUP_004",
which in turn corresponds to the development tree sources from around the very end of August,
2004.

New Development
Some of the new development that may introduce potentially backward-incompatible changes
are marked with an asterisk(*).

CORELIB -- Portability and Application Framework
1 GetVirtualMemoryPageSize()-- new function, to get the granularity with which

virtual memory is allocated.
2 CNcbiApplication-- addedGetProgramExecutablePath()method.
3 CDllResolver-- extend class to make it also look in "standard" DLL paths.

AddedAddExtraDllPath()method. Added accessory parameter toFindCandidates().
4 CDllResolver: added support for driver name (for Plugin Mananger)
5 PluginManager_ConvertRegToTree()- to convert application config file into a

parameters tree.
6 CSimpleClassFactoryImpl-- added methods to extract information from parameters

tree.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Oct_02_2004/

7 CMemoryFileAPI -- added possibility to map parts of a file.
! CMemoryFileSegment- new auxiliary class for mapping a memory file

region.
! CMemoryFileMap - new class to support a partial file memory mapping.
! CMemoryFile - now is the same asCMemoryFileMapbut have only one big

mapped segment with offset 0 and length equal to the length of file.
8 StringTo*() -- added additional parameter to specify the action to be performed on

conversion error: to throw an exception, or just to return zero.
9 Fixed multithreading on BSD.
10 AddedCStopWatch::Restart()to reuse the same timer sequentially.
11 CTree<>-- added new methods:AddNode(),FindNode(),FindSubNode().

CONNECT -- Data streaming, Networking, and Dispatching
1 LSOCKandCListeningSocket::CListeningSocket()to accept flags (TLSCE_Flags),

which extended from flags for simple logging to flags that also control binding of a
socket being created: whether to bind locally (127.0.0.1) or promiscuously (any
address) -- as before. Restricted binding helps limit incoming connections to loopback
only, thus allowing to create local-only servers (which listen on and reply to localhost
only).

2 Threaded Server Framework -- added a mechanism to request graceful termination.
3 Threaded Server Framework -- added support for running user-supplied code if a

specified amount of time has occurred since the last client connected.

HTML -- HTML Generation Library
1 Added classCHTML_password(HTML tag <input type=password>)
2 CHTML_table-- replaced old unimplemented methodColumnWidth()with new

oneSetColumnWidth().

UTIL/COMPRESSION -- Data Compression (GZIP, BZ2)
1 CBZip2Compression, CZipCompression- fixed error inCompressFile()function with

using incorrect file stream open mode.
2 ImplementedCNlmZipBtRdr::Pushback()for uncompressed data.

SERIAL -- Data Serialization (ASN.1, XML)
1 Completed first step in creation of infrastructure for developing .NET-compatible

XML Web services. Created sample XML Web server and client that work on all
platforms supported by the Toolkit.

2 Added possibility to scan input stream finding and processing objects of a specific
type only, while skipping all other data: seeSerial_FilterObjectsfunction template.

3 Added (to "type iterators") the possibility to retrieve context information: type info,
item info, object pointer:
seeCTreeIteratorTmpl<>::GetContext,CTreeIteratorTmpl<>::GetContextData.

4 Modified serial library to support large files (greater than 4GB) on some 32 bits
platforms - when compiler supports it.

5 RPC clients (for ID1, Entrez2, etc.) now support adjusting some additional
parameters, including in particular timeouts.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

6 Added operators to read/writeCObjectInfo/CConstObjectInfo.

DATATOOL -- Code Generator and Data Converter Tool
1 Modified code generator to set and return primitive type data by value instead of by

reference.
2 Corrected XML schema generation for named integers.
3 Added possibility to specify namespace name when generating XML schema.
4 Added possibility to specify extra headers to include into generated code; such headers

are to be defined in DEF file.

CGI -- CGI and Fast-CGI Application Framework—The default implementation
ofCCgiApplication::OnException()handler to issue a "400" HTTP error if it's the HTTP request
itself that seems to be syntactically incorrect. "500" is still issued in all other cases.

Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
1 New utility BDB dumper, to see BDB database content.
2 Bug fix in BLOB reading writing (cross platform compatibility).
3 Added log cleaning function (CBDB_Env::CleanLog()).
4 Added support for database recovery procedures when opening the Database.
5 Added new data field type "uint1" (unsigned char).
6 BDB_find_field improved to search in non-text fields.
7 BDB Cache(ICache):

1. support ASYNCronous write mode
2. improved page size control for better performance tuning
3. more efficient BDB environment join
4. cache verification method added (Verify())
5. added locking and transaction timeouts
6. added method Remove for key, version, subkey
7. added read-only cache

DBAPI -- Generic SQL Database Connectivity
1 AddedIReader/IWritersupport for BLOB I/O.
2 Added dedicated row counter for rowset results.

ALGO/ALIGN -- Generic Alignment Algorithms—New general purpose tree algorithms:
! TreeCompare - compare two trees using comparison functor
! TreeForEachParent - visit every parent of the tree node
! TreeTraceToRoot - find root of the tree
! TreeReRoot - tree re-rooting(rotation)
! TreeFindCommonParent - find common parent of two nodes
! TreeListToSet - convert list of nodes to bitset
! TreeMakeParentsSet - traverse all parents, create set of ids
! TreeMakeSubNodesSet - create set of subnode ids

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! CTreeNonRedundantSet - compute non-redundant set of nodes
! CTreeMinimalSet - compute minimal set of nodes
! Functions to perform logical operations (AND, OR) on nodes

ALGO/PHY_TREE -- Phylogenetic and bio tree algorithms— CBioTree- New node
design, improved usability.

ALGO/ALIGN -- Generic Alignment Algorithms
1 Supported low-case and zero-based nucleotide sequence characters.
2 Added a capability of parralel computing of parts of dynprog matrix inCNWAligner.
3 Synchronized compartment IDs for transcript alignments calculated in different query

strands.
4 Provided a mechanism for elimination of weak/far terminal exons. At the

preprocessing step, an empiric was introduced that limits external genomic search
space based on the size of non-covered transcript ends. At the post-processing step,
a heuristic was added to check for weak terminals.

BLAST
1 Consolidation of the traceback extension types.
2 Implemented stacks initial word container for all blastn extension methods.
3 Implemented uneven gap linking of HSPs for blastx.
4 Refactorings to PSSM engine.
5 Modularized code to link HSPs.
6 MT-support added toCDbBlast.
7 Added implementations of the BlastHspStream interface to collect HSPs according

to the traditional BLAST algorithm and to collect all HSPs for on-the-fly processing.
8 CSeqDb: Added support for ISAM indices to allow lookup of sequences by GI, PIG,

or String identifier; Allow memory bounds to be set; Added "chunk" interface to
iterate over set of included OIDs.

9 The coordinates remapping for BLAST results when comparing subsequences or
sequences from different strands was fixed.

10 Fixed compiler warnings and memory leaks, updated documentation, and removed
obsolete defines.

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 Added support for converting generic serial objects to and from User-object trees.
2 CSeq_id-- support several new prefixes inIdentifyAccession()method.
3 Check strand inCSeq_loc::GetStart/End().

OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
1 (*)CObjectManagermade singleton.
2 (*)CObjectManager-- added methods to manipulate Data Loaders.
3 objmgr_sample.cpp updated to fit current APIs.
4 (*) Seq-id mapper moved from OBJMGR to SEQ library.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 (*) Removed duplicate methods fromCSeqMap.
6 Modified annot iterators to better resolve synonyms. Do not cache synonyms in the

scope's history.
7 Detect circular locations in Annot Iterators.
8 Added annotation mapping through annot.locs.
9 AddedCScope::GetIds()to fetch synonyms without fetching the whole bioseq.
10 CSeqVector-- added ncbi2na ambiguity randomizer.
11 CBioseq_set_Handle-- addedGetComplexityLevel()andGetExactComplexityLevel

().
12 Added operatorsbool()and!()to all Annot Iterators.
13 Revamped object manager: Changed TSE locking scheme; and, TSE cache is now

maintained byCDataSource.
14 Fixed performance degradation ofGetTSESetWithAnnots(), used time was quadratic

on amount of loaded blobs.
15 Fixed processing of trace assemblies: segment shift in Seq-annot.locs processing, and

duplication of discontinuous alignments.
16 CAnnotNameandCAnnotTypeSelectormoved to separate headers.
17 Several fixes to make object manager thread-safe.
18 Understand "weight" param in qual field and string dbSNP value when parsing SNP

features into table. Allow SNP Seq-entry in addition to SNP Seq-annot.
19 Added delayed loading of external annotations from satellite 26.
20 Fixed loading of missing split chunks whenGetCompleteXxx()method is called.
21 Added splitting of whole Bioseqs. Postpone indexing of retrieved split blobs to reduce

memory usage by big nucprot sets.

OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
1 (*)Data Loaders do not have public constructors anymore,RegisterInObjectManager

()should be used instead.
2 (*)Added Data Loader factories usingCPluginManager, fixed driver names.
3 CSeqrefis replaced byCBlobId.
4 Added loading of external annotations from 26 satellite. Use new split features to

represent external annotation blobs (sat 26).
5 Allow SNP Seq-entry in addition to SNP Seq-annot. Load SNPs from satellite 26.

ID2
1 Added GENNBANK_READER_ID2_xxx macros to Makefile.mk.
2 Added exports for ID2 libraries. ID1 & ID2 moved to ncbi_seqext.dll on Windows.

BIO-TOOLS—Added preliminary support for importing and exporting GFF version 3 data,
complete with gapped alignments.

BUILD FRAMEWORK (MSVC++ 6.0)—Not supported anymore.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

BUILD FRAMEWORK (MSVC++ .NET)
1 Allow for conditional macro definition.
2 Implemented optional dependency on a third-party library.
3 Do include EXPENDABLE projects to the build.
4 Added possibility to set up a precompiled header for a subdirectory which is not direct

child of the root folder.
5 Corrected new_project and import_project Windows scripts to add more diagnostics,

and to add the ability to import projects from the non-standard build tree.

APPLICATIONS
OBJMGR DEMO program (objmgr_demo)

1 Allow limited processing to have benefits from split blobs. Added new options to
control tasks to be done:
! count_types
! reset_scope
! limit_tse
! used_memory_check
! print_cds
! range_from
! range_to

2 UseCBlob_idinstead of obsoleteCSeqref. Removed obsolete code for old blob cache
interface.

3 Seq-id cache is put in the same directory as blob cache. Tuned cache parameters on
Windows.

4 Optional compilation with Berkley DB.

OBJMGR TEST programs (test_objmgr_data & test_objmgr_data_mt)—Added
new options -no_seq_map, -no_named, -verbose, -adaptive -idlist.

Documentation
Document Location—The documentation is available online athttp://
www.ncbi.nlm.nih.gov/books/bv.fcgi?
call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2as a book titled "The NCBI C++
Toolkit". This is an online searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content—Documentation has been grouped into chapters and sections that
provide a more logical coherence and flow. New sections and paragraphs continue to be added
to update and clarify the older documentation or provide new documentation. The chapter titled
"Introduction to the C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains
links to other chapters containing more details on a specific topic and is a good starting point
for the new comer.

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Browsers" that appears on each page.

You can also access the CVS code repository via a Web interface. These links also appear in
the sidebar box on each page.

A C/C++ Symbol Search query appears on each page of the online Toolkit documentation.
You can use this to perform a symbol search on the public or in-house versions of LXR,
Doxygen and Library. The Library search runs a CGI script that lists the library name where
the symbol (such as function) is defined in.

The current release notes as well as past release notes are now in an appendix in the C++ Toolkit
Book and a link to the current release notes appears on each page of the online Toolkit
document.

Building on the MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench). We do not build any of the many test or demo apps (excepttestvalidator). We also
build the FLTK library's GUI editor,fluid.

All apps are built as application bundles exceptgbench_plugin_scananddatatoolwhich are built
as command line apps. Any of the applications can be built as command line apps by tweaking
the build scripts or the Codewarrior projects.

Build procedure is still the same: use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

Projects include targets to compile with BSD/Apple headers and libraries and with MSL
headers and libraries, but plugins (for gbench) built with MSL do not link properly, and so,
because of lack of interest to keep up with changes, some source code does not currently
compile with MSL. Hopefully this will become easier to work with and get fixed with
Codewarrior v.9.

Targets to be compiled can be controlled by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: MSL, BSD, Debug and Final. For example, to build only the
BSD Debug targets use: "Build BSD Debug", to build both BSD debug and release (final)
versions: "Build BSD". The default is to build everything.

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g./Users/
username/). The disk name (and its following colon) may be omitted.

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

Certain third party libraries (seeTable 14) are required to build some parts of the C++ toolkit.
The scripts will try and find them if they are in your home directory, or you can specify where
they were installed using properties at the beginning of the script.

Table 14
Third Party Libraries

Library Property Example

FLTK 1.1.5rc2 (w/ NCBI patches) pFLTKRootFolder "usr:local:src:fltk-1.1.5rc2:"

BerkeleyDB 4.2.52 pBdbRootFolder "Users:myhome:mylibs:db-4.2.52"

SQLite 2.8.15 gSqliteFolder

dlcompat pDLRootFolder "usr:"

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and Codewarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version
the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any Codewarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the users Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.2 works. We think
10.1 still works, and 10.3 might work.

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on the following platforms -- but may also work on other
platforms. Since the previous release, some platforms were dropped from this list, just because
we do not use them here anymore, and some were added (these new platforms are highlighted
using bold font). Also, it can happen that some projects would not work (or even compile) in
the absence of 3rd-party packages, or with older or newer versions of such packages -- in these
cases, just skipping such projects (e.g. using flag "-k" formakeon UNIX), can get you through.

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Unix
Table 15

Unix OS's and Supported Compilers
Operating System Architecture Compilers

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL GCC 2.95.3, 3.0.4, 3.4.0

Linux-2.4.26 (w/ LIBC 2.3.2) INTEL GCC 3.4.0

Linux-2.6.7 (w/ LIBC 2.3.3) INTEL/64 GCC 3.4.0

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL ICC 8.0

Solaris-8 SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-13 (64-bit, 32-bit)

Solaris-8 SPARC GCC 3.0.4

Solaris-9 INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris-9 INTEL GCC 3.3.3

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.2m (64-bit, 32-bit)

FreeBSD-4.5 INTEL GCC 3.0.4

FreeBSD-4.10 INTEL GCC 3.4.2

Tru64 (OSF1) V5.1 ALPHA GCC 3.3.2

Tru64 (OSF1) V5.1 ALPHA Compaq C++ V6.5-014

MS Windows
Table 16

MS Windows and Supported Compilers
Operating System Compilers

MS Windows MSVC++ 6.0 Service Pack 5. To be DEPRECATED -- this is the last release where it is supported.

MS Windows MSVC++7.1. See documentation onMS Visual C++.NET.

Mac OS X
Table 17

Mac OS, and Supported Compilers
Operating System Compilers

MacOS 10.2, 10.3.4 GCC 3.3

MacOS 10.3.4 CodeWarrior 9.2

Caveats and Hints
MacOS 10.X / CodeWarrior 9.1

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK (1.1.x), BerkeleyDB (4.x) and SQLite

(2.x) should be present. See the installation instructions for details.

MacOS 10.2/GCC 3.3—At least the GCC 3.3 update for Dec. 2002 Developers Tools
required from Apple.

GCC 2.95
1 Poor MT-safety record.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 Relatively incomplete/incorrect (comparing to modern compilers) STL
implementation.

3 It is going to be deprecated in NCBI rather soon -- as soon as we have any significant
trouble with its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3—Other than the feature described below, GCC 3.3.2 has been very good for us; it
has a lot of very ugly bugs finally fixed.

Painfully slow linking in debug mode on Linux with GCC-3.3 compiler:
1 Starting with binutils 2.12 linker tries to merge constant/debug strings marked for

merging in object files. But it seems it does this job very inefficiently - I've seen
messages about it in internet.

GCC starting with version 3.2 marks section of string constants ready for merging,
and also has an option to disable this flag in object files (-fno-merge-constants).
Adding this flag to compilation stage allows to avoid slow linking.

GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4.

The slowdown rate depends on size of debug strings section and it's non-linear, so
bigger projects will suffer more of this bug.

We had to patch GCC 3.3 in-house with the fix described athttp://lists.boost.org/
MailArchives/boost/msg53004.php.

2 Long-file support still broken (first broken in 3.1).

GCC 3.4
1 The "Painfully slow linking..." (see GCC3.3 [1] above) is still an issue. -- Again, had

to patch it in-house to speed it up, a la GCC 3.3.
2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls

an ioctl that doesn't work properly for large files.
3 At least on Linux, GCC 3.4.[1,2] optimizer (very rarely) generates incorrect code

when comparing enumerated values in else-ifs. (Fixed in 3.4.2)

Last Updated
This section last updated on October 22, 2004

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://lists.boost.org/MailArchives/boost/msg53004.php
http://lists.boost.org/MailArchives/boost/msg53004.php

Release Notes (July 8, 2004)

! Download Location
! Source Archive Contents

" Source Code Archives
! New Development

" CORELIB -- Portability and Application Framework
" CONNECT -- Data streaming, Networking, and Dispatching
" HTML -- HTML Generation Library
" UTIL -- Miscellaneous Low-Level APIs
" UTIL/COMPRESSION -- Data Compression (GZIP, BZ2)
" SERIAL -- Data Serialization (ASN.1, XML)
" DATATOOL -- Code Generator and Data Converter Tool
" CGI -- CGI and Fast-CGI Application Framework
" Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
" DBAPI -- Generic SQL Database Connectivity
" ALGO -- Advanced Algorithms Library
" ALGO/ALIGN -- Generic Alignment Algorithms
" BLAST
" ALNMGR -- Bio-sequence Alignment Manager
" BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM

++)
" OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
" OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
" ID2
" BIO-TOOLS
" LDS
" BUILD FRAMEWORK
" APPLICATIONS

! Documentation
" Document Location
" Document Content

! Building on the MacOS
! Platforms (OS's, compilers used inside NCBI)

" Unix
" MS Windows
" Mac OS X

! Caveats and Hints

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! MacOS 10.X / CodeWarrior 9.1
! MacOS 10.2/GCC 3.3
! GCC 2.95
! GCC 3.0.4
! GCC 3.3
! GCC 3.4

" Last Updated

Release Notes (July 8, 2004)
Download Location

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Jul_08_2004/

Source Archive Contents
Source Code Archives
" ncbi_cxx_unix--Jul_08_2004.tar.gz-- for UNIX'es (see the list of UNIX flavors below)

and MacOSX/GCC
" ncbi_cxx_unix--Jul_08_2004.gtar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
" ncbi_cxx_win--Jul_08_2004.exe-- for MS-Windows: MSVC++ 6.0 and 7.1 (self-

extracting)
" ncbi_cxx_win--Jul_08_2004.zip-- for MS-Windows: MSVC++ 6.0 and 7.1
" ncbi_cxx_win--Jul_08_2004.tar.gz-- for MS-Windows: MSVC++ 6.0 and 7.1
" ncbi_cxx_mac_cw--Jul_08_2004.tar.gz-- for MacOS 10.3.4 / CodeWarrior DevStudio

for MacOS 9.2
" ncbi_cxx_mac_gcc--Jul_08_2004.tar.gz-- for MacOS 10.2, 10.3.4 / GCC 3.3

The sources correspond to the NCBI production tree sources from patch "GCC34_MSVC7,"
which in turn corresponds to the development tree sources from around end of may, 2004.

New Development
Some of the new development may introduce potentially backward-incompatible changes.

CORELIB -- Portability and Application Framework
1 CRef<>-- added methods for atomic release and reset.
2 EDiagPostFlag-- added optional conversion of multi-line diagnostic messages into

single-line ones.
3 CDirEntry-- the methods that support determining entries' types now let the caller

specify how to treat non-dangling symlinks.
4 CFile::ETmpFileCreationMode-- to control whether to actually create the temporary

file (to get rid of a possible race condition).
5 CDir-- new methodGetTmpDir()to get path to the temporary directory; old

methodGetEntries()now has an additional parameter to ignore self recursive directory
entries (".", "..").

6 The genericFindFilealgorithm -- now can do recursive searches.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Jul_08_2004/

7 CTime-- new formatting symbol 'z' (local time in format GMT{+|-}HHMM). Also
added output timezone parameter toCTime::AsString().

8 CProcess-- addedWaitForAlive()andWaitForTerminate()methods.
9 CPIDGuard-- now does smart reference counting in the PID guard file to avoid

confusion with multiple locks; also addedCPIDGuard::Remove()method to force the
removal of PID guard file.

10 CPluginManager-- new methods to better control DLL resolution:FreezeResolution
()andDetachResolver().

CONNECT -- Data streaming, Networking, and Dispatching
1 CNamedPipe-- replaced static const with enum for the default Toolkit and system

pipe buffer size.May introduce potentially backward-incompatible changes.
2 CONN_ReadLine()-- new function, to read from CONN line-by-line.

HTML -- HTML Generation Library— CHTMLPopupMenu-- added support for Sergey
Kurdin's popup menu with configurations, extended the API to account for the new menu
features and functionality.

UTIL -- Miscellaneous Low-Level APIs
1 "Bitset" API -- the NCBI adaptation of the BitMagic template library to manipulate

with compressed bitsets (by BitMagic author).
2 Added UNICODE/UTF8 conversion functions.
3 CResourcePool- added access to the list of available objects.
4 CResourcePool- added access to the list of available objects.
5 C[RW]Stream[buf]-- added optional ownership of the underlying IReader/IWriter-

derived objects to allow for their automagic destruction.

UTIL/COMPRESSION -- Data Compression (GZIP, BZ2)
1 CZipDecompressor-- now can recognize and skip GZIP file format header.
2 CCompressionStream-- added optional ownership of the underlying C++ iostreams

and/or compression processors to allow for their automatic destruction.
3 CCompression[IO]Stream-- new methods GetProcessedSize() and GetOutputSize()

to get, respectively, the amount of the (de)compressed and original data processed so
far.

SERIAL -- Data Serialization (ASN.1, XML)
1 Context-sensitive serialization hooks -- now, can be set for the given read context,

using a pattern string, with wildcards allowed:
"TypeName.Member1.Member2.HookedMember".

2 CObjectIStream::SetStreamOffset()-- to rollback from the current position of input
stream, if possible.

3 Improved XML serialization, added "Windows-1252" encoding.
4 Implemented optional skipping of unknown data members in XML and ASN streams.
5 MSerial_{AsnText,AsnBinary,Xml}-- new I/O manipulators for regular C++

iostreams to simplify the serialization of serial data objects.
6 Implemented non-recursive copying and comparing of serial objects.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

DATATOOL -- Code Generator and Data Converter Tool
1 Added the type conversion check (when it is defined in DEF file) to prohibit

inappropriate conversions.
2 Added optional generation of doxygen-style comments and inserting of pre-compiled

headers when generating C++ code.

CGI -- CGI and Fast-CGI Application Framework
1 Turned off background exception reporting, by default.
2 Convert multi-line diagnostic messages into one-line ones, by default.
3 CCgiRedirectApplication-- use "&{var}" rather than "$var" to refer to the value of

the variable; also, all new string values in the registry file must be URL-encoded
now.May introduce potentially backward-incompatible changes.

Berkeley DB API (bdb) -- Much Enriched C++ API Based On BerkeleyDB
1 Query parser and interpreter -- implemented NOT and comparison operators.
2 Added support for Berkeley DB transactions.
3 Implemented transaction protected BLOB Stream.
4 ICache-- improved stability, added transaction protection, greatly reduced probability

of file corruption.
5 Implemented transaction protected cursors.
6 CBDB_Env::JoinEnvimproved to support several program instances working with

the same database.
7 CBDB_FieldLString-- new field type to support length prefixed strings (for better

compatibility withstd::stringclass).
8 CBDB_Env-- added error logging (OpenErrFile).
9 BDB_find_field-- new search method usingCBoyerMooreMatchersearch condition.
10 CBDB_Cache::Open()-- added RAM cache size parameter.

DBAPI -- Generic SQL Database Connectivity
1 FreeTDS -- the bundled FreeTDS code now supports usinggetaddrinfo()

andgetnameinfo(), enabling multithreaded builds on platforms that
lackgethostbyname_r()et al.

2 IConnection-- new public methodsGetStatement(),GetCallableStatement
(),GetCursor()andGetBulkInsert(). All objects obtained by calling these methods
work within a single connection, opened byIConnection::Open()and cannot be used
simultaneously. Don't mix them with the oldCreate()methods, otherwise an exception
will be thrown.

3 IStatement-- new methodPurgeResults(), to purge all results of the given query.
4 IStatement-- new methodExecuteQuery(), to return the first resultset of the given

query and to discard any additional results.

ALGO -- Advanced Algorithms Library
1 Tree specific algorithms and manipulation methods --

addedTreeFindCommonParent,TreeTraceToRoot,TreeReRoot,MoveSubnodes,CTr
eeMinimalSet, operations on node lists, etc.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

2 CBioTree- new, advanced tree container for phylogenetic and taxonomy trees.

ALGO/ALIGN -- Generic Alignment Algorithms
1 XALGOSPLIGN -- new library to share the state-of-the-art transcript alignment

functionality.
2 CSplign-- provides access to all parameters of the XALGOSPLIGN algorithm and

controls the algorithm's execution. To useCSpligndirectly, BLAST hits must be
computed externally and a sequence accessor class must be provided (derived from
classCSplignSeqAccessor).

3 CSplignSimple-- a lightweight version ofCSplign, which needs only
twoCSeq_locand aCScopeobject to access sequences, and does BLAST computation
internally.

4 CSplignFormatter-- class to format output produced byCSplignorCSplignSimpleas a
tab-separated list of exons and gaps (unaligned cDNA regions) or as
aCSeq_align_setobject.

BLAST
1 Introduction of remote BLAST API and demo program.
2 Added support for RPS-BLAST.
3 Merged TwoSequences and Database engines.
4 Complete rewrite of low-level gapped alignment functions.
5 Cleaned up and modularized API for saving HSPs, HSPLists and HitLists
6 Refactoring of link hsps code to make it more self-contained.
7 Addition ofCSeqDband multiple sequences implementations of the BlastSeqSrc API.
8 Introduction of the BlastDiagnostics API in CORE BLAST.
9 Fixed various naming conflicts with the NCBI C Toolkit..
10 Introduction of the BlastHspStream abstraction.
11 Introduction of PSSM calculation engine.
12 Unify handling of gapped Karlin blocks for protein and nucleotide searches.
13 Consolidated validation of all options structures in one function in CORE BLAST.
14 Added check for word size value in options validation for MegaBLAST: word size

must be >=12 for contiguous MegaBLAST, and can be 11 or 12 for discontiguous
MegaBLAST.

15 Added setting of a most reasonable database scanning stride value dependent on word
size W and lookup table width L. The best stride is calculated as W - L + 1 or as W -
L + 4 if the "variable word size" is set to true. However the resulting stride is rounded
to a number divisible by 4 for all values except 6 and 7. This is done because scanning
database with stride divisible by 4 does not require splitting bytes of compressed
sequences. For values 6 and 7 however the advantage of a larger stride outweighs the
disadvantage of splitting the bytes.

16 Started separation of preliminary and traceback stages in CORE BLAST.
17 Rewrote BlastKarlinLHtoK..
18 Port of RedoAlignmentCore from the NCBI C toolkit to Kappa_RedoAlignmentCore.
19 Provide an interface to retrive the matrices' frequency ratios.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

20 Modified ungapped protein alignment code to handle PSSMs, optimizations to the
construction of the protein lookup table.

ALNMGR -- Bio-sequence Alignment Manager
1 CAlnMap-- addedGetResidueIndexMap().
2 CAlnVec-- addedGetColumnVector()andCalculatePercentIdentity(); madeCScopea

required parameter.
3 CAlnMix-- added forcing translation of nucleotide sequences; emadeCScopea

required parameter.

BIO-OBJECTS -- Bio-Object Specific Utility Functions (Not Involving OM++)
1 Changed type of Seq-align containers from list<> to vector<> for better performance.
2 MovedCSeq_feat::CompareLocations()toCSeq_loc::Compare
3 AddedFindGi(),FindTextseq_id()andGetSeq_idByType()to simpify ID lookups in

containers.
4 CSeq_id-- support several new prefixes inIdentifyAccession()method.
5 CSeq_id-- improved support for ranking IDs by utility.
6 New flat-file generator (`xformat` in "objects/format"). The previous generator (in

"objects/flat") is no longer in active development.

OM++ -- Object Manager -- For Retrieving and Processing Bio-Objects
1 CDesc_CI-- renamed toCSeq_descr_CIfor consistency with the ASN.1 class

naming.May introduce potentially backward-incompatible changes.
2 CAnnotTypes_CI-- is no longer inherited from SAnnotSelector, but accepts it as an

argument.May introduce potentially backward-incompatible changes.
3 SAnnotSelector-- renamed methods of from *Choice to *Type.May introduce

potentially backward-incompatible changes.
4 CAlign_CI-- implemented alignment mapping.
5 CFeat_CI-- now, the annotations can be filtered by a combination (with both

inclusions and exclusions) of types and subtypes.
6 CSeqdesc_CI-- now, more than one type can be used for the filtering.
7 CScope-- allow to fine-tune the getting of BioseqHandle depending on resolution

flags.
8 CScope-- new method GetAllTSEs to get all already resolved TSEs.
9 CSeqVector-- added ncbi2na ambiguity randomizer.
10 Significantly improved performance of annotation collecting and mapping functions.
11 CPrefetchToken-- new, to provides background data pre-fetching.
12 CSeq_loc_Mapper-- new, to map locations and alignments.
13 CSeq_{feat,align,graph}_Handle-- handles for annotation types, to be used instead

of "real" bio-objects.
14 OM++ headers -- reduced inter-dependency. Some code may require to include

headers which were included implicitly before.May introduce potentially backward-
incompatible changes.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

15 CBioseq_set_Handleand set ofC*_EditHandle's-- added for working with different
bioseq objects (CBioseq,CBioseq_set,CSeq_entry, andCSeq_annot).

16 A start-up edit API for bioseq objects through various edit handles.ConvertSeqToSet
()andConvertSetToSeq()forCSeq_entry. Methods to move Bioseq withing Seq-entry.
ImplementedMoveToandCopyTomethods for various handles.

17 CScope::GetSynonyms()-- do not try to resolve any Seq-ids, just assume that any
unresolved Seq-id is a synonym. Seq-id conflict messages made clearer.

18 CBioseq_Handle-- new methodGetExactComplexityLevel().

OM++ LOADERS/READERS -- Data Retrieval Libraries for OM++
1 CReader-- revamped to useCPluginManager.May introduce potentially backward-

incompatible changes.
2 GenBank loader and its readers -- moved sources to new location (in OBJTOOLS).

Libraries with the OM++ data loaders renamed to "libncbi_xloader_*". Libraries with
the OM++ GenBank data loader's readers renamed to "libncbi_xreader_*".
OBJMGR_LIBS macro updated correspondingly.May introduce potentially
backward-incompatible changes.

3 GenBank data readers -- added support for TRACEs: Seq-id ::= general { db "ti", tag
id NNN }.

4 CCachedId1Reader-- now supports newICacheinterface.

ID2
1 ID2 ASN.1 specification file was split into two parts. Now, the ID2 communication

protocol is specified in "id2.asn" module, while the ID2 split data structure
specifications are moved to "seqsplit.asn" module.

2 Moved ID2 and ID1 specific code out of object manager. Protocol is processed by
corresponding readers. ID2 split parsing is processed by ncbi_xreader library - used
by all GenBank readers.

3 Various parts of the ID2 communication protocol and the ID2 split data structures
have been modified; these are still changing, albeit at much slower rate, and are
expected to by and large stabilize by around mid-fall.

BIO-TOOLS
1 GFF/GTF files -- added [semi-experimental] support for reading these.
2 CObjectsSniffer -- bug fixes and perfomance optimizations.

LDS—Implemented sequence search using query (using BDB query).

BUILD FRAMEWORK—The Toolkit can now take advantage of preexisting installations of
zlib, bz2lib, and libpcre, though it still includes copies of all three libraries in order to maintain
support for systems that lack them. You may need to adjust some of your makefiles
accordingly.May introduce potentially backward-incompatible changes.

APPLICATIONS
1 ASN2FLAT and CONVERT_SEQ -- new applications to support conversion between

various common representations of annotated biosequence data.
2 ID1_FETCH_SIMPLE -- added possibility to send any ASN.1 request to ID1 (for

testing purposes).

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

3 SPLIGN -- improved quality of transcript alignments. Added a powerful compartment
identification algorithm (implemented within the XALGOSPLIGN library) to
identify pseudogenes and paralogs. The updated output format includes the
compartment identifier preceded by strand sign.

Documentation
Document Location—The documentation is available online athttp://
www.ncbi.nlm.nih.gov/books/bv.fcgi?
call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2as a book titled "The NCBI C++
Toolkit". This is an online searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release. The PDF version can be accessed by a link that appears on each page.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content—Documentation has been grouped into chapters and sections that
provide a more logical coherence and flow. New sections and paragraphs continue to be added
to update and clarify the older documentation or provide new documentation. The chapter titled
"Introduction to the C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains
links to other chapters containing more details on a specific topic and is a good starting point
for the new comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Source Code Browsers" that appears on each page.

A C/C++ Symbol Search query has been added to each page of the online Toolkit
documentation. You can use this to perform a symbol search on the public or in-house versions
of LXR, Doxygen and Library. The Library search runs a CGI script that lists the library name
in which a symbol occurs.

The current release notes as well as past release notes are now in an appendix in the C++ Toolkit
Book and a link to the current release notes appears on each page of the online Toolkit
document.

Building on the MacOS
We now build all the libraries and most of the applications including the Genome Workbench
(gbench). We do not build any of the many test or demo apps (excepttestvalidator). We also
build the FLTK library's GUI editor,fluid.

All apps are built as application bundles exceptgbench_plugin_scananddatatoolwhich are built
as command line apps. Any of the applications can be built as command line apps by tweaking
the build scripts or the Codewarrior projects.

Build procedure is still the same: use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

Projects include targets to compile with BSD/Apple headers and libraries and with MSL
headers and libraries, but plugins (for gbench) built with MSL do not link properly, and so,
because of lack of interest to keep up with changes, some source code does not currently
compile with MSL. Hopefully this will become easier to work with and get fixed with
Codewarrior v.9.

Targets to be compiled can be controlled by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: MSL, BSD, Debug and Final. For example, to build only the
BSD Debug targets use: "Build BSD Debug", to build both BSD debug and release (final)
versions: "Build BSD". The default is to build everything.

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g./Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (seeTable 10) are required to build the C++ toolkit. The scripts
will try and find them if they are in your home directory, or you can specify where they were
installed using properties at the beginning of the script.

Table 10
Third Party Libraries

Library Property Example

FLTK 1.1.5rc2 (w/ NCBI patches) pFLTKRootFolder "usr:local:src:fltk-1.1.5rc2:"

BerkeleyDB 4.2.52 pBdbRootFolder "Users:myhome:mylibs:db-4.2.52"

SQLite 2.8.15 gSqliteFolder

dlcompat pDLRootFolder "usr:"

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and Codewarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version
the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any Codewarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the users Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.2 works. We think
10.1 still works, and 10.3 might work.

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Platforms (OS's, compilers used inside NCBI)
This release was successfully tested on the following platforms -- but may also work on other
platforms. Since the previous release, some platforms were dropped from this list, just because
we do not use them here anymore, and some were added (these new platforms are highlighted
using bold font). Also, it can happen that some projects would not work (or even compile) in
the absence of 3rd-party packages, or with older or newer versions of such packages -- in these
cases, just skipping such projects (e.g. using flag "-k" formakeon UNIX), can get you through.

Unix
Table 11

Unix OS's and Supported Compilers
Operating System Platform Compilers

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL GCC 2.95.3, 3.0.4,3.4.0

Linux-2.4.23 (w/ LIBC 2.2.5) INTEL ICC 7.1

Solaris-8 SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-13 (64-bit, 32-bit)

Solaris-8 SPARC GCC 3.0.4

Solaris-7 INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris-7 INTEL GCC 3.0.4

IRIX64-6.5 SGI-Mips MIPSpro 7.3.1.2m (64-bit, 32-bit)

FreeBSD-4.5 INTEL GCC 3.0.4

Tru64 (OSF1) V5.1 ALPHA GCC 3.3.2

Tru64 (OSF1) V5.1 ALPHA Compaq C++ V6.5-014

MS Windows
Table 12

MS Windows and Supported Compilers
Operating System Compilers

MS Windows MSVC++ 6.0 Service Pack 5. To be DEPRECATED -- this is the last release where it is supported.

MS Windows MSVC++7.1. See documentation onMS Visual C++.NET.

Mac OS X
Table 13

Mac OS, and Supported Compilers
Operating System Compilers

MacOS 10.2,10.3.4 GCC 3.3

MacOS10.3.4 CodeWarrior9.2

Caveats and Hints
MacOS 10.X / CodeWarrior 9.1

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK (1.1.x), BerkeleyDB (4.x) and SQLite

(2.x) should be present. See the installation instructions for details.

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

MacOS 10.2/GCC 3.3—At least the GCC 3.3 update for Dec. 2002 Developers Tools
required from Apple.

GCC 2.95
1 Poor MT-safety record.
2 Relatively incomplete/incorrect (comparing to modern compilers) STL

implementation.
3 It is going to be deprecated in NCBI rather soon -- as soon as we have any significant

trouble with its maintenance.

GCC 3.0.4
1 Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body (fixed in GCC 3.3).
2 STL stream uses locale in thread unsafe way which may result to segmentation fault

when run in multithread mode (fixed in GCC 3.3).
3 Long-file support for C++ streams is disabled/broken (first broken in 3.0, fixed in

3.4).

GCC 3.3—Other than the feature described below, GCC 3.3.2 has been very good for us; it
has a lot of very ugly bugs finally fixed.

Painfully slow linking in debug mode on Linux with GCC-3.3 compiler:
1 Starting with binutils 2.12 linker tries to merge constant/debug strings marked for

merging in object files. But it seems it does this job very inefficiently - I've seen
messages about it in internet.

GCC starting with version 3.2 marks section of string constants ready for merging,
and also has an option to disable this flag in object files (-fno-merge-constants).
Adding this flag to compilation stage allows to avoid slow linking.

GCC 3.3 also sets merge flag for debug sections and unfortunately there is no option
to disable this flag. As a result, linking of debug executables significatly slower than
with gcc 3.0.4.

The slowdown rate depends on size of debug strings section and it's non-linear, so
bigger projects will suffer more of this bug.

We had to patch GCC 3.3 in-house with the fix described athttp://lists.boost.org/
MailArchives/boost/msg53004.php.

2 Long-file support still broken (first broken in 3.1).

GCC 3.4
1 The "Painfully slow linking..." (see GCC3.3 [1] above) is still an issue. -- Again, had

to patch it in-house to speed it up, a la GCC 3.3.
2 At least on Linux, ifstream::readsome() does not always work for large files, as it calls

an ioctl that doesn't work properly for large files.

Last Updated
This section last updated on August 25, 2004

Page 11

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://lists.boost.org/MailArchives/boost/msg53004.php
http://lists.boost.org/MailArchives/boost/msg53004.php

Release Notes (April 16, 2004)

! Download Location
! Source Archive Contents
! New Development
! Documentation
! Platforms (OS's, compilers used inside NCBI)
! Caveats and Hints
! Last Updated

Release Notes (April 16, 2004)
Download Location

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Mar_31_2004/

Source Archive Contents
Source Code Archives
! ncbi_cxx_unix--Mar_31_2004.tar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
! ncbi_cxx_unix--Mar_31_2004g.tar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
! ncbi_cxx_win_msvc6--Mar_31_2004.exe-- for MS-Windows / MSVC++ 6.0 (self-

extracting)
! ncbi_cxx_win_msvc6--Mar_31_2004.zip-- for MS-Windows / MSVC++ 6.0
! ncbi_cxx_mac_cw--Mar_31_2004.tar.gz-- for MacOS 10.2 / CodeWarrior DevStudio

for MacOS 9.1
! ncbi_cxx_mac_gcc--Mar_31_2004.tar.gz-- for MacOS 10.2 / GCC 3.3

New Development
Portability and Application Framework (corelib)

1 Bug fixes to low-level atomicity support.
2 FixedCProcess::Killmethod to handle zero timeouts.
3 FixedCDirEntry::DeleteTrailingPathSeparator()andCDirEntry::CreatePath()

functions to avoid creating empty directories with disk name in the case if specified
path contains it.

4 Added some fixes concerning .NET 2003 compiler support.

Data streaming, Networking, and Dispatching (connect)
1 Buffers and memory streams can now efficiently accumulate large quantities of data.

BUF API insertion sped up by keeping and using "last" pointer in the chain.
2 Fixed error in theCConn_PipeStreamwith implicit loop in destructor.
3 CPipe: new creation flags, add GetProcessHandle(), changed exception handling.
4 CONN_Write(): new paramater "write_mode".

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2004/Mar_31_2004/

5 New XML content types added.
6 SendMail API extended to allow list of recipients, custom or no headers, and better

body handling.
7 CConnStreamBufis made seekable to the end, which allows one to obtain the size of

the stream viatellp().

HTML
1 UpdatedCPopupMenuclass to use new version 2.4 of the Sergey Kurdin's JavaScript

popup menu.
2 Added possibility to use Kurdin's popup menus (CPopupMenuclass) with onClick

JavaScript event. Use milliseconds instead second to set auto-hide timeout.
3 Added HTML tracing ability to all classes on exceptions.
4 Fixed function to strip HTML tags. Added code to strip special HTML numeric and

named entities.
5 Improved performance ofCHTMLHelper::HTMLEncode().
6 Added NOWRAP attribute support.
7 Added TagMapper`s functions and class methods which used a data parameter.
8 AllowCNCBINodeclass to repeat stored context.
9 Implemented HTML template library support (CHTMLPage::LoadTemplateLib*()).

Added demo apllication (html/demo/demo_html_template.*).
10 Fixed some errors in the library classes. Added missed export specifiers.

UTIL
1 Added templatesCStaticArrayMap<>andCStaticArraySet<>to provide convenient

map<>/set<> access to a statically-defined array, while making sure that the order of
the array meets sort criteria in debug builds.

2 Few more patches toReadsome()iterface.
3 AbstractIReaderandIWriteras well asIRWStreambufrefined.
4 CStreamUtilscode refined

Berkeley DB API (bdb)
1 Added support for BerkeleyDB transactions.
2 Added simple query API.

Miscellaneous Libs (additions and improvements)
! `xcgi_redirect` (misc/cgi_redirect). Implemented framework for CGI redirect

applications. Added standard default CGI redirect application.

Building on the MacOS—We now build all the libraries and most of the applications
including the Genome Workbench (gbench). We do not build any of the many test or demo
apps (except testvalidator). We also build the FLTK library's GUI editor, fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the Codewarrior projects.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Build procedure is still the same: use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

Projects include targets to compile with BSD/Apple headers and libraries and with MSL
headers and libraries, but plugins (for gbench) built with MSL do not link properly, and so,
because of lack of interest to keep up with changes, some source code does not currently
compile with MSL. Hopefully this will become easier to work with and get fixed with
Codewarrior v.9.

Targets to be compiled can be controlled by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: MSL, BSD, Debug and Final. For example, to build only the
BSD Debug targets use: "Build BSD Debug", to build both BSD debug and release (final)
versions: "Build BSD". The default is to build everything.

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g./Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (seeTable 7) are required to build the C++ toolkit. The scripts will
try and find them if they are in your home directory, or you can specify where they were
installed using properties at the beginning of the script.

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 7
Third Party Libraries

Library Property Example

FLTK pFLTKRootFolder "usr:local:src:fltk-1.1.4:"

DBD pBdbRootFolder "Users:myhome:mylibs:db-4.1.25"

dlcompat pDLRootFolder "usr:"

The latest release of fltk, 1.1.4 should be used.

You do not have to build the FLTK or BDB libraries separately. This is done by the scripts
and Codewarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and BDB do not have to have any particular names. If there is more than one version
the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any Codewarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the users Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.2 works. We think
10.1 still works, and 10.3 might work.

Documentation
Document Location—The documentation is available at

as a book titled "The NCBI C++ Toolkit". This is an online searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content—Documentation has been grouped into chapters and sections that
provide a more logical coherence and flow. New sections and paragraphs continue to be added
to update and clarify the older documentation or provide new documentation. The chapter titled
"Introduction to the C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains
links to other chapters containing more details on a specific topic and is a good starting point
for the new comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

The above link is also available under the "Source Code Browsers" that appears on each page.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

Platforms (OS's, compilers used inside NCBI)
Unix—

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 8
Unix OS's and Supported Compilers

Operating System Platform Compilers

Linux INTEL GCC 2.95.3, 3.0.4, 3.3.1, 3.3.2

Linux INTEL ICC 7.1

Solaris SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-13 (64-bit, 32-bit)

Solaris SPARC GCC 3.0.4

Solaris INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris INTEL GCC 3.0.4

IRIX64 SGI-Mips MIPSpro 7.3.1.2m (64-bit, 32-bit)

FreeBSD INTEL GCC 3.0.4

Tru64 ALPHA GCC 3.3.2

Tru64 ALPHA Compaq C V6.3-029 / Compaq C++ V6.5-014

MS Windows—MSVC++ 6.0 Service Pack 5.....

MSVC++ 7.0 (semi-experimental, not in this distribution)

Mac OS X—

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 9
Mac OS, and Supported Compilers

Operating System Compilers

MacOS 10.2 GCC 3.3

MacOS 10.X CodeWarrior 9.1

Caveats and Hints
MacOS 10.X / CodeWarrior 9.1

1 Not all of the test or demo applications are built.
2 The source code for the latest release of FLTK, 1.1.4 and berkeley database (4.1)

should be present. See the release notes (or installation instructions) for details.

MacOS 10.2/GCC 3.3—GCC 3.3 update for Dec. 2002 Developers Tools required from
Apple. All C++ Toolkit configurations will build and run just fine.

GCC 3.0.4—Detected two bugs in GCC-3.0.4 compiler:
! Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body.

Fixed in GCC 3.3.
! STL stream uses locale in thread unsafe way which may result to segmentation fault.

Fixed in GCC 3.3.

GCC 3.3—(Other than the feature described below, GCC 3.3.2 has been very good for us; it
has a lot of very ugly bugs finally fixed.)

Painfully slow linking in debug mode on Linux with GCC-3.3 compiler:
! Starting with binutils 2.12 linker tries to merge constant/debug strings marked for

merging in object files. But it seems it does this job very inefficiently - I've seen
messages about it in internet.

gcc starting with version 3.2 marks section of string constants ready for merging, and
also has an option to disable this flag in object files (-fno-merge-constants). Adding
this flag to compilation stage allows to avoid slow linking.

gcc 3.3 also sets merge flag for debug sections and unfortunately there is no option to
disable this flag. As a result, linking of debug executables significatly slower than with
gcc 3.0.4.

The slowdown rate depends on size of debug strings section and it's non-linear, so
bigger projects will suffer more of this bug.

We had to patch GCC 3.3 in-house with the fix described at "http://lists.boost.org/
MailArchives/boost/msg53004.php".

Last Updated
This section last updated on April 16, 2004

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (December 8, 2003)

! Download Location
! Source Archive Contents
! New Development
! Build Framework
! Documentation
! Platforms (OS's, compilers used inside NCBI)
! Caveats and Hints
! Last Updated

Release Notes (December 8, 2003)
Download Location

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2003/Dec_08_2003/

Source Archive Contents
Source Code Archives
! ncbi_cxx_unix--Dec_08_2003.tar.gz-- for UNIX'es (see the list of UNIX flavors

below) and MacOSX/GCC
! ncbi_cxx_win_msvc6--Dec_08_2003.exe-- for MS-Windows / MSVC++ 6.0 (self-

extracting)
! ncbi_cxx_win_msvc6--Dec_08_2003.zip-- for MS-Windows / MSVC++ 6.0
! ncbi_cxx_win_msvc7--Dec_08_2003.exe-- for MS-Windows / MSVC++ 7.0 (semi-

experimental)
! ncbi_cxx_win_msvc7--Dec_08_2003.zip-- for MS-Windows / MSVC++ 7.0 (semi-

experimental)
! ncbi_cxx_mac_cw--Dec_08_2003.tar.gz-- for MacOS 10.2 / CodeWarrior DevStudio

for MacOS 9.1
! ncbi_cxx_mac_gcc--Dec_08_2003.tar.gz-- for MacOS 10.2 / GCC 3.3

Other Files
! timestamp -- when the sources' snapshot was made

New Development
Portability and Application Framework (corelib)

1 CPipeclass moved to xconnect library.
2 New process management classCProcess.
3 TheCPIDGuardclass moved fromncbi_system.[ch]pptoncbi_process.[ch]pp.
4 AddedCMetaRegistryto centralize configuration file search logic and allow potential

reuse of parsed contents.
5 Added a cross-platformCPIDGuardfor the sake of daemons.
6 Added optional symlink resolution toCDirEntry::NormalizePath.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2003/Dec_08_2003/

7 Made it possible to alter the verbosity of trace messages.
8 AddedCDllResolver- class scanning for DLLs and looking for specified entry points.
9 corelib/plugin_manager.hpp- Developed initial version of plugin manager (cannot be

considered as a true release, but rather a pre-beta version)
10 Fixes and extensions

! File API: Fixed bug in the File APIGetType()with get type of a dir entry on
UNIX. Replaced usingtmpnam()withtempnam()/mkstemp()for creating
temporary files in theGetTmpName[Ex]. Added
functionsDeleteTrailingPathSeparator()andNormalizePath()to
theCDirEntryclass. Added month and day of week names conversion
functions to theCTimeclass.

! Added month and day of week names conversion functions to the CTime
class.

! Exec API: Used correct function for run a processes on Unix for the eV-mode.
! DLL API: ChangedCDllclass to better conform C/C++ standards.
! RevampedGetEntryPoint()method to avoid mixing a pointers to data and

functions.
! File API: AddedCDirEntry::SetTime()method to change file access and

modification times.
! CTimeclass: Added setters for various components of time, added functions

to determine number of week in the year and month, number of days in the
month, reimplementedAddYear(), changedDayOfWeek()function to use
other computation method.

Data streaming, Networking, and Dispatching (connect)
1 ncbi_socket.[ch][pp]:

! Bug-fixes for proper destruction of underlying SOCK in case ofClose()
orAbort()methods got called, but theCSocketis still in use.

! Stall protection against waiting indefinitely if SOCK that is being waited for
is closed from other thread (Linux specific issue).

2 ncbi_http_connector.[ch]:
! Do not callshutdown()after sending HTTP request. Although 100% valid this

call could cause some buggy software and hardware to react inappropriately
as if the connection is going to be closed soon.

! Support VHosts by passing "Host: " tag in the HTTP headers (essential if
VHosts are being used with Apache web server software).

3 Pipes and named pipes moved from CORELIB into CONNECT.
4 Abstract classesIReaderandIWriterin UTIL library. Implementation of stream buffer

on top of these classes.
5 Fix forCStreamUtils::Readsome()andPushback()API. Make all basic Toolkit

streambufs (including those in CONNECT) standard-compliant with respect toxsgetn
()operation.

6 Performance and standard-compilance of FCGI I/O streams: FCGI I/O streams (cgi
library) are significantly improved by eliminating intermediary buffers, and making
the streams fully buffered directly on top of FCGIX structures.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

7 Performance of fstreams on Windows: MS-Windows (MSVC/6.0): fstreams are
significantly improved by making an ad-hoc fix to make fstreams buffered by means
of direct use of FILE* buffer pointers, and thus eliminating 1-bytefgetc()calls on every
I/O.

Database Connectivity (DBAPI) (dbapi)
1 util/cache: Added specification for local cache interface (Work in progress, current

version looks unstable and likely to change)
2 Local Data Storage (LDS):

! Fixed number of bugs
! Implemented recursive objects directory scan, now all subdirs are part of the

database (Improved LDS data management)
! Implemented multiple LDS databases. Changed genome workbench to reflect

this new feature.
! Added PID protection againts running several instances of program with the

same local database (not supported yet and caused crash)

Berkeley DB API (bdb)
1 Added class for Berkeley DB environment support
2 Implemented stream like class on top of BDB BLOB (CBDB_BLobStream).
3 AddedCBDB_FileDumperclass to dump BDB files into text format
4 Implemented local cache for biological objects.

Data Serialization (serial)
1 Data initialization verification mechanism in I/O streams has been elaborated to allow

for handling (skipping or using defaults) the unset mandatory data members both on
reading and writing.

2 Added support of XML ANY data type to theDATATOOL(C++ code generator) and
XML serialization I/O streams.

3 Added possibility to specify XML namespaces for serial objects.
4 Added support of multiple namespaces in XML streams.
5 Implemented basic XML SOAP packager, which includes an API to create a SOAP

message, serialize (read or write) it, and investigate its contents.
6 Added possibility to reset an object member from a read hook (including non-optional

members).
7 RedesignedDATATOOLto use new approach for type aliases. Instead of using

wrapper classes, the newDATATOOLderives alias class from the aliased one if the
aliased type is a class, or from a special template class in case of primitive types.

Object Manager (objects/objmgr)
1 Added or modified several seq-loc related functions to handle circular locations

correctly (GetStart(),GetEnd(),GetCircularLength(),TestForOverlap()).
2 Introduced new classCAnnot_CIwhich allows to iterate over seq-annot container

objects rather than over individual annotations.
3 Implemented caching id1 reader (uses BDB library to keep BLOBs and id resolution

information on local disk).

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

4 Integrated local caching in Genome Workbench

Alignment Manager (objects/alnmgr)—Added support for translated (nucleotide to
amino acid) alignments.

Sequence Alignment (objects/seqalign)
1 ExtendedCDense_segwithm_Widthsto support translated alignments.
2 Added a few methods for Seq-aligns (mostly for the Dense-seg type):

! Alignment transformers: Reverse, SwapRows
forCSeq_alginandCDense_seg, andCDense_seg::RemapToLoc

! Validators:CheckNumRows,CheckNumSegsand Validate with optional full
segments check.

! Methods for range calculation:GetSeqRange,GetSeqStart,GetSeqStop.
3 Added a format converter:CSeq_align::CreateDensegFromStdseg.
4 Added validators.
5 Added methods for range calculation.

Generic Sequence Alignment Algorithms (algo/align)—The following changes and
updates have been made to the algo/align library.

1 Formatting-related functionality has been moved from the rootCNWAlignerto a
newCNWFormatterclass. Code using old aligner's formatting members will work fine
with minimal adjustment. For details please see the updated demo applications.

2 CNWAlignerMrna2Dnawas replaced with three classes to facilitate quality/
performance trade-off in case of distorted sequences:
! CSplicedAligner. Abstract base for spliced aligners;
! CSplicedAligner16. Accounts for three conventional splices and a generic

splice; uses 2 bytes per backtrace matrix cell
! CSplicedAligner32. Accounts for three conventionales and splices that could

be produced by damaging one or more bps of any conventional; uses 4 bytes
per backtrace matrix cell.

Use the 16-bit version of the above classes for low-error sequences, and the 32-bit version for
sequences with higher error rates.

A demo new application called Splign was introduced. Splign is built on top of
theCSplicedAlignerclasses and is a real-world tool for doing spliced sequence alignments.

Miscellaneous Libs (additions and improvements)
1 `xutil' (util): [regexp] Added wrapper for the Perl-compatible regular expression

(PCRE) library andCRegexpclass --CRegexpUtil.
2 `xhtml' (html) : UpdatedCPopupMenuclass to use new version 2.3 of the Sergey

Kurdin's JavaScript PopupMenu2. Added support for Sergey Kurdin's slide menu.
3 New MSVC 6.0 project file converter to expand a single configuration project file to

multi-configuration project file (src\util\msvc\one2all.cpp).
4 tables' (util/tables) -- NEW. C API for working with score matrices, along with

(generated) hard-coded copies of standard matrices.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

5 `xobjread' (objtools/readers). [fasta] Now reads large FASTA sequences much more
efficiently.

6 `xflat' (objtools/flat). Added support for GFF/GTF [semi-experimental].
7 `general' (objects/general). Added manipulators for CInt_fuzz.
8 `xobjutil' (objects/util). Improved relative-location support, which now handles fuzz

and opposite-strand relative locations.
9 `seq' (objects/seq*). Added support for several new prefixes to

CSeq_id::IdentifyAccession.
10 util/file_obsolete.h: AddedCFileObsoleteclass - removes local files based on file

mask and creation/access time.
11 util/format_guess.hpp:CFormatGuess- implemented new rules of format recognition

with much improved our work with binary ASN.1 files.

BLAST algorithms, C and C++ API (algo/blast)—Integrated BLAST's core "C" (shared
with the NCBI C Toolkit) and "C++" API. Actual development done by the BLAST group.

Build Framework
Configuration on Unix—The Unix build framework adds make variables
({CC,CXX,LINK}_WRAPPER) for specifying wrapper programs such as Purify or ccache.
As such, `configure' now looks for ccache (http://ccache.samba.org/), and takes advantage of
it when present. NB: ccache does not support Sun's (WorkShop) C++ compiler, and requires
users to set the environment variable CCACHE_EXTENSION to "i" when using SGI's
MIPSpro compiler.

Building on the MacOS—We now build all the libraries and most of the applications
including the Genome Workbench (gbench). We do not build any of the many test or demo
apps (except testvalidator). We also build the FLTK library's GUI editor, fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the Codewarrior projects.

Build procedure is still the same: use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

Projects include targets to compile with BSD/Apple headers and libraries and with MSL
headers and libraries, but plugins (for gbench) built with MSL do not link properly, and so,
because of lack of interest to keep up with changes, some source code does not currently
compile with MSL. Hopefully this will become easier to work with and get fixed with
Codewarrior v.9.

Targets to be compiled can be controlled by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: MSL, BSD, Debug and Final. For example, to build only the
BSD Debug targets use: "Build BSD Debug", to build both BSD debug and release (final)
versions: "Build BSD". The default is to build everything.

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g./Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (seeTable 4) are required to build the C++ toolkit. The scripts will
try and find them if they are in your home directory, or you can specify where they were
installed using properties at the beginning of the script.

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 4
Third Party Libraries

Library Property Example

FLTK pFLTKRootFolder "usr:local:src:fltk-1.1.4:"

DBD pBdbRootFolder "Users:myhome:mylibs:db-4.1.25"

dlcompat pDLRootFolder "usr:"

The latest release of fltk, 1.1.4 should be used.

You do not have to build the FLTK or DBD libraries separately. This is done by the scripts
and Codewarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
FLTK and DBD do not have to have any particular names. If there is more than one version
the scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any Codewarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the users Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.2 works. We think
10.1 still works.

Documentation
Document Location—The documentation is available at

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

as a book titled "The NCBI C++ Toolkit". This is an online searchable book.

The C++ Toolkit book also provides PDF version of the chapters; although these are not up to
date in this release.

The older HTML documentation has been deprecated and is no longer being updated, and "The
NCBI C++ Toolkit" online book at the previously listed URLs is the official documentation.

Document Content—Documentation has been grouped into chapters and sections that
provide a more logical coherence and flow. New sections and paragraphs continue to be added
to update and clarify the older documentation or provide new documentation. The chapter titled
"Introduction to the C++ Toolkit" gives an overview of the C++ Toolkit. This chapter contains
links to other chapters containing more details on a specific topic and is a good starting point
for the new comer.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

The above link is also available under the "Source Code Browsers" that appears on each page.

A major effort is under way to document all source files, so that the DOXYGEN source browser
can generate a detailed API reference for the classes/methods. A top-level meta module
grouping exists under "Modules" on the Doxygen main page. This can be used to get a
conceptual grouping of the different components.

Platforms (OS's, compilers used inside NCBI)
Unix—

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 5
Unix OS's and Supported Compilers

Operating System Platform Compilers

Linux INTEL GCC 3.0.4, 3.3.1, 3.3.2

Linux INTEL ICC 7.1

Solaris SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-13 (64-bit, 32-bit)

Solaris SPARC GCC 2.95.3, 3.0.4

Solaris INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris INTEL GCC 3.0.4

IRIX64 SGI-Mips MIPSpro 7.3.1.2m (64-bit, 32-bit)

FreeBSD INTEL GCC 3.0.4

Tru64 ALPHA GCC 2.95.3

Tru64 ALPHA Compaq C V6.3-029 / Compaq C++ V6.5-014

MS Windows—MSVC++ 6.0 Service Pack 5.....

MSVC++ 7.0 (semi-experimental)

Mac OS X—

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 6
Mac OS, and Supported Compilers

Operating System Compilers

MacOS 10.1 GCC 3.1 (patched, see "doc/config_darwin.html)

MacOS 10.2 GCC 3.1 (patched, see "doc/config_darwin.html), GCC 3.3

MacOS 10.X CodeWarrior 8.0 Update 8.3

Caveats and Hints
MacOS 10.X / CodeWarrior 9.1

1 None of the test or demo applications are built.
2 The source code for the latest release of FLTK, 1.1.4 and berkeley database (4.1)

should be present. See the release notes (or installation instructions) for details.

MacOS 10.2/GCC 3.3—GCC 3.3 update for Dec. 2002 Developers Tools required from
Apple. All C++ Toolkit configurations will build and run just fine.

GCC 3.0.4—Detected two bugs in GCC-3.0.4 compiler:
! Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body.

Fixed in GCC 3.3.
! STL stream uses locale in thread unsafe way which may result to segmentation fault.

Fixed in GCC 3.3.

GCC 3.3—(Other than the feature described below, GCC 3.3.2 has been very good for us; it
has a lot of very ugly bugs finally fixed.)

Painfully slow linking in debug mode on Linux with GCC-3.3 compiler:
! Starting with binutils 2.12 linker tries to merge constant/debug strings marked for

merging in object files. But it seems it does this job very inefficiently - I've seen
messages about it in internet.

gcc starting with version 3.2 marks section of string constants ready for merging, and
also has an option to disable this flag in object files (-fno-merge-constants). Adding
this flag to compilation stage allows to avoid slow linking.

gcc 3.3 also sets merge flag for debug sections and unfortunately there is no option to
disable this flag. As a result, linking of debug executables significatly slower than with
gcc 3.0.4.

The slowdown rate depends on size of debug strings section and it's non-linear, so
bigger projects will suffer more of this bug.

We had to patch GCC 3.3 in-house with the fix described at "http://lists.boost.org/
MailArchives/boost/msg53004.php".

Last Updated
This section last updated on December 16, 2003

Page 10

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Release Notes (August 1, 2003)

! Download Location
! Source Archive Contents
! New Development
! Build Framework
! Documentation
! Backward Compatibility
! Platforms (OS's, compilers used inside NCBI)
! Caveats and Hints
! Last Updated

Release Notes (August 1, 2003)
Download Location

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2003/Aug_01_2003/

Source Archive Contents
Source Code Archives
! ncbi_cxx_unix.tar.gz -- for UNIX'es (see the list of UNIX flavors below)
! ncbi_cxx_win.exe -- for MS-Windows / MSVC++ 6.0 (self-extracting)
! ncbi_cxx_win.zip -- for MS-Windows / MSVC++ 6.0
! ncbi_cxx_mac_cw.sit -- for MacOS 10.X / CodeWarrior 8.0 Update 8.3
! ncbi_cxx_mac_cw.tar.gz -- for MacOS 10.X / CodeWarrior 8.0 Update 8.3
! ncbi_cxx_mac_gcc.tar.gz -- for MacOS 10.X / GCC
! ncbi_cxx_mac_gcc.sit -- for MacOS 10.X / GCC

Other Files
! timestamp -- when the sources were checked

New Development
CoreLib (corelib)

1 Added CStringUTF8 class to support UTF-8 encoded strings.
2 Fixes in exception tracing to avoid printing of NUL chars ('\0') to log file/terminal.
3 Minor bug fixes for mutexes and threads.
4 Added complete set of constructors for C*MutexGuard.
5 Added typedefs TReadLockGuard and TWriteLockGuard to mutexes and rwlock.
6 Added inplace operators CObject::new and CObject::delete.
7 Fixes and extensions

! Pipe API: rewritten the Unix version of the CPipeHandle class. Added CPipe/
CPipeHandle::CloseHandle(). Added flushing a standard output streams
before it redirecting.

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/2003/Aug_01_2003/

! Fixed CNcbiRegistry to handle the entries with leading spaces.
! Fixed some memory leaks in the CTime class.

Data streaming, Networking, and Dispatching (connect)
1 Refined datagram socket API.
2 Implemented C++ datagram socket API.
3 UNIX socket acceptance in SOCK_CreateOnTop[Ex]() calls [still experimental].
4 Implemented 0-time connection timeouts for sockets and connectors.
5 Few fixes in HTTP connector code.
6 Fixed a bug in the CONNECT library that discouraged using functions from this

library compiled as DLL.

Database Connectivity (DBAPI) (dbapi)
1 The ODBC DBAPI driver, which had been specific to Windows, now also supports

Unix.

Berkeley DB API
1 Implemented BerkeleyDB abstraction layer library (BDB library). This includes

classes to create local flat file databases and indexes. Those classes are tightly
integrated with C++ Toolkit and it's error reporting and debugging facilities. As part
of the library implemented first version of db_map and db_multimap template classes
designed to imitate map and multimap templates coming with STL. Disk based
templates offer controllable memory footprint and data persistence between program
sessions.

2 Local data storage. Implemented set of classes allowing you to create a local database
of serialized biological objects. The database keeps meta-information about files,
formats, types of objects, sequences stored and in files, annotations. Developed simple
query API to retrieve the annotation information.

3 Developed object manager dataloader to work with local data storage.

CGI/FastCGI Framework (cgi)
1 Fixed watch-file timeout logic.
2 Allowed to run FastCGI without web server in standalone mode.

Data Serialization (serial)
1 Added data initialization verification mechanism, which protects against accidental

accessing or serialization of an uninitialized object data members.
2 New specification of IsSet() like methods of generated classes. See CanGet() methods

too.
3 Added possibility to reference XML schema when serializing an object in XML

format.
4 Added support of different encodings in XML streams. Two encoding schemata are

implemented: UTF-8 and ISO-8859-1.
5 Allow SET OF to be implemented as vector<>.
6 Fixed thread safeness of object stream hooks.

Page 2

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Object Libraries
1 Minor bug fixes: compiler warnings, missing include statements, build order and

dependencies, access to uninitialized members, CSeq_entry::Parentize(),
Seq_feat::Compare(),CSeq_loc::GetTotalRange().

2 vector<>is used instead of list<> in several places for lesser memory usage.

Object Manager (objects/objmgr)
1 Added possibility to set priorities for data sources.
2 Significantly improved GetBestOverlappingFeat() and supporting functions.
3 Added CSeqVector_CI class for faster sequential access to the sequence data.
4 Improved processing of multi-ID seq-locs in the object manager functions.
5 Fixed interaction of GenBank data loader garbage collector and TSE locking

mechanism.
6 Added CSeq_annot_CI class to fetch seq-annot objects rather than individual features,

alignments and graphs.
7 Rewrote object manager internal structures to reduce memory usage and object

dependency.
8 Fixed interaction of GenBank data loader garbage collector and TSE locking

mechanism.
9 Rewrote GenBank readers: use pipelined data stream (with compression), SNP data

are loaded separately, try to do strings' representation compression where possible to
reduce memory usage.

10 Fixed locking of object manager classes in multi-threaded application.
11 Fixed reconnection to GenBank servers on timeout.
12 Added CSeqMap::FindResolved() with strand argument and constructor of CSeqMap

from CSeq_loc.
13 Fixed backward traversal of CSeqMap_CI.
14 New implementaion of CSeqVector uses CSeqVector_CI.
15 Fixed indexing and removal of multi-location annotations.
16 Fixed depth of recursion of annotation iterator.
17 Reduced memory usage by features' indexes.
18 Rewrote and simplified CSeq_id_Mapper and CSeq_id_Handle.
19 Added several CXxx_ScopeInfo classes for CScope related information.
20 CBioseq_Handle now uses reference to CBioseq_ScopeInfo.
21 Added public CScope::GetSynonyms() method.
22 Fixed conflict resolution in CScope::GetTSESetWithAnnots().
23 CPriority_I made to use less memory allocations/deallocations.
24 As part of the object manager utilities implemented new class CObjSniffer. Class can

be used for reading ASN.1 and XML serialized objects of uncertain structure.

Alignment Manager (objects/alnmgr)
1 Changes in CAlnMap:

! Interface: optionally a chunk can be created for each segment

Page 3

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

! Internal: speed optimization via const refs to Dense-seg members; reworked
some of the internal inefficient code; added caching for the end segments of
sequences

2 CAlnVec: optimized method for displaying sequences: GetWholeAlnSeqString
3 Changes in CAlnMix:

! Several bug fixes and optimizations
! Optional truncation or deletion for overlapping segments
! Optional filling of the unaligned regions
! Optional use of ObjMgr

4 Demo programs added:
! alnvwr demonstrates various display methods using CAlnMap and CAlnVec
! alnmrg shows CAlnMix usage

Miscellaneous Libs (additions and improvements)
1 `xutil' (util)

! [md5] Computes MD5 digests (adapted from the version in the C Toolkit).
! [checksum] Supports MD5.

2 `xobjread' (objtools/readers) -- NEW
! [fasta]

" Split out of Seq_entry.[ch]pp.
" Properly handles comments and multiple-defline entries.
" Optionally reports lowercase letters' location.

! [readfeat] Newly added code for reading Sequin-style feature tables, courtesy
of Jonathan Kans.

3 `xobjutil' (objects/util)
! [genbank] Replaced with a trivial wrapper around the new generator in

objtools/flat.
4 `xhtml' (html)

! Now handles large templates much faster, especially when not adding
JavaScript menus..

5 `compress' (util/compress)
! Implemented C++ wrappers for popular compression libraries (zlib, bzip2).
! Added compression based i/o streams.

6 `bzip2' (util/compress/bzip2)
! bzip2 library (see LICENSE) has been embedded into the Toolkit.

7 `zlib' (util/compress/zlib)
! zlib library (see LICENSE) has been embedded into the Toolkit.

8 cgi (cgi)
! Added optional parameter to the URL_Encode() to enable mark characters

encoding and also enlarged a test for this function
9 Split up the "network client" part off for the objects libs in the MSVC++ static and

DLL projects trees.

Page 4

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Build Framework
Configuration on Unix—The Unix `configure' script now checks for several additional
third-party libraries, including in particular the image-format libraries the new ̀ ximage' library
needs. To deal with the hassle of finding lots of third-party libraries that may not all be in the
same place, it also supports obtaining their locations from a file called `config.site';
`config.site.ex' is an example version showing the default settings. (It is still also possible to
specify these locations on the command line or in the environment.)

Building on the MacOS—We now build all the libraries and most of the applications
including the Genome Workbench (gbench). We do not build any of the many test or demo
apps (except testvalidator). We also build the fltk library's GUI editor, fluid.

All apps are built as application bundles except gbench_plugin_scan and datatool which are
built as command line apps. Any of the applications can be built as command line apps by
tweaking the build scripts or the Codewarrior projects.

Build procedure is still the same: use an AppleScript editor to open and run the script files
makeLibs.met and makeApps.met. You must use a script editor capable of opening a script
file larger than 32K, such as Apple's Script Editor v2.0, or Smile. Script Editor v1.9 will not
work since makeLibs.met just got too big. The command line tool osascript also works.

Projects include targets to compile with BSD/Apple headers and libraries and with MSL
headers and libraries, but plugins (for gbench) built with MSL do not link properly, and so,
because of lack of interest to keep up with changes, some source code does not currently
compile with MSL. Hopefully this will become easier to work with and get fixed with
Codewarrior v.9.

Targets to be compiled can be controlled by including an empty file or folder in the
compilers:mac_prj folder with the name 'Build' followed by the keywords of the targets you
want built. The keywords are: MSL, BSD, Debug and Final. For example, to build only the
BSD Debug targets use: "Build BSD Debug", to build both BSD debug and release (final)
versions: "Build BSD". The default is to build everything.

If you install the C++ toolkit under a different name than "ncbi_cxx" or in a different location
than your home directory, you can edit the script's properties, pRootFolderName and
pRootFolderPath, to override these defaults. Note: these paths, and those mentioned below,
must be entered in mac format (e.g. disk:Users:username:) not Unix format (e.g. /Users/
username/). The disk name (and its following colon) may be omitted.

Certain third party libraries (seeTable 1) are required to build the C++ toolkit. The scripts will
try and find them if they are in your home directory, or you can specify where they were
installed using properties at the beginning of the script.

Page 5

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 1
Third Party Libraries

Library Property Example

fltk pFLTKRootFolder "usr:local:src:fltk-1.1.4:"

bdb pBdbRootFolder "Users:myhome:mylibs:db-4.1.25"

dlcompat pDLRootFolder "usr:"

The latest release of fltk, 1.1.4x should be used.

You do not have to build the fltk or bdb libraries separately. This is done by the scripts and
Codewarrior along with the toolkit libraries. Just unpack the source bundles in your home
directory or where ever you have specified in the appropriate properties. The root folders for
fltk and bdb do not have to have any particular names. If there is more than one version the
scripts will grab whichever is last alphabetically (e.g. fltk-1.1.4r2 will get used instead of
fltk-1.1.3).

The scripts normally halt on any Codewarrior compilation errors. If you want them to continue
and save errors, set the next script property, pSaveContinueOnErrors, to true. Compilation
errors for a project will be saved in a file in the same folder as the project being built, with a
name in the following format: projectName-targetNumber.errs (e.g. xncbi-2.errs).

The Genome Workbench's configuration file(s) is stored in the users Library:Application
Support:gbench folder.

CFM builds are not supported. OS 8 or 9 are not supported. We know 10.2 works. We think
10.1 still works.

Documentation
Document Location—The documentation is available at

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?
call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

as a book titled "The NCBI C++ Toolkit". This is an online searchable book.

The C++ Toolkit book also provides PDF version of the chapters. Look for the Adobe Acrobat
icon next to the chapter title in the table of contents.

The older HTML documentation has been deprecated; it continues to be updated for the time
being, but the future plan is to support only "The NCBI C++ Toolkit" online book at the
previously listed URLs.

Document Content—The documentation has undergone a major reorganization. Previous
documentation has been grouped into chapters and subsect1s that provide a more logical
coherence and flow. New subsect1s and paragraphs continue to be added to update and clarify
the older documentation or provide new documentation. A new overview chapter titled
"Introduction to the C++ Toolkit" has been added that gives an overview of the C++ Toolkit.
This chapter contains links to other chapters containing more details on a specific topic.

The DOXYGEN source browser is used to complement the traditional docs with structured
DOXYGEN-generated "Library Reference" ones based on the in-source comments. You can
access the DOXYGEN source browser for the NCBI code from:

Page 6

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?call=bv.View..ShowTOC&rid=toolkit.TOC&depth=2

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

A major effort is under way to document all source files, so that the DOXYGEN source browser
can generate a detailed API reference for the classes/methods.

Backward Compatibility
Layout—The old ̀ objects' tree has been split up; many of the headers are now under ̀ objmgr'
or `objtools'. In conjunction, the libraries `seqalign', `seqblock', `seqfeat', `seqloc', and
`seqres' (but NOT `seqcode' or `seqset') have been merged into `seq'; this change should be
transparent on Unix if you've been using the $(SEQ_LIBS) variable. Likewise, the libraries
`mmdb1', `mmdb2', and `mmdb3' have been merged into a single `mmdb' library.

There are still forwarding headers in the old locations for code that moved to the objmgr or
objtools tree; however, you should not rely on them, particularly given that some C++
compilers, including Sun WorkShop, fail to recognize the `#warning' directives they use. The
headers for the merged seq* and mmdb libraries have not moved.

In addition, the FASTA reader has moved out of Seq_entry.[ch]pp into its own library
(xobjread) along with the new feature-table reader, and the generated RPC clients have been
split into their own little *cli libraries and had their sources and headers renamed to repeat the
module name for global uniqueness.

OBJMGR_LIBS—Due to possible changes in functionality of object manager, the list of
libraries it depends on may change and so will the list of libraries required by the application
which uses object manager. To reduce changes in makefiles, the Toolkit's framework provides
a variable OBJMGR_LIBS which specifies what libraries are used by object manager
(including libraries with generated objects). So you can put $(OBJMGR_LIBS) in the
definition of LIB variable in your makefile in place of xobjmgr and other libraries used by
object manager library.

Platforms (OS's, compilers used inside NCBI)
Unix—

Page 7

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/doxyhtml/

Table 2
Unix OS's and Supported Compilers

Operating System Platform Compilers

Linux INTEL GCC 3.0.4, 3.3.1

Linux INTEL ICC 7.1

Solaris SPARC WorkShop 6 update 2 C++ 5.3 Patch 111685-13 (64-bit, 32-bit)

Solaris SPARC GCC 2.95.3, 3.0.4

Solaris INTEL WorkShop 6 update 2 C++ 5.3 Patch 111685-13

Solaris INTEL GCC 3.0.4

IRIX64 SGI-Mips MIPSpro 7.3.1.2m (64-bit, 32-bit)

FreeBSD INTEL GCC 3.0.4

Tru64 ALPHA GCC 2.95.3

Tru64 ALPHA Compaq C V6.3-029 / Compaq C++ V6.5-014

MS Windows—MSVC++ 6.0 Service Pack 5.....

Mac OS X—

Page 8

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Table 3
Mac OS, and Supported Compilers

Operating System Compilers

MacOS 10.1 GCC 3.1 (patched, see "doc/config_darwin.html)

MacOS 10.2 GCC 3.1 (patched, see "doc/config_darwin.html), GCC 3.3

MacOS 10.X CodeWarrior 8.0 Update 8.3

Caveats and Hints
MacOS 10.X / CodeWarrior 8.0 Update 8.3

1 None of the test or demo applications are built.
2 The source code for the latest release of fltk, 1.1.x and berkeley database (4.x) should

be present. See the release notes (or installation instructions) for details.

MacOS 10.2/GCC 3.3—GCC 3.3 update for Dec. 2002 Developers Tools required from
Apple. All C++ Toolkit configurations will build and run just fine.

GCC 3.0.4—Detected two bugs in GCC-3.0.4 compiler:
! Destructor of constructed class member is not called when exception is thrown from

a method called from class constructor body.

Fixed in GCC 3.3.
! STL stream uses locale in thread unsafe way which may result to segmentation fault.

Fixed in GCC 3.3.

Last Updated
This section was last updated on August 28, 2003

Page 9

Release Notes

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Appendix - Books and Styles

Books and links to C++ and STL manuals

Books

! On To C++, by Patrick Henry Winston. If you are looking for a short and concise
tutorial, this is as close as you can get. It doesn't cover all of C++, but many of the
essential features (except the STL). A decent first book to buy.

! The C++ Primer, Third Edition, by Stanley Lippman and Josee Lajoie. A decent
book, much expanded from previous editions. Gets carried away with very long
examples, which makes it harder to use as a reference. Full coverage of ANSI/ISO
C++.

! The C++ Programming Language, Third Edition by Bjarne Stroustrup. Often
called the best book for C++ written in Danish. Written by the designer of C++,
this is a difficult read unless you already know C++. Full coverage of ANSI/ISO C
++.

! Effective C++, Second Edition: 50 Specific Ways to Improve Your Programs and
Designs, by Scott Meyers. . A must-have that describes lots of tips, tricks, and
pitfalls of C++ programming.

! More Effective C++: 35 New Ways to Improve Your Programs and Designs, by
Scott Meyers.. Same as above. For example, how is the new operator different from
operator new? Operator new is called by the new operator to allocate memory for
the object being created. This is how you hook your own malloc into C++.

Links

! The SGI STL Reference
! The STL tutorial
! The C++ FAQ
! ObjectSpace STL examples
! Mumit's STL Newbie Page

Documentation styles
! Introduction into Cascading Style Sheets
! Documentation styles description

" Path, project, module, ...
" Registry
" Scripts and commands
" Autoconf
" Make
" CVS
" C/C++ code

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.xraylith.wisc.edu/~khan/software/stl/STL.newbie.html
http://www.sgi.com/tech/stl/
http://www.cs.brown.edu/people/jak/proglang/cpp/stltut/tut.html
http://www.parashift.com/c++-faq-lite/
http://www.xraylith.wisc.edu/~khan/software/stl/os_examples/examples.html

! Others

Introduction into Cascading Style Sheets
The current documentation use Cascading Style Sheets (CSS) as a simple mechanism for
adding style (e.g. fonts, colors, spacing) to Web pages. All styles used by NCBI C++ Toolkit
documentation defined in the file doc.css in the next form:

.ncbi_file { font-style: italic; }

where ncbi_file is the name of style. This style can be applied to a majority of HTML tags. For
example:

file_name.

or as the part of line:

This class defined in the file file_name

This is the basis. For a quick introduction into CSS try Learning CSS tutorials.

Documentation Styles
The basic styles used in the documentation are described in Table 1.

Page 2

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

http://www.w3.org/Style/CSS/learning
http://www.w3.org/Style/CSS/

Table 1
Documentation Styles

Name Description Example

Path, project, module, ...

ncbi_file file name /src/corelib/ncbistd.cpp

ncbi_dir directory name /src/corelib/

ncbi_code source code (big chunk) class CMyClass { };

ncbi_code_sm source code (big chunk,
smaller font)

class CMyClass { };

ncbi_output app/command/
script output

some output text

ncbi_app program name datatool

ncbi_app_a program argument -help

ncbi_lib library name connect

ncbi_proj project name all_core, xutil

ncbi_util system utilities ls, make

ncbi_url URL/mail address http://
www.ncbi.nlm.nih.gov

ncbi_cgi CGI script query.cgi

ncbi_interface API/service/interface/
method name

SERV, CONN, GET/
POST, HTTP

Registry

ncbi_reg registry section name [DEBUG]

ncbi_reg_var registry entry name DIAG_POST_LEVEL

Scripts and commands

ncbi_script script name configure.sh

ncbi_script_a script argument reconf, --with-cvs

ncbi_cmd command, script source
code

configure --help

ncbi_cmd_sm command, script source
code (small font)

configure --help

ncbi_env environment variable $LD_LIBRARY_PATH

Autoconf

ncbi_conf_var configurable variable @incdir@

ncbi_conf_flag configure flag --with-foo

Page 3

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

Name Description Example

Make

ncbi_make_var makefile variable (macro) APP, SUB_PROJ, $
(builddir)

ncbi_make_flag makefile flag all, all_r, clean, purge

CVS

ncbi_cvs_path CVS path $CVSROOT/internal/c+
+

ncbi_cvs_rev file revision $Revision: 1.21 $

ncbi_cvs_date last file modification date $Date: 2004/09/16
17:16:38 $

C/C++ code

ncbi_class class CNcbiApplication

ncbi_func function SetAttribute()

ncbi_type type int, FILE*, TMode,
EType

ncbi_var variable i, count, m_Name,
eDiag_Warning

ncbi_macro macro _TRACE, ERR_POST,
BEGIN_NCBI_SCOPE

ncbi_ccode source code (short inline
chunk)

count = 0

Others

ncbi_os OS name MS Windows, UNIX,
Solaris

ncbi_platform platform name sun-solaris, sun-intel

ncbi_config configuration name Debug, ReleaseDLL

ncbi_term term source tree, meta-
makefile

ncbi_note note, caution, warning
title

Note:, Warning:

ncbi_value variable/parameter/
argument/... value

true/false, "value", 345

ncbi_menu program menu/
button name

"Build"/"Set active
configuration...",
"Submit"

ncbi_keyword keyword #define, const, <body>

Page 4

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

The N
C

BI C
++ Toolkit Book

